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Abstract In this paper the geodesics motion and accretion
process around a subclass of Horndeski/Galileon black holes
are investigated. Firstly, we present spherically symmetric
geometries in a Horndeski/Galileon black hole spacetime
by considering an isothermal fluid around the black hole.
Then we focus on three main issues: in the first step circular
orbits of test particles and their stability in equatorial plane
are examined in details. Then, by treating perturbations via
restoring forces, oscillations of particles around the central
object are studied. Finally, the accretion process, the critical
speed of the flow and accretion rate are investigated in this
setup properly.

1 Introduction

Recent observations indicate that General Relativity might
indeed be modified at large distances. Scalar-tensor theories
are a prototype alternative and also they are most probably
the simplest, consistent and nontrivial modification of the
General Relativity [4]. Gregory Horndeski [15] proposed the
most general action of the scalar-tensor gravity. The same
results were formulated in terms of Galileons interactions
[9,10,24]. Therefore, Horndeski/Galileons is the most gen-
eral class of scalar-tensor field models with second-order
field equations and it may be considered as a proper gen-
eralization of General Relativity in high energy regime [27].
We consider the following action which is a subclass of gen-
eral Horndeski/Galileons class

S =
∫

d4x
√−g

[
ζ R − η(∂φ)2 + βGμν∂μφ∂νφ − 2�

]
.

(1)
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Here R is the Einstein–Hilbert term, Gμν is the Einstein ten-
sor, φ is the scalar field, � is a cosmological constant term,
ζ > 0, η and β are model parameters. On astrophysical
scales, which covers also static and spherically symmetric
solutions, this scalar-tensor theory may play a crucial role.
On the other hand, any modification of General Relativity
must be consistent with astrophysical observations. So, it is
important to see how astrophysical processes such as accre-
tion onto black holes work in this scalar-tensor framework
and can be used also as a probe to see viability of these the-
ories from experimental viewpoint. The issue of black hole
accretion disk is studied in some subclasses of scalar-tensor
theories. However, there is a gap in literature since black hole
accretion disk has not been studied in the mentioned scalar-
tensor theory as a subclass of the general Horndeski/Galileon
scenario. This is the motivation of the present study and we
are going to fill this gap in this paper.

Accretion disks are constructed by rotating gaseous mate-
rials that move in bounded orbits because of the gravitational
force of central mass, such as Young Stellar Objects (YSO),
main-sequence stars (MSs), neutron stars (NSs), and super-
massive black holes in Active Galactic Nuclei (AGN). In
such systems, particles orbits are stable, but when the orbits
of these materials become unstable, following it, accretion
will be happened. Accretion is the process by which a mas-
sive central object such as a black hole captures particles
from a fluid in its vicinity. The particles which accelerate
from rest must be passed through a critical point, the point
where the velocity of the gas matches its local sound speed.
Then the gas falls onto the central mass at supersonic veloc-
ities. This process leads to increase in mass of the black hole
[28]. In addition, extra energy would be released in this pro-
cess where this energy can be source of some astrophysical
phenomena, such as the production of powerful jets, high-
energy radiation, and quasars [21]. Therefore, the study of
the geodesic structure of particles in the vicinity of black
holes and specially investigation about some characteristic
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radii such as marginally bound orbits (rmb) and innermost
stable circular orbits (risco) are interesting issues for a care-
ful study of the subject matter. These radii are very important
in the study of black hole accretion disks. For example, in
thin accretion disks, the inner edge of the disk coincides with
the innermost stable circular orbit (ISCO) and the efficiency
of the energy released, which describes the significance of
converting rest-mass energy into radiative energy [44], can
be determined from this radii.

The location of unstable or stable circular orbits is consis-
tent with the maximum or minimum of the effective poten-
tial respectively. In Newtonian theory, for any value of the
angular momentum, the effective potential has a minimum
and then stable circular orbit is free to have arbitrary radius,
that is, there is no minimum radius of stable circular orbit,
(ISCO) [20]. But this situation is different when the effective
potential has a complicated form depending on the particle
angular momentum and other parameters or when one incor-
porates general relativistic effects. For example, in General
Relativity and for particles moving around the Schwarzschild
black hole, for any value of the angular momentum, the effec-
tive potential has two extrema (minimum or maximum). But,
only for a specific value of the angular momentum the two
points coincide. This point introduces ISCO where is located
at r = 3rg [20,26] where rg is the Schwarzschild radius.
In different metrics, the properties of spacetime affects the
locations of these radii and some parameters such as: specific
energy, angular momentum and angular velocity are impor-
tant in the position of these points. A lot of research programs
are devoted to study these radii and their physical signifi-
cance. Ruffini et al. [36] and Bardeen et al. [7] studied the
properties of innermost stable circular orbits around the Kerr
black hole. Even Hobson et al. [14] described these features
in details in their textbook on General Relativity. The radia-
tion efficiency of accretion disks, η, for Schwarzschild and
Kerr black holes was obtained by Novikov and Thorne [32]
which its value lies in the range of 0.057–0.43 depending on
the black hole spin. The Kerr-like metric was constructed by
Johannsen and Psaltis [19] and then Johannsen [18] has stud-
ied the accretion disks around such black holes. The study
of the geodesic motion and the circular orbits of charged
particles around weakly magnetized rotating black holes are
carried out by Tursunov et al. [40].

In an accretion disk particles move in stable orbits but
when a perturbations, as a result of restoring forces, act on the
particles, oscillations around the circular orbit can take place
in vertical and radial directions with epicyclic frequencies.
Happening the oscillations (in response to perturbations) in
the inner region of an accretion disk is another important
characteristic of these regions. Oscillations can be source of
strong and chaotic time variations in spectrum of such sys-
tems. Therefore, study about orbital and epicyclic frequen-
cies (radial and vertical) play an important role in the physics

of relativistic accretion disks around the black holes. Isper
[16,17], Wagoner [43], Kato [22] and Ortega-Rodriges et al.
[34] have studied in this field. Resonance between such a fre-
quency modes which proposed by Kluzniak and Abromowicz
[23] can be a physical mechanism for existing Quasi-periodic
oscillations (QPOs). QPOs in the X-ray fluxes of some astro-
physical objects such as a neutron star and black hole sources
have been reviewed by many researches including van der
Klis [42] and McClintock et al. [30]. Johannsen [18] has
examined the radial and vertical epicyclic frequencies in the
Kerr-like metric.

With these preliminaries, in this paper we study nonrotat-
ing black hole solutions with accretion disk in a subclass of
Horndeski/Galileons spacetime general class. For simplicity
we restrict our study to equatorial plane in a polar coordi-
nates system. Firstly, the singularity and event horizon in this
spacetime geometry are presented. Then, in order to investi-
gate the circular orbits, effective potential is obtained in this
setup. We study the locations of several characteristic radii,
such as: marginally stable circular orbits risco, marginally
bounded circular orbits rmb and photon orbits rph in equato-
rial plane. Also, the ISCO binding energy, the maximum radi-
ation efficiency, the emission and temperature in equatorial
epicyclic frequencies are computed. Finally, some dynami-
cal parameters and critical accretion of isothermal fluid are
investigated in details.

