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Abstract H.A. Wilson, then R.H. Dicke, proposed to
describe gravitation by a spatial change of the refractive index
of the vacuum around a gravitational mass. Dicke extended
this formalism in order to describe the apparent expansion of
the universe by a cosmological time dependence of the global
vacuum index. In this paper, we develop Dicke’s formal-
ism. The metric expansion in standard cosmology (the time-
dependent scale factor of the Friedmann–Lemaître curved
spacetime metric) is replaced by a flat and static Euclidean
metric with a change with time of the vacuum index. We
show that a vacuum index increasing with time produces
both the cosmological redshift and time dilation, and that
the predicted evolution of the energy density of the cosmo-
logical microwave background is consistent with the stan-
dard cosmology. We then show that the type Ia supernovæ
data, from the joint SDSS-II and SNLS SNe-Ia samples, are
well modeled by a vacuum index varying exponentially as
n(t) = exp(t/τ0), where τ0 = 8.0+0.2

−0.8 Gyr. The main con-
sequence of this formalism is that the cosmological redshift
should affect any atom, with a relative decrease of the energy
levels of about −2 10−18 s−1. Possibilities for an experimen-
tal investigation of this prediction are discussed.

1 Introduction

In the theory of General Relativity, gravitation is described as
the curvature of the spacetime metric. The vacuum properties
are assumed to be constant and unmodified by the gravita-
tional field. Another possible approach, in the weak and static
field limit, is to assume a flat Euclidean spacetime metric and
to substitute the curvature in the vicinity of a gravitational
mass by a spatial change of the vacuum refractive index in
its vicinity. This alternative idea that the action of gravitation
on light can be interpreted in terms of an optical medium
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with a graded vacuum index is very old (see for instance the
discussion in Eddington’s book published in 1920 [1]). Wil-
son [2] was the first to include matter within this paradigm
in the early 1920s so that to explain the gravitational redshift
by the combined change of the vacuum index and the iner-
tial masses. Following Wilson, Dicke proposed in 1957 [3] a
theory aimed to link gravitation to the electromagnetic prop-
erties of the vacuum. These ideas have been subsequently
studied by few other authors (see, e.g., [4–8] and [9]).

At the end of his above-mentioned paper, Dicke pro-
posed to extend this formalism by introducing a cosmo-
logical time dependence of the vacuum index in order to
describe the apparent expansion of the universe in a static
Euclidean metric. The aim of this paper is to investigate and
pursue Dicke’s model in the modern observational cosmol-
ogy era. This approach is radically different from the standard
cosmology, where the cosmological redshift is modeled by
the expansion of the Friedmann–Lemaître metric, through
a time-dependent scale factor which is mainly driven at the
present epoch by a cosmological constant Λ. Here, the cos-
mological redshift and the time dilation are produced by the
combined change with time of the vacuum refractive index
and of atomic energy levels.

It is important to note that the formalism proposed in this
paper is different from the class of models commonly named
tired light (TL) theories (see [10] and references inside),
where, in order to produce the cosmological redshift, an
energy loss of photons is assumed but vacuum properties are
kept constant. As is well known, the TL theories do not pro-
duce the cosmological time dilation in SNe-Ia light curves,
nor do they conserve the thermal spectrum when redshifted.
Although the speed of light is changing with cosmic time in
the framework discussed here, we stress that it should not be
confused either with the so-called variable speed of light the-
ories (VSL) [11,12]. These consist mainly of an extension
to the standard cosmology with an expanding Friedmann–
Lemaître metric where a time variation of the speed of light is
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allowed in addition, as a substitution for the inflation model,
in order to solve the problems of horizon and flatness.

The paper is organized as follows. In Sect. 2, we present
the Wilson–Dicke formalism of a vacuum refractive index
modified by a gravitational mass as an analogy to General
Relativity in the static and weak field approximation limit,
together with the description of a specific physical mecha-
nism for the gravitational redshift. We describe in Sect. 3 the
extension of that model to a vacuum refractive index varying
with time and show how it can produce both the observed
cosmological redshift and the time stretching of SNe-Ia light
curves. The evolution of the cosmic microwave background
is discussed subsequently. In Sect. 4, the time dependence
of the vacuum refractive index is derived through a fit to the
SNe-Ia magnitude–distance diagram. Finally, the prediction
of a cosmological redshift at small scales, down to the atomic
scale, is presented in Sect. 5 and possible experimental tests
are discussed.