This paper is organized as follows: in Sect. 2 we introduce
Horndeski/Galileon spacetime. The general formalism of a
test particle’s motion is discussed in Sect. 3 where circular
motion, stable circular orbits and oscillations are examined
in Sects. 3.1, 3.2 and 3.3. In Sect. 4 and it’s subsections, the
general form of some dynamical parameters such as critical
speed of the flow, accretion rate and the time of accretion for
an isothermal fluid are obtained. In Sect. 5 we have explained
physically all of these results for a subclass of general solu-
tion of the Horndeski/Galileon black hole. Finally, Sect. 6 is
devoted to summary and discussion.

2 Horndeski/Galileon spacetime

We study static and spherically symmetric limit of black hole
solutions in a subclass of general Horndeski/Galileon theo-
ries (see Maselli [29] for the case of slowly rotating black
holes in Horndeski theory and also Babichev et al. [4] for
black hole and star solutions for Horndeski theory). The gen-
eral form of the line-element for such systems with the metric
signature (+,−,−,−) is described by

ds2 = h(r)dt2 − 1

f (r)
dr2 − r2(dθ2 + sin2 θdϕ2). (2)
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The metric functions, f (r) and h(r), depend only on the
radial coordinate r and are given as follows [38]

f (r) = (β + ηr2)h(r)

β(rh(r))′
, (3)

h(r) = −μ

r
+ 1

r

∫
k(r)

(β + ηr2)
dr, (4)

φ(r) = qt + ψ(r). (5)

In these relations, μ plays the role of the mass term and k is
obtained from the following constraint equation

q2β(β + ηr2)2 − [2ζβ + (2ζη − λ)r2]k + C0k
3
2 = 0,

(6)

where C0 is a constant of integration. It is important to note
that the static metric (2) has the time rescaling symmetry. So,
if h(r) is a solution then ch(r) should be also a solution where
c is a constant. This means that c should be set for t to describe
the proper time in the relevant region, namely h → 1. We
note also that Eq. (5) is not a solution, but rather an ansatz on
the scalar field. This type of scalar configuration was firstly
considered by Babichev and Charmousis [3] in which the
solution for ψ(r) is also presented. About the stability of
solutions, Ogawa et al. [33] and Takahashi and Suyama [37]
showed that solutions with nonzero q are generically plagued
by ghost or gradient instability. However, for solutions with
q = 0, there exist some stable solutions (see Kobayashi et
al. [25], Takahashi and Suyama [37], and Tretyakova and
Takahashi [39]). We note that recently it has been pointed out
by Babichev et al. [5,6] that the conclusion of Ogawa et al.
[33] and Takahashi and Suyama [37] is incorrect. Now from
the recent relations, various solutions for different values of
C0 and q can be obtained. We are going to discuss a common
expression in this paper.

Now we study the properties of a subclass of black hole
solutions in Horndeski/Galileon gravity as has been intro-
duced above. The mentioned Horndeski spacetime contains
a singularity at the location where the following condition
holds

f (r) = 0. (7)

The event horizon is a null surface. A surface that is defined
as f (xμ) = 0 will be null if

gμνnμnν = 0, (8)

where nμ is the normal 4-vector to the surface and it is defined
as nμ = ∇μ f . Since we are interested in to study the problem
in the equatorial plane, then the relation (8) can be written as
grr (∂r f )2 = 0. Therefore, in the radial distance that grr = 0
or equivalently f (r) = 0, we would have an event horizon.
The location of the event horizon in the geometry is a radial

distance from the center of the core where the metric is singu-
lar, except the intrinsic singularity which cannot be removed
via coordinate transformation.

3 Test particle’s motion: general formalism

The motion of a test particle is governed by the geodesic
structure of the underlying spacetime manifold. In this sec-
tion, we study general form of timelike geodesics around
a subclass of Horndeski/Galileon black hole. Spacetime
around this black hole is static and symmetric with two
Killing vectors ξt = ∂t and ξϕ = ∂ϕ which imply two con-
stants of motion E and L (conserved energy and angular
momentum per unit mass) along the trajectory as follows

E = −gμνξ
μ
t u

ν ≡ −ut ,

L = gμνξ
μ
ϕ u

ν ≡ uϕ, (9)

where uμ = (ut , ur , uθ , uϕ) is the four-velocity of the test
particle. Using the normalization condition for four-velocity,
that is uμuμ = 1, we have

[grr (ur )2 + gθθ (u
θ )2] = [1 − gtt (ut )

2 − gϕϕ(uϕ)2]. (10)

From Eqs. (9) and (10) and in equatorial plane with θ = π
2 ,

four-velocity will be given by the following components

ut = − E

h(r)

uθ = 0

uϕ = − L

r2

ur =
[
− f (r)

(
1 − E2

h(r)
+ L2

r2

)] 1
2

. (11)

Also the following equation can be derived easily

h(r)

f (r)
(ur )2 + Vef f = E2. (12)

In this equation Vef f is the effective potential for the test
particle motion that is given by

Vef f = h(r)

[
1 + L2

r2

]
. (13)

It is clear that effective potential depends on the particle’s spe-
cific angular momentum radial distribution and the spacetime
parameter via h(r). The study of effective potential is very
useful in geodesic motion. For example, the local exterma of
the effective potential determine the location of the circular
orbits.
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3.1 Circular motion

For circular motion in the equatorial plane, radial component
r must be constant and so ur = u̇r = 0 must be satisfied.
Therefore, from Eq. (12) we would have Vef f = E2 and
d
dr Vef f = 0. From these relations the specific energy E ,
the specific angular momentum L , the angular velocity �ϕ

and angular momentum l can be obtained by the following
relations respectively

E2 = 2h2(r)

2h(r) − rh′(r)
, (14)

L2 = r3h′(r)
2h(r) − rh′(r)

, (15)

�ϕ = dϕ

dt
≡ uϕ

ut
⇒ �2

ϕ = 1

2r
h′(r), (16)

l2 = L2

E2 = r3

2h2(r)
h′(r). (17)

In order the energy and angular momentum to be real, the
following condition must be satisfied

2h(r) − rh′(r) > 0. (18)

By solving this inequality, the limited area of circular orbit
can be obtained. Therefore, this is the condition for existence
of the circular orbits. For bound orbit the relation E2 < 1
must be hold and in marginally bound orbits we have E2 = 1.
Then from Eq. (14) we fined

rh′(r) + 2h(r)[h(r) − 1] = 0 (19)

By solving this equation, marginally bound orbits can be
obtained easily. From Eqs. (14) and (15) it is seen that the
energy and angular momentum diverge at the radius where
the following relation holds

2h(r) − rh′(r) = 0. (20)

Photon sphere can be obtained by solving this relation. In a
photon sphere, photon moves on circular orbits. This region
plays a crucial role in the study of gravitational lensing, since
lensing effect cannot be observed below this region.

3.2 Stable circular orbits and radiant energy flux

The local minima of the effective potential correspond to the
stable circular orbits. Thus a stable circular orbit exists if
d2

dr2 Vef f > 0 and in addition to this condition, in marginally

stable circular orbits, risco, the condition d2

dr2 Vef f = 0 must
be satisfied. From Eq. (13) we have

d2

dr2 Vef f = h′′(r)
(

1 + L2

r2

)
− 4h′(r) L

2

r3 + 6h(r)
L2

r4 .