2 Vacuum properties varying in space around a static
gravitational mass as an analogy to General Relativity

Wilson and Dicke proposed to describe the gravitational field
as a variation of the permittivity ε0 and permeability μ0 of
the vacuum. In the space around a massive body of mass
M , at a distance r of this mass, the electromagnetic vacuum
properties are replaced by

ε0(r) = n(r)ε0,∞
μ0(r) = n(r)μ0,∞ (1)

where n(r) corresponds to the vacuum refractive index, and
ε0,∞ and μ0,∞ are the vacuum permittivity and permeability
constants in the absence of gravitational mass M [2,3].

As shown by Landau and Lifshitz [5], the Fermat principle
for the propagation of light in a stationary gravitational field
can be derived from General Relativity as δ

∫
g−1/2

00 dl = 0
where g00 is the first component of the metric tensor. Compar-
ing with the conventional Fermat principle δ

∫
nds = 0, the

formal analogy between the refraction index and the curved
spacetime metric is obtained as

n = g−1/2
00 dl/ds (2)

where dl is the local length element and ds the length element
observed at infinity, in the absence of gravitational field. In
a static spherical gravitational field, the index varies at first
order in r−1 as

n(r) = 1 + 2GM

rc2∞
(3)

where c∞ is the speed of light in vacuum in the absence
of a gravitational field. Thus the speed of light varies in the
gravitational field as c(r) = c∞/n(r). In this framework (see

[2] and [3]), a variation in ε0 (and μ0) affects the self-energy
of a particle and its inertial mass m. Therefore characteristic
atomic energies Eatom or atomic radii Ratom are affected by
a variation in ε0.

The Planck constant h̄ and the electrical charge e are
assumed to be constant. Given the same dependence on index
of ε0 and μ0, the fine structure constant α = e2/(4πε0h̄c) is
hence also constant.

As can be seen from Maxwell’s equations (see the
Appendix), an electromagnetic wave propagating in a medium
with a spatially variable refractive index, conserves a constant
frequency while its wavelength changes as n−1. Therefore,
in the Wilson–Dicke model, photons propagate through the
graded vacuum refractive index with constant energy but with
momentum varying as n−1.

As detailed for instance in [7] or in [8], predictions of Gen-
eral Relativity in the weak field approximation such as the
deflection of light, the gravitational redshift, or the advance
of the perihelion of Mercury, can be calculated in a static and
flat metric using the following relations of physical parame-
ters with the vacuum index

c(r) = n−1(r) × c∞
Eatom(r) = n−1/2(r) × Eatom,∞
Ratom(r) = n−1/2(r) × Ratom,∞
m(r) = n3/2(r) × m∞ (4)

where the subscript symbol ∞ corresponds to the parame-
ter values in the absence of the gravitational mass M . We
may point out that the measured value of the speed of light
remains constant locally, despite the variation of the vacuum
refractive index [3]. Also, as stressed by Dicke, the variation
of the rest massm with index as n3/2(r) is the only one which
satisfies the weak equivalence principle, i.e. the vanishing of
gravitational redshift in a free-falling elevator.

To illustrate the Wilson–Dicke model, we describe how
the phenomenon of gravitational redshift (or blueshift), as
observed for the first time by Pound and Rebka [13,14], can
be accounted for by a physical mechanism in this formalism.
An atom at altitude h is in an excited state of transition energy

Eatom(R + h) = Eatom,∞/
√
n(R + h) (5)

and emits a photon of energy Eatom(R + h) (R is the Earth
radius). This photon propagates in vacuum to lower altitudes
with constant energy. At Earth’s surface, it reaches a second
similar atom of energy

Eatom(R) = Eatom,∞/
√
n(R) (6)

A Doppler shift corresponding to ΔE = Eatom(R + h) −
Eatom(R) must be applied to the atoms in order to recover the
absorption rate. Using the expression of the vacuum refrac-
tive index n given in (3) and supposing h � R, we have at
first order in h/R
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1√
n(R)

= 1 − GM

Rc2∞
(7)

1√
n(R + h)

= 1 − GM

Rc2∞

(

1 − h

R

)

(8)

leading to a gravitational blueshift

ΔE = GM

Rc2∞
h

R
× Eatom,∞ (9)

in agreement with the measured value and the General Rel-
ativity calculation.