(21)

Accretion process is possible in r < risco. When falling
particles from rest at infinity accrete onto the central mass, the
released gravitational energy of falling particles can convert
into radiation where this energy is the source of the most
energetic phenomena in astrophysics. The flux of the radiant
energy over the disk can be expressed in terms of the specific
angular momentum L , the specific energy E and the angular
velocity �ϕ by the following relation (see for instance Kato
et al. [21])

K = − Ṁ�ϕ,r

4π
√−g(E − L�ϕ)2

∫ r

rms

(E − L�ϕ)L ,r dr, (22)

where Ṁ is the accretion rate, �ϕ,r ≡ d�ϕ

dr and the parameter
g is determinant of gμν given by

g = det (gμν) = − h(r)

f (r)
r4 sin2 θ. (23)

We set sin θ = 1, since we restrict our studies in equatorial
plan. From relations (14)–(16) we would have

K (r) = − Ṁ

4πr4

√
r f (r)

2h(r)h′(r)

×
( [2h(r) − rh′(r)][rh′′(r) − h′(r)]

[2h(r) + rh′(r)]2

)∫ r

rms

F(r)dr,

(24)

where by definition

F(r) ≡
√

r

2h′(r)
[2h(r) + rh′(r)][−h′′(r)rh(r) + 2rh′2(r) − 3h′(r)h(r)]

[2h(r) − rh′(r)]2 .

(25)

The steady-state accretion disk model is supposed to be in
thermodynamical equilibrium. Then the radiation emitted
from the surface of the disk can be as a black body radia-
tion. So, the relation K (r) = σT 4(r) can be hold between
energy flux emitted at the surface of the disk and effective
temperature of the disk (σ is the Stefan-Boltzman constant).
Using this relation, temperature distribution on the disk by
assuming thermal black body radiation can be obtained eas-
ily and then we can compute the luminosity L(ν) of the disk.
The observed luminosity at the distance d to the source with
the disk inclination angle γ has the following form [41]

L(ν) = 4πd2 I (ν) = 8

π
(cos γ )

∫ r f

ri

∫ 2π

0

ν3
e r dϕ dr

exp( νe
T ) − 1

,

(26)

where I (ν) is the thermal energy flux. In this relation ri indi-
cates the position of the inner edge and we take ri = rms .
Also r f indicates the outer edge of the disk. Since for any
kind of general relativistic compact object the flux over the
disk surface could be vanishing at r → ∞, we take r f → ∞.
The emitted frequency is given by νe = ν(1 + z) where the

123



Eur. Phys. J. C (2018) 78 :486 Page 5 of 18 486

redshift factor z, by neglecting the light bending, can be writ-
ten as follows

z = 1 + �ϕr sin ϕ sin γ√
−gtt − �2

ϕgϕϕ

− 1. (27)

The efficiency of the accreting flow is another important char-
acteristic of the mass accretion process. The maximum effi-
ciency of transforming gravitational energy into radiative flux
of such particles between innermost circular orbit and infin-
ity, η∗, is defined as the ratio of the specific binding energy of
the innermost circular orbit to the specific rest mass energy
which is given by the following relation

η∗ = 1 − Eisco, (28)

where Eisco is the specific energy of a particle rotating in an
innermost stable circular orbit. This relation is valid for the
case where all the emitted photons can escape to infinity.

Now we focus on perturbations. If a perturbation acts on
the fluid element, the motion of a test particle will be nearly
circular orbit in the equatorial plane and the particle will
oscillate around the circular orbit with three components of
motion, the issue which is discussed in the next section.

3.3 Oscillations

In an accretion disk, various types of oscillatory motions as a
result of restoring forces are expected. Restoring forces act on
perturbations in the accretion disks resulting Horizontal and
Vertical oscillations. Some of these restoring forces in accre-
tion disks are resulting from rotation of the disk and from a
vertical gravitational filed. When a fluid element is displaced
in the radial direction, it will return to its equilibrium position
due to a restoring force resulting from rotation of the fluid. In
accretion disks, because of existence of central object, cen-
trifugal force is balanced by the gravitational force. When the
former dominates over the latter or the reverse happens, the
element of flow will be pushed inward or outward to return to
the original radius with epicyclic frequency �r . On the other
hand, when a fluid element is perturbed in the vertical direc-
tion, the vertical component of the gravitational field returns
the perturbed element toward equilibrium position, that is,
the equatorial plane. As a result of this restoring force, the
element of the fluid makes harmonic oscillation around the
equatorial plane with vertical epicyclic oscillations �θ [21].

In a general relativistic discussion about the motion of the
fluid in an accretion disk, three frequencies around the cen-
tral object are important. Circular motion at the orbital fre-
quency �ϕ , harmonic radial motion at the radial frequency
�r and the harmonic vertical motion at the vertical frequency
�θ . As we have stated, resonance between such frequencies
can be source of quasi-periodic oscillations which leads to
chaotic and quasi-periodic variability in X-ray fluxes from

many galactic black holes. Study in this field is important
in some sense. For this purpose, radial and vertical motions
around a circular equatorial plane are discussed in this sec-
tion.

Radial and vertical motions can be explained by 1
2 ( drdt )

2 =
V (r)
e f f and 1

2 ( dθ
dt )

2 = V (θ)
e f f where from Eq. (10), to describe

radial motion uθ = 0, and also for describing the vertical
motion we have ur = 0. By setting ur = dr

dτ
= dr

dt u
t and

uθ = dθ
dτ

= dθ
dt u

t , we find

1

2

(
dr

dt

)2

= −1

2

f (r)h2(r)

E2

[
1 − E2

h(r)
+ L2

r2sin2θ

]
= V (r)

e f f ,

1

2

(
dθ

dt

)2

= −1

2

h2(r)

r2E2

[
1 − E2

h(r)
+ L2

r2sin2θ

]
= V (θ)

e f f .

(29)

In order to investigate the radial and vertical epicyclic fre-
quencies, small perturbations δr and δθ around the circular
orbit in equatorial plane are considered. By taking the time-
derivative of the first equation in (29), equation describing
the radial oscillations can be obtained as follows

d2r

dt2 = dV (r)
e f f

dr
. (30)

For a particle which is perturbed from its original radius at
r = r0 by a deviation δr = r − r0, the perturbed equation of
motion is given by

d2(δr)

dt2 = d2V (r)
e f f

dr2 (δr) ⇒ (δr̈) + �2
r (δr) = 0, (31)

where a dote denotes differential with respect to time coor-

dinate t and �2
r ≡ − d2V (r)

e f f

dr2 . By the same procedure, for a
perturbation in the vertical direction by a deviation given as
δθ = θ − θ0 we find

d2(δθ)

dt2 = d2V (θ)
e f f

dr2 δθ ⇒ (δθ̈) + �2
θ (δθ) = 0, (32)

where �2
θ = − d2

dθ2 V
(θ)
e f f . Then from Eq. (29) in equatorial

plane we would have respectively

�2
r = 1

2r4E2

{[
(r2 + L2)r2h2(r) − h(r)r4E2

]
f ′′(r)

+
[
(r2 + L2)2h(r) − r2E2

]
r2 f (r)h′′(r)

+2r2 f (r)h′2(r)(r2 + L2) − 2r
[
[−(r2 + L2)2h(r)

+ r2E2]r f ′(r) + 4 f (r)h(r)L2
]
h′(r)

−4h2(r)L2(−3

2
f (r) + r f ′(r))

}
, (33)

and

�2
θ = h2(r)L2

r4E2 . (34)
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In these equations, a prime denotes differential with respect
to the radial coordinate, r . To proceed further, now we present
basic dynamical equations in this subclass of general Horn-
deski/Galileons black hole spacetime.