This result can be expressed as well in term of wavelength
measurements (spectral shift). Indeed the wavelength of the
photon at its emission at altitude R + h is

λ(R + h) = hc(R + h)

Eatom(R + h)
= n−1/2(R + h) × λ∞ (10)

where λ∞ = hc∞/Eatom,∞. This photon propagates in vac-
uum to lower altitudes with constant energy Eatom(R + h).
Arriving at earth’s surface, its wavelength λobs , measured by
the observer, is

λobs(R) = hc(R)

Eatom(R + h)
= n−1(R)

n−1/2(R + h)
× λ∞ (11)

It is compared to the reference wavelength of the same spec-
tral ray emitted by an atom at the earth’s surface

λre f (R) = hc(R)

Eatom(R)
= n−1/2(R) × λ∞ (12)

It corresponds to a spectral blueshift z given by

z = λobs − λre f

λre f
= − GM

Rc2∞
h

R
(13)

3 Vacuum properties varying with time as an analogy to
the cosmological metric expansion

3.1 Formalism of a time-dependent vacuum index

Following the suggestion by Dicke in [3], we now extend
the Wilson-Dicke formalism to the case of a (cosmic) time
dependence of the vacuum refractive index n(t). The metric
to be used is Euclidean, flat and static, and does not undergo
any expansion. It is defined by the speed of light today, noted
c0, at time t = 0. The cosmological principle (the universe
is spatially homogeneous) is taken to be a fundamental pos-
tulate of the theory. This implies that the time dependence of
the vacuum index is spatially uniform, i.e. n(t) is independent
of the space coordinates.

By analogy with the Wilson–Dicke model summarized in
(4), the physical parameters vary with time t as follows:

ε0(t) = n(t)ε0,0

μ0(t) = n(t)μ0,0

c(t) = n−1(t) × c0

Eatom(t) = n−1/2(t) × Eatom,0

Ratom(t) = n−1/2(t) × Ratom,0

m(t) = n3/2(t) × m0 (14)

where the subscript symbol 0 corresponds to the value of the
parameters today, at time t = 0, fixing n(t = 0) = 1.

As before, the Planck constant h̄ and the electrical charge
e are assumed to be constant with time. The fine structure
constant α is therefore an absolute constant which is in agree-
ment with current experimental tests (see [16] and references
therein).

As noticed by Dicke, there is an important difference
between the case of a spatially graded vacuum index, as stud-
ied in the previous section, and the case of a spatially homo-
geneous vacuum index varying with time. Indeed, as detailed
in the Appendix, Maxwell’s equations for an electromagnetic
wave propagating through a time-dependent refractive index
n(t), imply no variation in wavelength but a change in fre-
quency as n(t)−1 (this is also discussed in [17]). We note
that this prediction has not yet been confirmed experimen-
tally and is investigated in view of controlling light-matter
interaction in time-varying structures [18]. In the present case
of a cosmological time-dependent vacuum index, this expec-
tation implies that photons propagate in the universe with a
constant wavelength but with an energy varying as n(t)−1.
In the following, we show that such a time-varying index
induces a cosmological redshift and that it can also account
for the time dilation, as well as for the evolution of the energy
density of the cosmological microwave background.

3.2 Cosmological redshift

To illustrate the mechanism producing the cosmological red-
shift within this formalism, let us imagine a photon emitted
by an atom within a galaxy at a measured redshift z, at emis-
sion time te < 0 and of atomic transition energy Eatom(te).
The wavelength of the emitted photon is given by

λemission = hc(te)

Eatom(te)
(15)

and remains constant during the propagation. The observed
wavelength λobserved of the detected photon is then equal
to its wavelength at emission. It is compared to the refer-
ence wavelength λre f erence of the same atomic transition at
observation time t = 0 in the laboratory, given by

λreference = hc0

Eatom,0
(16)

Given the definition of redshift z, one has

1 + z = λobserved

λreference
= c(te)

c0

Eatom,0

Eatom(te)
(17)
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Using (14), one gets

1 + z = n−1/2(te) te < 0 (18)

This corresponds to a red-shift if n−1/2(te) > 1, which means
a vacuum refractive index increasing with time, i.e. a speed
of light decreasing with time.