4 Basic dynamical equations

In this section we provide the basic dynamical equations for
our forthcoming arguments (we refer to Babichev et al. [1,2]
for more details). Here we consider a perfect fluid which is
specified by the following energy-momentum tensor

Tμν = (p + ρ)uμuν − pgμν, (35)

where p and ρ are pressure and energy density of the fluid
respectively. In this relation, uμ is the fluid elements four-
velocity. Because of background symmetries, in relation (35)
all of the components are functions of only the radial coor-
dinate, r . Since we are assuming the fluid is flowing radially
in the equatorial plane (θ = π

2 ), the general form of the
four-velocity will be as follows

uμ = dxμ

dτ
= (ut , ur , 0, 0), (36)

where τ is the proper time along the geodesic. From this
relation and under the normalization condition uμuμ = 1,
we obtain

ut =
√

f (r) + (ur )2

h(r) f (r)
, (37)

where for forward flow in time, ut must be positive and for
accretion (inward flow), ur < 0. By deriving the energy-
momentum and also particle-number conservation equations,
all of the required equations for studying the accretion are
obtained. Conservation of the energy- momentum tensor is
given by

Tμν

;μ = 0 ⇒ Tμν

;μ = 1√−g
(
√−gTμν),μ + �ν

αμT
αμ = 0,

(38)

where in this relation (; ) shows the covariant differentiation,√−g = r2 sin θ

√
h(r)
f (r) and � is the second kind Christoffel

symbol (affine connection) where its non-zero components
are as follows

�0
01 = �0

10 = 1

2

h′(r)
h(r)

�1
00 = 1

2
h′(r) f (r), �1

11 = −1

2

f ′(r)
f (r)

,

�1
22 = −r f (r), �1

33 = −r f (r) sin θ

�2
12 = �2

21 = 1

r

�3
13 = �3

31 = 1

r
. (39)

From these relations, equation (38) yields

T 10
,r + 1√−g

T 10(
√−g),r + 2�0

01T
10 = 0, (40)

where after some manipulations we obtain

(p + ρ)urr2
√

(ur )2 + f (r)
h(r)

f (r)
= A0, (41)

with A0 as an integration constant. Projecting the energy-
momentum conservation law onto the four-velocity via
uμT

μν

;ν = 0, yields

(p + ρ),νuμu
μuν + (p + ρ)uμ

;νuμu
ν + (p + ρ)uμu

μuν
;ν

+p,νg
μνuμ + puμg

μν

;ν = 0. (42)

By considering the normalization conditions as uμuμ = 1
and since gμν

;ν = 0, this relation reduces to

(p + ρ)uν
;ν + uνρ,ν = 0. (43)

Since Ab
;a = ∂a Ab + �b

ac A
c, we find

urρ,r + (p + ρ)
[
�0

0cu
c + (ur,r + �1

1cu
c)+ �2

2cu
c + �3

3cu
c] = 0.

(44)

By using the non-zero components of the connection, this
relation after some simplification yields

ρ′

(p + ρ)
+ 1

2

h′(r)
h(r)

− 1

2

f ′(r)
f (r)

+ u′

u
+ 2

r
= 0, (45)

which after integration, we would have

r2ur

√
h(r)

f (r)
exp

(∫
dρ

p + ρ

)
= −A1, (46)

where A1 is an integration constant. Since in the left hand
side ur < 0, the right hand side takes a minus sign too. So
we find finally

(p + ρ)

√
h(r)

[
(ur )2

f (r)
+ 1

]
exp

(
−
∫

dρ

p + ρ

)
= A2,

(47)

where A2 is an integration constant. The equation of mass
flux in this setup which is given by

(ρuμ); ≡ 1√−g
(
√−gρuμ),μ = 0 (48)

can be rewritten as

1√−g
(
√−gρuμ),r + 1√−g

(
√−gρuθ ),θ = 0. (49)
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Since we are interested in to study just in equatorial plane,
the second term in Eq. (49) vanishes. Therefore,

√−gρuμ

would be as a constant, that is

ρurr2

√
h(r)

f (r)
= A3, (50)

where A3 is an integration constant. We note that while we
have restricted our study to equatorial plane by symmetry
considerations, the general case is not so complicated in
essence. Because of symmetry all important characteristics
of the model can be obtained in θ = π

2 plane as well. Now we
are going to determine dynamical parameter, critical accre-
tion and accretion rate in this setup.

4.1 Dynamical parameters

To proceed further, we assume isothermal fluids. These fluids
flow at a constant temperature. Therefore, p ∝ ρ and then
the speed of sound throughout the accretion process remains
constant. For such fluids, the equation of state is of the form
p = kρ where k is the equation of state parameter. Then Eqs.
(46), (47) and (50) yield

p + ρ

ρ

√
h(r)

[ (ur )2

f (r)
+ 1
]

= A4, (51)

where A4 is an integration constant. By substituting p = kρ,
we can obtain u as follows

u =
(

1

k + 1

)√√√√ f (r)

[
A2

4

h(r)
− (k + 1)2

]
. (52)

Then from Eq. (50) the density of the fluid can be obtained
as

ρ = A3

r2

(k + 1)√
A2

4 − (k + 1)2h(r)
. (53)

Finally, from the relation p = kρ, the pressure can be
obtained easily.

4.2 Mass evolution

In realistic astrophysical cases, the mass of the black hole is
not fixed in essence. By some processes such as accreting of
mass from accretion disk onto black hole and also Hawking
radiation, its mass will be changed gradually. The rate of
change of mass can be obtained by integrating the flux of
the fluid over the surface of the black hole, that is Ṁ ≡
dM
dt = − ∫ T r

t ds where a dot denotes the time derivative,
ds = √−g dθ dϕ and T r

t = (p + ρ)utur . By substituting
these relations, Ṁ can be obtained as follows

Ṁ = −4πr2u(p + ρ)
h(r)

f (r)

√
u2 + f (r) ≡ −4π A0, (54)

where A0 = −A1A2, and A2 = (p∞ +ρ∞)
√
h(r∞). There-

fore, we obtain

Ṁ = 4π A1(p∞ + ρ∞)
√
h(r∞)M2. (55)

Now, time evolution of mass of the black hole with initial
mass Mi can be obtained by integration of Eq. (55) that can
be rewritten as

dM

M2 = F t (56)

where F ≡ 4π A1(p + ρ)
√
h(r∞). By integrating from Eq.

(56) we obtain

Mt = Mi

1 − FMi t
≡ Mi

1 − t
tcr

(57)

where tcr =
[
4π A1(p + ρ)

√
h(r∞)Mi

]−1
is the critical

accretion time. In the case t = tcr the denominator of Eq.
(57) vanishes and the black hole mass grows up to infinity
in a finite time. After determining the time evolution of the
disk and black hole mass, now we study critical accretion in
this setup.