It is important to note that (18) implies an equivalence
between the square root of the vacuum optical index n1/2

and the time-dependent scale factor a(t) = 1/(1 + z) of the
Friedmann-Lemaître curved spacetime metric.

3.3 Time dilation

The observation of a broadening of supernovæ light curves,
proportional to 1 + z, is considered as the direct evidence
of a cosmological time dilation [19,20]. This effect is also
expected in the formalism discussed here. The light curves
of SNe-Ia result from the formation of 56Ni, which decays
to 56Co and then into 56Fe. The duration of the process is
then driven by the beta-decay half-lives T1/2(t), which must
vary as the inverse of the rest energy of the involved particles,
specifically as n1/2(t) = 1/(z + 1). This might be thought
to cause a narrowing proportional to 1 + z, rather than a
time dilation. However the frequency of the electromagnetic
wave packet, associated to the supernovæ burst, decreases
with time until its detection, as n(t) = 1/(1 + z)2. This
corresponds to a time broadening of the wave packet pro-
portional to (1 + z)2, i.e. at twice the rate of the beta-decay
half-lives narrowing. The overall effect amounts up to a net
time broadening of the light curves, proportional to 1 + z,
which is equivalent to standard cosmology.

3.4 The cosmological microwave background

In the standard cosmology, the energy Eγ of the cosmo-
logical microwave background radiation (CMB) varies as
a−1(t) = 1 + z. The average number of CMB relic pho-
tons in an expanding volume is constant, corresponding to a
relic photon density nγ varying as a−3(t) = (1+ z)3. There-
fore the energy density Eγ of the CMB radiation varies as
a−4(t) = (1 + z)4. In the early plasma epoch, photons were
in thermal equilibrium with charged particles and the radia-
tion acquired a black body spectrum with an energy density
per frequency interval

Eγ (ν)dν = 8πh

c3

ν3dν

ehν/kBT − 1
(19)

where kB is the Boltzmann constant and T is the black body
temperature which is related to the radiation energy density
by

Eγ = π2k4
B

15h̄3c3
T 4 (20)

Therefore the temperature T varies as a−1(t) = (1+z). After
the decoupling, photons no longer interact. Since ν ∝ (1+z)
and T ∝ (1 + z) also, then from Eq. (19), the black body
spectral shape is preserved as the radiation propagates.

In the present framework, the energy of the CMB pho-
tons decreases as n−1(t) but the mass energy of the baryons
decreases as n−1/2(t). Hence the apparent energy of the pho-
tons, relatively to baryons, decreases as n−1/2(t) = 1 + z, as
in standard cosmology. The average number of relic photons
is constant in a volume defined in the static metric. However,
in a volume defined with physical rods, the photon density
decreases as n−3/2(t) = (1 + z)3. Therefore the energy den-
sity of the CMB radiation, relatively to baryons, decreases
as (1 + z)4, as in standard cosmology. If kB is constant with
time (as h̄), then the black body temperature varies as the
CMB energy. Therefore the apparent (measured) tempera-
ture varies as n−1/2(t) = 1 + z, as in standard cosmology,
and the black body spectral shape is also preserved as the
radiation propagates. Finally, in a static metric, the ratio of
the photons over baryons nγ /nb is constant with time.

Hence, the evolution of the CMB in our model is consistent
with the standard cosmology.

4 Constraining the time dependence of the vacuum
index with the type Ia supernovæ

In order to constrain the variation time-scale of the vacuum
refractive index n(t), we use SNe-Ia as standardizable can-
dles and fit their Hubble diagram. Following [21], we use
data from the joint analysis of the SDSS-II and SNLS SNe-
Ia samples (redshift 0.01 < z < 1.3), assuming that these
supernovæ exhibit on average the same intrinsic luminos-
ity at all redshifts, provided that corrections are applied for
the time stretching of the light curve (X1) as well as for the
color at maximum brightness (C). A linear correction model
leads to the following definition for the standardized distance
modulus μ̂:

μ̂ = m∗
B − (MB − αX1 + βC) = 5 log10

(
d

10pc

)

(21)

where α and β are the time stretching and color correction
factors, d is the distance to the source, MB is the absolute blue
magnitude of SNe-Ia at an a priori chosen distance of 10 pc,
and m∗

B is the measured peak magnitude in the source rest-
frame, taking into account first the apparent broadening of the
supernovæ light curves (proportional to 1+z), and second the
apparent photon redshift (also proportional to 1 + z). Same
corrections must also be applied in the present formalism, as
discussed in the previous sections.

In our framework, the distance of the source d is defined in
the Euclidean metric and is related to the optical path-length
by
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d =
∫ 0

t
c(t ′) dt ′ = c0

∫ 0

t

dt ′

n(t ′)
(22)

with t < 0, the time of photon emission by the supernova,
and t ′ = 0, the time of observation.

We do not have any known theory in hand in order to derive
directly the variation of the vacuum refractive index n(t) as
a function of the cosmological time t . To solve Eq. (22), we
assume that the relative variation of the vacuum index is time
invariant, at least for the recent period of the universe (i.e.
for redshifts covered by the studied SN-Ia data set) in which
the vacuum seems to be dominant. This corresponds to a
constant relative variation of the vacuum index per absolute
time interval, written as

dn(t)

n(t)
= ±dt

τ0
(23)

where τ0 is assumed to be independent of time at first approx-
imation. Since the vacuum index is increasing with time, the
sign in (23) is positive. The latter equation leads to an expo-
nential variation of the index

n(t) = exp(t/τ0) (24)

From Eq. (22), one gets

d = c0τ0(e
−t/τ0 − 1) = c0τ0(n

−1(t) − 1), t < 0 (25)

Remembering that n−1(t) = (1 + z)2, it comes

d = c0τ0

(
(1 + z)2 − 1

)
(26)

The estimated standardized distance modulus μ is then

μ(z, τ0) = 5log10

(
(1 + z)2 − 1

)
+ 5log10

(
c0τ0

10pc

)

(27)

This function is fitted to the data by minimizing the χ2

matrix expression

χ2 = (
μ̂(α, β) − μ(z, τ0)

)† C−1 (
μ̂(α, β) − μ(z, τ0)

)
(28)

where α and β are treated as nuisance parameters and C is
the covariance matrix of the vector of distance modulus esti-
mates µ. It takes into account the measurement errors in the
apparent magnitude m∗

B and the stretch and color parameters
derived by the analysis of every light curve.

As first pointed in [22], both the absolute magnitude MB

and the color correction parameter β depend on host galaxy
properties. Here, we follow [21] by using a step function
to account for this dependency, i.e., an offset ΔM is added
to the absolute magnitude MB when the host stellar mass is
greater than 1010 times the solar mass. To keep the simplicity
of our approach, rather than fitting ΔM , we fix it to the best
fit value found in [21], ΔM = −0.07. Moreover, since there
is a degeneracy between the two global constants MB and
τ0 (which is analog to the degeneracy between H0 and MB

in standard cosmology), the value of the absolute magnitude

is fixed to the recently reported value MB = −19.25 ± 0.2
corresponding to the mean value for 171 nearby SNe-Ia with
distance estimates primarily based on Cepheids [26].

The nuisance parameters α and β and the time constant τ0

are then the only free parameters. The result of the fit is shown
in Fig. 1. The fitted function is in agreement with data with a
χ2 value of 726.3 for 737 degrees of freedom. The best fitted
values are α = 0.122 ± 0.004 and β = 2.612 ± 0.052 for
the nuisance parameters, and τ0 = 8.0+0.2

−0.8 Gyr for the time
constant. The error on the latter parameter is dominated by
the systematic uncertainty on the absolute magnitude mea-
surement. The corresponding relative variation rate of the
vacuum refractive index is 1/τ0 = 4 10−18 s−1. From (14),
this implies a relative variation rate of the atomic energy lev-
els of 1/(2τ0) = 2 10−18 s−1.