4.3 Critical accretion

Very far from the black hole, the flow is at rest but gravita-
tional field of black hole tends to accelerate it inwards. When
flow moves inwards, it must pass through critical point (sonic
point) where in this point r = rc, the four-velocity of the fluid
matches the local speed of sound, u = cs . In order to obtain
sonic point, an expression for the radial velocity gradient with
no other derivatives is required. From Eqs. (50) and (51), the
following two equations are obtained

ρ′

ρ
+ u′

u
+ 1

2

[
h′(r)
h(r)

− f ′(r)
f (r)

]
+ 2

r
= 0, (58)

and

ρ′

ρ

[
d ln(p + ρ)

d ln ρ
− 1

]
+ 1

2

[
h′(r)
h(r)

− f ′(r)
f (r)

]
+ uu′

u2 + f (r)

+1

2

f ′(r)
u2 + f (r)

= 0. (59)

From these equations we obtain

d ln u

d ln r
= D1

D2
, (60)

where by definition

D1 = −
[
r

2
(V 2 − 1)

(
h′(r)
h(r)

− f ′(r)
f (r)

)
+ 2V 2 − r f ′(r)

2(u2 + f (r))

]
,

(61)

and

D2 =
[
V 2 − u2

u2 + f (r)

]
. (62)
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With these two equations, the following relation can be
obtained

V 2 = d ln(p + ρ)

d ln ρ
− 1. (63)

The condition for critical points is D1 = D2 = 0. This
condition yields

V 2
c = rh′(r)

4h(r) + rh′(r)
, (64)

and

u2
c = 1

4

r f (r)h′(r)
h(r)

, (65)

where index c refers to the critical point. Since the right hand
side of the relation (64) must be positive, then if dependence
of h(r) is known, by solving the following inequality the
range of critical radius can be obtained

4h(r) + rh′(r) > 0. (66)

Finally the sound speed c2
s = dp

dρ can be obtained from (52)
as

c2
s = A4

√
f (r)

h(r)

[
u2 + f (r)

]− 1. (67)

5 A subclass of Horndeski/Galileon black hole solutions

As we have stated in Sect. 2, a huge variety of solutions can
be obtained from Eqs. (4)–(6). Here we present a solution of
this subclass of the Horndeski/Galileon setup that are char-
acterized by the parameters A, B,C and γ (see for instance
Tretyakova [38]). The solutions are as follows

h(r) = C − μ

r
+ Ar2 + �, (68)

and

f (r) =
(

1 + η

β
r2
)⎡
⎣ � + Ar2 + C − μ

r

3Ar2 + C + B
1+r2γ 2

⎤
⎦ , (69)

where we have set � ≡ B tan−1(rγ )
rγ . The coefficients C , A,

B and γ are defined as follows

A = − η

3β
, B = 2(1 + γ 2)ε

ζ + y
, ε �| y − 1 |

γ =
√

η

| β |
ζ + y

ζ − 3y
, C = 1 − 2ε

ζ + y
, y = �β

η
. (70)

Here ε is a small parameter which marks the deviation from
the inherent de Sitter solution. Also the scalar field in this
case is given by

ψ2(r) = −2(2η)2r2(2η + 2�β)[(2η − 2�β)r2 + 4β]2

2β(2η − 2�β)2(2ηr2 + 2β)3 f (r)
,

(71)

where ψ = dφ
dr . As we have said, singular points can be

obtained by solving the relation f (r) = 0. From this relation
singular point is located at rsing = μ

B+C .
An important issue should be stressed here: about the

behavior of the scalar field at the black hole horizon (say,
rh), the scalar field seems to be divergent at the horizon
from Eq. (71). But since f (rh) = 0 and d f

dr (rh) �= 0, one
can expand f (r) in Taylor series to find f (r) = f0 +
f1(r − rh) + f2(r − rh)2 + · · · . For ψ(r) this approxi-
mates to 1√

f (r)
in near horizon which gives for the scalar

field φ(r) = φ0 + φ1(r − rh)1/2 + φ2(r − rh)3/2 + · · · .
Therefore, the scalar field remains finite in the near hori-
zon region (a similar analysis can be found in the paper
by [31]). We note that although the scalar field itself does
not diverge at the horizon, its derivative does. However,
there is no physical divergence since all invariants, such as
gμν∂μφ∂νφ remain finite. For more discussion on this issue
we refer to Feng et al. [11] (see also Hadar and Reall [13] and
Caceres et al. [8]).

We note that for nonzero η the model given by Eqs. (68)–
(70) admits solutions in which the �-term in action (1) is
totally screened. The metric then is not asymptotically flat
but rather de Sitter with the effective cosmological constant
proportional to η/β since the scalar kinetic term becomes
constant around the present time (Gubitosi and Linder [12]).
It is important to note that as has been shown by Tretyakova
[38], for 1 − (B +C) < 3 × 10−4 this metric must be equiv-
alent to the Schwarzschild metric in the sense that it matches
with the observations of the gravitational light deflection and
perihelion precession. This feature guarantees the existence
of bounds orbits for (B + C) > 0 (for more discussion on
this issue see Tretyakova [38]).

It is necessary to mention that for calculations, the assump-
tion A 
 0 is considered. Then the components of metric (2)
will be as h(r) = C − μ

r + � and f (r) = h(r)
B+C . On the

other hand, since γ 
 √
A, due to smallness of γ , it is more

suitable to substitute tan−1(rγ ) 
 rγ and therefore � 
 B.
All calculations are done with these approximations and also
with assumption C = 1 and 0 < B + C < 1.125 [38]. By
these assumptions, we focus mainly on the role of parameter
B as Horndeski/Galileon correction factor in our forthcom-
ing treatment.

5.1 Circular equatorial geodesics

In order to investigate circular geodesics in equatorial plane,
we need the explicit form of the effective potential which is
governed by Eq. (12) as
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Fig. 1 Effective potential for massive particles versus the radial coor-
dinate (in the unit of 1

rg
). The left panel represents Vef f for B = −0.1

and for several values of the angular momentum. The solid circle in the

left panel denotes the effective potential in ISCO. In the right panel,
effect of the Horndeski/Galileon correction parameter B on effective
potential for L = 5 is shown

Vef f =
(
C − μ

r
+ Ar2 + �

)(
1 + L2

r2

)
, (72)

where � ≡ B tan−1(rγ )
rγ . From the condition d2

dr2 Vef f > 0
for existence of the stable circular orbits, we see that for
r < 3

2
μ

B+C and r > 3 μ
B+C this condition holds, which with

regard to Eq. (20), the location of the stable circular orbits
would be at r ≥ 3 μ

B+C . Then

risco = 3
μ

B + C
, (73)

is introduced as the radius of the innermost stable circular
orbit. The left panel of Fig. 1 represents the effective poten-
tial versus r for several values of the angular momentum L
in the case with B = −0.1. We see that for L < 2.2

√
3

no extremum can be observed and the first extremum is
observed at L = 2.2

√
3 (solid circle in the figure). This

point represents the location of the innermost stable circu-
lar orbit located at r = 6.6. For larger values of the angular
momentum, Vef f has two extremum where the maximum
one denotes the location of the unstable circular orbit and the
minimum one denotes the stable circular orbit. By increasing
the angular momentum, Vef f will be larger and the maximum
point turns to the smaller radii whereas the minimum point
goes to larger radii. From the right panel of Fig. 1 the effect
of Horndeski/Galileon correction factor B on the effective
potential can be seen. The effective potential achieves larger
values for larger values of B and by increasing this parame-
ter, the loci of unstable circular orbit becomes closer to the
central mass and stable orbits will be located farther from the

central mass. Also the enhancement of the distance between
these points by increasing B is obvious.