We note that although the hypotheses are very different in
the framework proposed here, the expression of the luminos-
ity distance derived in Eq. (26) is similar to the one obtained
in standard cosmology using the geometry of the Milne uni-
verse. The latter is mathematically equivalent to an empty
universe where the metric expansion is only driven by a
curvature equal to 1 (ΩM = ΩΛ = 0, Ωk = 1), corre-
sponding to an expansion scale factor a(t) varying linearly
with time. The Milne solution can also be obtained assum-
ing a matter–antimatter symmetric cosmology (Dirac–Milne
universe), in which antimatter has a negative active gravi-
tational mass [23]. The Milne solution has been lately fit-
ted to the same supernovæ samples, leading also to a good
agreement with data [24]. More recently, it has been claimed
that the Milne solution is disfavored using a new sample
of higher redshift SN-Ia (1.5 < z < 2) [25]. If this is
confirmed, it means that our proposed model of an expo-
nential variation of the vacuum index with a time indepen-
dent τ0 constant is only a first order approximation and a
characteristic time scale τ(t) varying with time should be
envisaged.

We also note that the exponential variation of the vacuum
index n(t) may look similar to the solution of a pure accel-
erating flat Univers (Λ = 1) for which the scale factor also
varies exponentially (a(t) = exp(H0t)). However, in the lat-
ter case, the distance varies as d = cH−1

0 (z + z2) which is
very different from the solution given in Eq. (26).

5 Cosmological redshift in local bound systems

A direct consequence of the proposed model is that the cos-
mological redshift should occur not only at cosmological
scale but also locally, since both the vacuum refractive index
and the atomic energy levels are predicted to vary with time
at all scales.

The question of whether the Hubble apparent expansion of
the Universe affects local gravitational systems like clusters
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Fig. 1 Standard distance
modulus μ̂ as a function of
redshift z for the combined
SDSS-II and SNLS SNe-Ia
samples from [21]. The best fit
μ of the varying vacuum index
model is shown as the black
line. The solution of the
Einstein-de Sitter universe
(ΩM = 1,ΩΛ = 0) is presented
by the dashed line, for
comparison. Bottom: Residuals
from the fit as a function of
redshift. The dashed line
corresponds to the Einstein-de
Sitter universe St
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of galaxies, galaxies or planetary systems, has been addressed
by many authors and has received continued studies [27–30].
Theoretical considerations conclude that the cosmological
expansion of the Friedmann–Lemaître metric must be negli-
gible at the scale of the galaxy clusters. However recent mea-
surements of the velocity field of nearby galaxies in the vicin-
ity of the Local Group have shown a very linear velocity–
distance relation down to about 1 Mpc (i.e., approximately
the radius of the Local Group), with a local rate of expansion
which coincides with the global Hubble constant [31–33].
For very nearby galaxies at distances smaller than 1 Mpc,
measurements are more dispersed because of undetermined
velocity field components. So we think that any firm conclu-
sion on this matter is excluded for the moment.

It is admitted in standard cosmology that atoms (systems
bound by non-gravitational forces) do not expand and that
the atomic energy levels do not vary with time. In the present
formalism, on the contrary, the atomic energy levels are pre-
dicted to decrease with a relative rate of about −2 10−18 s−1.
In order to locally test this shift, let us consider a thought
experiment analog to the Pound–Rebka gravitational red-
shift experiment. Here one needs to measure the redshift of a
given atomic transition at two different time periods, instead
of measuring the redshift between two atoms located at two

different gravitational potentials. Let us study the following
setup: photons emitted by an atomic transition of frequency
f0 are reflected on a mirror located at a distance D and come
back to the initial emitting atoms after a time Δt � 2D/c
(neglecting at first order the variation of the speed of light).
Comparing the photon’s frequency to the atomic frequency,
one expect a net cosmological redshift with a relative fre-
quency drift of Δ f

f0
= Δt

2τ0
≈ 2 10−18 × Δt (s). Obviously a

very large distance D is required.
To our knowledge, the longest distance with a single

reflection has been experimentally reached with the satellite
Pioneer 10. A radio signal of frequency f0 = 2.2 GHz, sent
from Earth, reflected on Pioneer 10, and received back on
Earth, allowed for the measurement of the Doppler velocity
of the satellite with a sensitivity (residual Doppler dispersion
after thermal correction) of the order of 10 mHz [34–36]. The
latest analysed signals have been obtained when the satellite
was at a distance of about 70 A.U., equivalent to a round-
trip duration of Δt ≈ 20 hours. This corresponds to a pre-
dicted cosmological redshift of about 0.3 mHz, which is one
to two orders of magnitude lower than the residual Doppler
dispersion. Therefore a positive detection would require the
improvement of the Doppler monitoring accuracy in order to
reduce the residual dispersion.
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An alternative way to provide a very large optical path-
length is to use a high-finesse cavity with multiple reflections
in the laboratory. However, because of the decrease of the
atomic radii and consequently of the cavity length as n−1/2,
the cosmological redshift would be in this case canceled by
the Doppler blueshift induced by the reflection on the mir-
rors. Alternatively, instead of a rigid cavity, one could think
of gravitationally bound mirrors, e.g. by using two distant
satellites. Stability of the atomic frequency must also be con-
trolled with an ultra high accuracy. The best accuracy today
is achieved in laboratory with state-of-the-art optical lattice
clocks. Frequency fractional stability of 2 10−16/

√
τ (where

τ is the averaging time in seconds) has been recently demon-
strated using 87Sr optical lattice clock with a total uncertainty
of the clock of 2 10−18 in fractional frequency units [37].
Embedding such device in a satellite today is very challeng-
ing. For instance, the frequency stability of the atomic clock
of the new project PHARAO [38] (to be installed this year
on the international space station) is expected to reach few
10−14/

√
τ . Although this is orders of magnitude larger than

the needed accuracy, further progress in this type of technol-
ogy could make it possible to test for a local cosmological
redshift.

6 Conclusion

As initially proposed by Wilson and Dicke, the curved space-
time in a stationary gravitational field can be equivalently
interpreted as being due to a spatial change of the vacuum
refractive index and the inertial masses in a Euclidean met-
ric. Dicke further extended this framework to explain the
cosmological redshift, assuming a flat and static Euclidean
metric but a vacuum index increasing with time. The time
dependence of the index is postulated to be spatially uniform
in order to respect the cosmological principle of a spatially
homogeneous universe. We have investigated Dicke’s for-
malism in the modern observational cosmology era showing
that it can, remarkably, reproduce not only the cosmological
redshift but also the evolution of the CMB energy density and
the cosmological time dilation of the supernovæ light curves.
We have shown in addition that assuming a time-independent
variation rate of the vacuum index results in a good fit of
the SNe-Ia magnitude-distance diagram. Here, an exponen-
tial increase of the index n(t) = exp(t/τ0) is obtained with a
characteristic time scale of τ0 = 8.0+0.2

−0.8 Gyr. Hence the time-
dependent scale factor a(t) of the curved spacetime metric
in standard cosmology (including the dark energy) can be
replaced, at least up to the redshift range covered in the SNe-
Ia data used, by a static metric with a vacuum refractive index
increasing exponentially with time.

It is important to note that an exponential variation of the
vacuum index, if at play up to the highest redshifts, would

correspond to the absence of a beginning in the universe
evolution, and a speed of light infinitely large in an infinitely
distant past. This would imply in turn that any two given loca-
tions in space were causally connected in the past, thereby
solving the horizon problem without the necessity to recourse
to the inflation theory. Also, given the ab initio flat space-time
used, the observed flatness of the Universe would not require
any fine-tuning here.

The present study is far from being complete. No phys-
ical mechanism is proposed to account for the variation of
the vacuum index, and other cosmological probes need to be
studied. Also, possible time dependence of the gravitational
constant – which was one of the prime motivations of Dicke
– could be considered in this framework. We hope, however,
that this study will stimulate the interest for this unconven-
tional formalism, which could open the path towards alter-
native approaches for solving current cosmological puzzles
such as the dark energy or the horizon problem.

Finally, a clear prediction of this work is that the cosmo-
logical redshift should affect any atoms – in deep space, but
also in the laboratory. The atomic energy levels are predicted
to decrease with time with a relative variation rate of about
−2 10−18 s−1. Although very challenging, a single round-
trip reflection between two distant satellites could constitute
a possible test of this model in future experiments.
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to the original author(s) and the source, provide a link to the Creative
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Appendix: propagation of an electromagnetic wave in a
space or time dependent refractive index

In this Appendix, we present the properties of electromag-
netic plane wave solutions of Maxwell equations for the two
cases studied in this article, namely space or time dependent
refractive index. The main results are summarized in Table 1.