In addition to innermost stable circular orbit which is
very important in studying the accretion around the black
hole, there are other special radii where considering them is
necessary. As we have stated previously, the circular orbits
exist only for radii larger than the photon radius rph . For
rph < r < rms , the motion of the particle will be unsta-
ble against the small perturbations. This means that particle
falls into the black hole or flee away to infinity. In the region
r > rms the particle moves on stable circular orbits.

From Eqs. (18)–(20), other characteristic radii including
the photon sphere rph , circular orbit rcirc and marginally
bound orbit rmb can be obtained respectively as

rph = 3

2

μ

B + C
, (74)

rcirc >
3

2

μ

B + C
, (75)

and

rmb = 1

4
μ

4(B + C) − 3 ± √
9 − 8(B + C)

(B + C)(B + C − 1)
. (76)

We have plotted the characteristic radii versus the Horn-
deski/Galileon correction factor B in Fig. 2. The value of this
parameter affects the location of the characteristic radii in the
vicinity of the black hole. For larger values of B, the location
of rph , risco and rsing will be closer to the black hole, whereas
the behavior of rmb for negative and positive values of B = 0
is different. For B < 0, marginally bound radius decreases
by increasing B, but for B > 0 this behavior becomes reverse

123



486 Page 10 of 18 Eur. Phys. J. C (2018) 78 :486

Fig. 2 The effect of the Horndeski/Galileon correction factor B on
characteristic radius and comparison between these radii. The verti-
cally dotted line represents the location of these radii in Schwarzschild
spacetime

as it finally matches the innermost stable circular orbit. Since
risco represents the inner edge of the accretion disk, we see
that in larger values of B, the disk will be extended close to
the central mass.

For a particle which moves in a circular orbit, the spe-
cific energy, specific angular momentum, angular velocity
and angular momentum in equatorial plane can be derived as

E2 =
2
(
C − μ

r + Ar2 + �
)2

(
2C − 3μ

r + 3� − B
1+r2γ 2

) , (77)

L2 = r2

(
μ
r + 2Ar2 − � + B

1+r2γ 2

)
(

2C − 3μ
r + 3� − B

1+r2γ 2

) , (78)

�2
ϕ = 1

2r2

(μ

r
+ 2Ar2 − � + B

1 + r2γ 2

)
, (79)

l2 = r2

2

(
μ
r + 2Ar2 − � + B

1+r2γ 2

)
(

− μ
r + Ar2 + � + C

)2 , (80)

respectively. For the innermost stable circular orbit, these
relations reduce to

E2
isco = 8

9
(B + C), (81)

L2
isco = 3μ2

(B + C)2 , (82)

�2
isco = 1

54

(B + C)3

μ2 , (83)

l2 = 27

8

μ2

(B + C)
, (84)

respectively.
In Fig. 3, the behavior of specific energy and angular

momentum versus the radius are shown and the effect of the
Horndeski/Galileon correction factor B is studied. The upper
left panel represents variation of the specific energy versus
r . In the upper right panel the location of this radius in inner-
most stable circular orbits is shown by the solid circle. The
empty circle denotes the limit of the bound orbit. Increas-
ing the Horndeski/Galileon correction factor enhances the
energy and decreases the range of bound orbit radius. The
lower left panel represents the angular momentum where it
gets smaller values by increasing B. The loci of these param-
eters in innermost stable circular orbits are represented by
circles on the lower right panel of the figure.

Now by knowing E in ISCO, we are able to determine
the radiation energy efficiency of accretion. As we have
said previously, the efficiency of accretion is 1 − E , where
the maximum efficiency of accretion given by 1 − Eisco in

innermost stable orbit in this setup is 1 −
√

8
9 (B + C). In

Fig. 4, the efficiency of accretion is plotted versus r for
different values of the Horndeski/Galileon correction fac-
tor B where we have denoted the maximum with a circle
in this figure. In the case B = 0 where coincides with the
Schwarzschild black hole (dashed line), the efficiency equals
to 0.057 at r = 6rg as usual. For negative values of the Horn-
deski/Galileon parameter, efficiency goes up and becomes
greater than the Schwarzschild black holes ones. For exam-
ple, in the case with B = −0.1, the efficiency equals to
0.105 at r = 6.66rg where is tangible. On the other hand,
positive values of B is accompanied with decreasing of the
efficiency.

Now we can study radiation flux from the surface of the
accretion disk by knowing E , L and �ϕ in equatorial plane
and rms . The Flux of the radiation energy of the accretion
disk is obtained from Eqs. (24) and (25) as

K (r) = −1

8
Ṁ

√√√√ 2r2(1 + η
β
r2)

(3Ar2 + C + B
1+r2γ 2 )(2Ar2 + μ

r + B
1+r2γ 2 − �)

×1

r

{
3� + 2C − 3

μ

r
− B

1 + r2γ 2

}

×
{

3� − 3
μ

r
− 3

B

1 + r2γ 2 − 2
Br2γ 2

(1 + r2γ 2)2

}

×
{
πr4(� + 4Ar2 + 2C − μ

r
+ B

1 + r2γ 2 )2
}−1 ∫ r

rms

F(r)dr,

(85)
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Fig. 3 The behavior of energy (upper panel) and angular momentum
(lower panel) versus the radial distance from the central mass for several
values of the Horndeski/Galileon parameter B. The innermost stable cir-
cular orbits are represented by the solid circles in the upper right panel.
The empty circles at the energy diagram denote the limit of the bound

orbit. The lower panel shows that the angular momentum gets smaller
values by increasing B. The loci of these parameters in innermost stable
circular orbits are represented by circles on the lower right panel of the
figure

where by definition

F(r) = 1

2

⎧⎨
⎩
√√√√ 2r2

2Ar2 + μ
r − � + B

1+r2γ 2

(4Ar2 − μ

r
+ � + B

1 + r2γ 2 + 2C)

×
(

1

r

(
� + Ar2 + C − μ

r

)(
� − 8Ar2 − μ

r
− B

1 + r2γ 2 + 2Br2γ 2

(1 + r2γ 2)2

)

+2

(
B

1 + r2γ 2 − � + 2Ar2 + μ

r

))}{
− 3

μ

r
+ 3� + 2C − B

1 + r2γ 2

}−2

. (86)
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Fig. 4 Energy efficiency of a massive particle falling from infinity into
the black hole is shown versus the radial distance for several values of
the Horndeski/Galileon parameter B. The maximum efficiency at the

innermost stable circular orbit is represented by a circle in each case in
the right panel

Fig. 5 Dependence of the emission rate and temperature T on radius r and Horndeski/Galileon parameter B (B = −0.1, 0, 0.1 from top to down
respectively). Dotted curve represents the case of the Schwarzschild black hole (B = 0)

Then the temperature can be obtained by using the equa-
tion K = σT 4. In Fig. 5, the relation between the radiation
flux and temperature is shown. The radiation flux has a max-
imum in the vicinity of the black hole and decreases at the
smaller radii. By increasing the Horndeski/Galileon correc-
tion factor B, the energy flux raises and the maximum of
emission flux tends to the smaller radii but the reverse hap-
pens after this point. The dependence on this parameter is
very considerable in the vicinity of the black hole, but it is
relatively weak far from the black hole. These behaviors are
the same for the temperature. As we have said in Sect. 3.2,

the luminosity can be compute from Eq. (26), but because of
complexity of the required equations, solving this equation
is not possible analytically.