Invariant index

In a linear dielectric and magnetic medium, with permittivity
ε and permeability μ, the Maxwell field equations, expressed
with usual SI conventions and notations (D = εE and B =
μH), read

∇B = 0

∇D = 0
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Table 1 Summary of the main properties of an electromagnetic wave
propagating in a space dependent n(z) or a time dependent n(t) refrac-
tive index

Parameter n(z) n(t)

E Conserved ∝ 1/n

B ∝ n Conserved

ω Conserved ∝ 1/n

k ∝ n Conserved

Flux Conserved ∝ 1/n2

Energy density ∝ n ∝ 1/n

∇ × E = −∂B
∂t

∇ × H = εμ
∂D
∂t

(29)

The E field propagation equation is found from (29) by
expressing the double curl of E as a function of its deriva-
tives. For constant ε and μ, one gets the simplest propagation
equation

ΔE − εμ
∂2E
∂t2 = 0 (30)

So, when both ε and μ are real constants, electromagnetic
wave solutions propagate in the medium at a reduced speed
c/n. The index of refraction n is given by

n =
√

εμ

ε0μ0
(31)

A simple solution of (30) is a monochromatic plane wave
at frequency ν, with a wavelength λ, polarized along x and
propagating along z, defined by

Ex = E0e−i(ωt−kz) , By = nEx/c (32)

where the angular frequency ω = 2πν and the wavenumber
k = 2π/λ are linked by the dispersion relation

k = nω/c (33)

The energy density in the wave is evenly shared by E and B
since

nε0E2 = nε0
c2

n2 B
2 = 1

nμ0
B2 (34)

It is conserved during propagation. The flux of energy flowing
across a x, y plane is given by the Poynting vector

S = E × H

Sz = ε0cE
2
x (35)

The flux is also conserved during propagation.
In this article, following Dicke [3], we take

ε = nε0 and μ = nμ0 (36)

We first study the case when n varies along the direction of
propagation. The second case is when n remains uniform in
space but varies in time.

Space-dependent index

The case of a space-dependent refractive index n(z) is
detailed in Landau [39] for a dielectric and non-magnetic
medium. When the medium is also magnetic, following the
Eq. (36), the propagation equation for the extension of the
polarized wave (see (32)) is

∂2Ex

∂z2 − εμ

c2

∂2Ex

∂t2 − 1

μ

∂μ

∂z

∂Ex

∂z
= 0 (37)

By analogy with the solution found in [39], the Eq. (37) is
found to be exactly satisfied by

Ex (z, t) = E0 exp
(

− iω
(
t −

∫ z

z0

n(ζ )dζ

c

))

By(z, t) = n(z)Ex (z, t)

c
(38)

Changing the reference position z0 results in a simple phase
shift. In weak gravitational fields, n varies slowly over a
wavelength. So, for z close to z0, (38) resumes to

Ex (z, t) ≈ E0 exp

(

−iω

[

t − n(z0)

c
(z − z0)

])

(39)

which is a simple plane wave (see Eq. (32)) where the angular
frequency is conserved and the wavenumber scales as n(z).

Time-dependent index

For the case of a time-dependent refractive index n(t), the
propagation equation reads for the D field

∂2Dx

∂z2 −
(n

c

)2 ∂2Dx

∂t2 − n

c2

∂n

∂t

∂Dx

∂t
= 0 (40)

Its exact solution is

Dx (z, t) = D0 exp

(

−i k

[

c
∫ t

t0

dτ

n(τ )
− z

])

(41)

even for quick variations of n compared to the wave period.
This gives for the standard fields

By(z, t) = B0 exp

(

−i k

[

c
∫ t

t0

dτ

n(τ )
− z

])

Ex (z, t) = cBy(z, t)

n(t)
(42)

When n varies slowly with respect to the wave period, (41)
becomes, for t close to t0

Dx (z, t) ≈ D0 exp

(

−i k

[

c
t − t0
n(t0)

− z

])

(43)
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which is again a simple plane wave solution (see equation
(32)). Here the wavenumber is conserved, and the angular
frequency scales as 1/n(t).
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