5.2 Epicyclic frequencies

If a perturbation acts on a particle moving on a circular orbit
in the equatorial plane, the particle experiences small oscilla-
tions in the vertical and radial directions. Using the epicyclic
frequencies given by Eqs. (33) and (34), we derive the radial
and vertical epicyclic frequencies as follows
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Fig. 6 A comparison between the epicyclic frequencies. The dashed
curve in the left panel represents the vertical frequency. The radial
epicyclic frequencies for several values of the Horndeski/Galileon
parameter B are shown by the solid curves where the dotted curve

is for the Schwarzschild black hole with B = 0. The effect of Horn-
deski/Galileon parameter on the ratio of the vertical frequency to the
radial frequency as a function of r is shown in the right panel

�2
θ =

2Ar2 + μ
r − � + B

1+r2γ 2

2r2 , (87)

and

�2
r = −3

2

(
1 + η

β
r2
){[

− 8

9
Aγ 4r8

(
15

8
� + C

)
+ 5

3
Aγ 4r7μ + γ 2r6

(
1

9
�γ 2(3� + C)

+A

(
−16

9
C − 10

3
� + B

))
+ 10

3
μγ 2r5

((
− 1

30
C − 1

5
�

)
γ 2

+A

)(
1

3
μ2γ 2 +

[
1

9
(2� + B)C − 1

3
�(−2� + B)

]
γ 2 + 7

9
A

(
B − 15

7
� − 8

7
C

))
r4

+
((

1

3
B − 2

9
C − 4

3
�

)
γ 2 + 5

3
A

)
μr3

(
2

3
μ2γ 2 + 2

9
(−� + B)

(
B − 3

2
� − 1

2
C

))
r2

+5

9

(
−6

5
� − 1

5
C + B

)
μr + 1

3
μ2
]}

×
{
(1 + r2γ 2)

[
Ar4γ 2 +

(
1

3
γ 2C + A

)
r2 + 1

3
B + 1

3
C

]
r4
}−1

. (88)

respectively. From Eqs. (79), (87) and (88) it is clear that

�2
θ = �2

ϕ

and

�2
r = �2

θ

[
C + 3� − 2B − 3μ

r

(B + C)

]
.

In the left hand side of Fig. 6 we have plotted epicyclic fre-
quencies versus the radius for several values of the Horn-

deski/Galileon correction factor B in order to have a com-
parison. The angular and vertical epicyclic frequencies are
shown in the left panel of this figure by the dashed lines which

are coincide and will decrease by increasing r. We see explic-
itly that they are not dependent on parameter B. The radial
epicyclic frequency is shown by the solid and dotted curves
(Schwarzschild black hole) with a maximum where increas-
ing the parameter B shifts this maximum to the smaller radii.
The radial oscillation frequency increases by increasing the
values of the parameter B. Dependence on this parameter is
significant close to the black hole, but far from the central
mass this effect is weak. We see that �r < �θ . The ratio of
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Fig. 7 The left panel represents the location of three resonances: parametric resonance(3:2) and forced resonance (3:1, 2:1). The dependence of
these locations to the Horndeski/Galileon parameter B is shown in the right panel

�θ

�r
is plotted in the right hand side panel of Fig. 6 which is a

decreasing function of r . It is clear that in the vicinity of the
black hole, this ratio is very greater than unity but far from
the black hole it turns to unity and decreases by increasing
B. In the left panel of Fig. 7, the locations of three particular
resonances such as the parametric resonance with condition
�θ

�r
= 3

2 and the forced resonance with ratio 3:1 and 2:1
are shown. The dependence of these characteristic radii to
the metric parameter B is shown in the right panel of Fig.
7 where such radii are monotonically decreasing functions
of this parameter. On the other hand, resonance will be hap-
pened in smaller distance from the central mass for larger
values of the metric parameter, B.

5.3 Mass evolution and critical points

In this Horndeski/Galileon accretion disk, the energy density
and radial velocity for an isothermal fluid are given by

ρ = A3(k + 1)

r2

√
A2

4 − (k + 1)2
(
� + Ar2 + C − μ

r

) , (89)

and

u = 1

(k + 1)

√√√√√
(

1 + η

β
r2

)⎛
⎝ A2

4 − (� + Ar2 + C − μ
r

) (
1 + k)2

)
(

3Ar2 + C + B
1+r2γ 2

)
⎞
⎠,

(90)

respectively. For critical points we find

rc = −3

4

μ(k + 1)2

A2
4 − (B + C)(k + 1)2

, (91)

V 2
c = μ

4r(B + C) − 3μ
, (92)

and

uc = 1

4

(
1 + η

β
r2
) (μ

r + 2Ar2 − � + B
1+r2γ 2

)
(

3Ar2 + C + B
1+r2γ 2

) . (93)

It is clear that rc depends on the equation of state parameter
k. This is means that the location of a critical point is not
the same for all fluids. The profiles of radial velocity, density
and accretion rate are presented in Figs. 8, 9 and 10 versus
the dimensionless parameter r for equation of state parame-
ter k = 1

2 and constants integration A4 = 1.4 and A3 = 1
respectively. The dotted, dashed and solid curves are corre-
sponding to cases with B = 0, B = −0.05 and B = −0.1
respectively.

The left panel of Fig. 8 represents the radial velocity versus
the radius. The locations of the critical points are marked by
solid circles and their coordinates are stated in the right panel.
The fluid has zero radial velocity far from the black hole and
flows at the sub-sonic speed before the critical points. In a
critical point, the speed of flow matches the speed of sound.
After passing this point, in the vicinity of the black hole the
speed of flow increases and turns to the super-sonic domain
because of strong gravity. It can be observed that velocity
decreases by increasing the Horndeski/Galileon correction
factor B and the loci of the critical points get shifted to the
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Fig. 8 The radial velocity profile as a function of the dimensionless
parameter r for the equation of state parameter k = 1

2 and constant of
integration A4 = 1.4. The dotted, dashed and solid lines are correspond-

ing to the cases with B = 0 (Schwarzschild geometry), B = −0.05 and
B = −0.1 respectively. For each curve, the critical radii are marked by
a solid circle which their coordinates are stated in the right panel

black hole. Therefore, the speed of infalling particle reaches
the speed of sound closer to the central mass.

The density profile of the fluid around the black hole for
different values of B is shown in Fig. 9. Increasing the value
of the parameter B increases the density. In addition, for
such isothermal fluids, the mass of the black hole changes
with time by the following relation

Ṁ = 4π A1(p + ρ)
√
B + CM2. (94)

We see that accretion rate for a general spherically sym-
metric static black hole in Horndeski/Galileon gravity is dif-
ferent from the case of a Schwarzschild black hole. In Horn-
deski/Galileon case, the accretion rate completely depends on
the nature of the accreting fluid and also the metric parame-
ter (here, parameter B). So Ṁ > 0 for a normal fluid which
satisfies (p + ρ) > 0. The change of accretion rate for dif-
ferent values of the parameter B with the same equation of
state parameter are shown in Fig. 10. It is seen that accre-
tion rate is higher in the vicinity of the black hole because of
strong gravitational effect. Also, increment of the parameter
B enhances the accretion rate. By using Eq. (57), the critical
accretion time and the mass of the black hole are given by

tcr = [4π A1(p + ρ)
√
B + CMi ]−1 (95)

and

Mt = Mi

[
1 − 4π A1(p + ρ)

√
B + CMi t

]−1
, (96)

respectively. We see that for normal fluid, the black hole mass
increases by accretion matter subject to Horndeski/Galileon
gravity and increasing correction factor B will increase

Fig. 9 Density profile as a function of the dimensionless parameter r
for the equation of state parameter k = 1

2 and constants of integration
as A4 = 1.4 and A3 = 1. The dotted, dashed and solid curves are
corresponding to the cases with B = 0, B = −0.05 and B = −0.1
respectively

the black hole mass further. This behavior is studied by
Rodrigues et al. [35] for a Schwarzschild black hole in the
presence of a non-minimally coupled scalar filed. They found
that for black hole with initial masses smaller than a certain
critical value, the accretion of the scalar filed can led to mass
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Fig. 10 Accretion rate of isothermal fluid with equation of state param-
eter k = 1

2 versus the dimensionless radial parameter r for different
values of the parameter B. The constant parameters of integration are
set A4 = 1.4 and A3 = 1. The dotted, dashed and solid curves are
corresponding to the cases with B = 0, B = −0.05 and B = −0.1
respectively

decreasing even in the absence of Hawking radiation and
phantom energy. Also the black holes with initial masses
greater than critical value grow by accreting the scalar filed
similar to the minimally coupled scalar case.

6 Summary and conclusion

In this paper, the geodesic motion and accretion process of a
test particle in a subclass of the general Horndeski/Galileon
gravity theories in the equatorial plane of a non-rotating
black hole are investigated. In this framework, the circu-
lar geodesics, the stability of such orbits, oscillations under
the action of small perturbations, unstable orbits and finally
accretion process of the fluid flowing around the black hole
have been investigated in a general form. Expressions for the
effective potential, energy, momentum, characteristic radii,
emission rate, epicyclic frequencies and dynamical parame-
ters of the system and also the mass evolution of the black
hole are derived in details. Then isothermal fluid with equa-
tion of state p = kρ is considered and some discussions are
done for this subclass of solutions of the Horndeski/Galileon
black holes. In this manner, the metric parameters with some
approximations are obtained as h(r) ≈ C − μ

r + B and

f (r) ≈ h(r)
B+C , where by assumption we have set C = 1.

The effect of the Horndeski/Galileon correction factor B is
considered for each case and our solutions are compared

with the Schwarzschild black hole solutions. Our analysis
has revealed that these Horndeski/Galileon solutions have
deviations from the Schwarzschild solutions (which is recov-
ered where B = 0) substantially. Our results show that Horn-
deski/Galileon correction factor affects the effective potential
and as a result changes the loci of the stable and unstable cir-
cular orbits. For larger values of this parameter, Vef f achieves
larger value and unstable circular orbits will be located at
smaller radii, whereas stable orbits will be located at farther
distances from the central mass. When the metric parameter
B decreases, two points joint together at ISCO.

In this spacetime the location of the characteristic radii
such as risco, rph , rsing and rmb have considerable devia-
tion from the Schwarzschild solutions. These radii, except
rmb, are decreasing functions with respect to the Horn-
deski/Galileon correction factor B, that is, they will be closer
to the central mass for larger values of B. As risco repre-
sents the inner edge of the accretion disk, our results show
that for larger deviations, the disk will be extended close to
the central mass. The behavior of rmb is different and has a
minima at the Schwarzschild case. This radii is a decreasing
function for B ∈ (−1, 0) and it is a growing function for
B ∈ (0, 1.125), and finally it coincides with the innermost
stable circular orbit.

As Horndeski/Galileon correction factor B grows, the
energy raises whereas angular momentum decreases and one
can see from the energy diagram that the range of bound orbit
will be smaller for larger deviations. Increasing the parame-
ter B enhances the Eisco and then the efficiency of accretion
will be decreased accordingly. In the case of Schwarzschild
black hole the efficiency equals to 0.057 at r = 6rg . For neg-
ative values of the correction factor B, efficiency grows up
and becomes greater in the Schwarzschild black hole limit
(B = 0), where this behavior is reverse for positive values
of the correction factor. The flux of the radiation energy has
a maximum in the vicinity of the black hole and decreases at
smaller radii. By increasing the parameter B, the flux raises
and the maximum of the flux turns to the smaller radii but
the reverse happens after this point. The dependence on this
parameter is very considerable in the vicinity of the black
hole, but it is weak far from the black hole. These behaviors
are the same for temperature.

In this paper, in addition to investigation of the circular
orbits and their properties, epicyclic frequencies are stud-
ied. Vertical epicyclic frequency is monotonically decreas-
ing function of r and has no extrema. Deviation from the
Schwarzschild case in this Horndeski/Galileon setup has no
effect on the vertical epicyclic frequency, while the radial
epicyclic frequency always has a maximum and the effect of
Horndeski/Galileon correction factor on it is considerable.
Dependence on this parameter is significant close to the black
hole, but far from the central mass this effect is weak. Increas-
ing the parameter B shifts the maximum to the smaller radii.
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We found that �r < �θ and the ratio of �θ

�r
is decreasing

function with respect to r . In the vicinity of the black hole,
this ratio is very larger than unity but far from the black hole,
it turns to the unity and it decreases by increasing B. The
dependence of some important resonances such as paramet-
ric and forced resonances with respect to Horndeski/Galileon
parameter B is obtained, which this dependence is a mono-
tonically decreasing function, that is, larger values of the
Horndeski/Galileon correction factor lead to happening the
resonance at the smaller radii.

Finally, the accretion process of the isothermal fluid is
discussed for equation of state parameter k = 1

2 and the
behavior of the radial velocity and density are studied. Radial
velocity is a decreasing function of r as fluids have zero radial
velocity in far from the black hole. When accretion happens,
fluid passes at a critical point where in this point, the speed of
flow matches the speed of sound. The fluid flows at sub-sonic
speed before the critical point. After passing this point and in
the vicinity of the black hole, because of strong gravitational
field, the speed of flow increases and will be super-sonic then
after. Our results show that velocity decreases by increasing
B and the loci of the critical point shifts towards the black
hole. Therefore, the speed of infalling particles reaches the
speed of sound closer to the central mass. Finally, the rate of
accretion is discussed where we found that this rate depends
on the nature of the fluid and also the metric parameter. For
normal fluid, Ṁ > 0 and its value is larger in the vicinity
of the black hole because of strong gravitational effect and
positive deviation from the Schwarzschild case increases the
accretion rate.

We note that in this paper a non-spinning particle is con-
sidered. When a particle has spin, this spin has considerable
influence on the particle’s orbit. Also, a perfect fluid is con-
sidered and viscosity as well as magnetic field of the accre-
tion disk are ignored for simplicity. However, these effects
can affect the motion of the test particle and therefore they
can affect the structure and the emission rate of the accre-
tion disk. So, we are going to study the behavior of spinning
particles and accretion of viscose fluids subject to the Horn-
deski/Galileon gravity in presence of a magnetic field in our
future work.
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