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Abstract We present here a detailed analysis on the effects
of charge on the anisotropic strange star candidates by con-
sidering a spherically symmetric interior spacetime metric.
To obtain exact solution of the Einstein–Maxwell field equa-
tions we have considered the anisotropic strange quark mat-
ter (SQM) distribution governed by the simplified MIT bag
equation of state (EOS), p = 1

3 (ρ − 4 B), where B is the
bag constant and the distribution of the electrical charge is
given as q(r) = Q (r/R)3 = αr3, where α is a constant.
To calculate different constants we have described the exte-
rior spacetime by the Reissner-Nordström metric. By using
the values of the observed mass for the different strange star
candidates we have maximized anisotropic stress at the sur-
face to predict the exact values of the radius for the different
values of α and a specific value of the bag constant. Further,
we perform different tests to study the physical validity and
the stability of the proposed stellar model. We found accu-
mulation of the electric charge distribution is maximum at
the surface having electric charge of the order 1020 C and
electric field of the order 1021−22 V/cm.

1 Introduction

The theoretical possibility of the existence of hypotheti-
cal strange quark stars were first speculated in Refs. [1–4].
According to the strange quark matter hypothesis [5–10] the
strange quark matter (SQM), made of equal number of up,
down and strange quarks can be considered as the absolute
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ground state for the confined state of hadrons [2,3,11,12].
Although strange stars form a distinct hypothetical branch
of compact stars but these heavier members have masses
and radii quite similar to the neutron stars. However, strange
stars are not part of the the continuum of equilibrium con-
figurations like white dwarfs and neutron stars [13–15].
In this context it is worth mentioning that strange matter
equation of state (EOS) appears as the suitable EOS to
explain observed compactness of the compact astrophysi-
cal objects like 4U 1820 − 30, SAX J 1808.4 − 3658,
4U 1728 − 34, Her X − 1, RX J185635 − 3754 and
PSR 0943+10 [3,4,16–19], whereas neutron star EOS failed
to explain those estimated compactness.

To maintain global charge neutrality strange stars which
is made of approximately equal number of up, down and
strange quarks, should include a smaller number of electrons.
Alcock et al. [3,11] and Usov et al. [20,21] in their study
showed that high electric fields in the order of 1018−19 V/cm
is expected to present on the surface of strange stars and pres-
ence of electrons play a significant role to the formation of
the electric dipole layer at the surface. Such strong electric
fields have values in the order of the energy density of SQM
and it should be included in the stress-energy tensor which
describes strange stars. The presence of the charge affects the
relativistic stellar system in the following ways: (i) it causes
the space-time curvature, (ii) it produces Coulomb interac-
tion by introducing an extra term in the relativistic hydrody-
namic equilibrium equation, and (iii) the energy density asso-
ciated with the electric field has significant role in producing
the gravitational mass of the relativistic stellar system. In this
line several literature [22–31] can be referred to understand
the effects of the electric charge on the relativistic compact
stellar system.

In his pioneering work Ruderman [32] first introduced
the idea of pressure anisotropy and showed that the high
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density of the nuclear matters which interact relativistically
are the key reason of the formation of the anisotropy. Here,
by anisotropy we are addressing the difference between the
radial component, pr (r) and the angular component, pθ (r) =
pφ(r) ≡ pt (r) of the pressure. Clearly, pθ (r) = pφ(r) is the
consequence of the assumed spherical symmetry of the stel-
lar system. An extensive study by Bowers and Liang [33]
showed that in the presence of complex strong interactions
anisotropy in the spherically symmetric stellar system may
be arising due to the presence of superconductivity and super-
fluidity of the ultradense matter. Later, Herrera and Santos
in their detailed review [34] discussed the possible reasons
behind the formation and existence of the local anisotropic
stress in a self gravitating system and also studied their effect
on a static spherically symmetric stellar system. Dev and
Gleiser [35–37] in their series of work studied the significant
effect of anisotropy on the redshift and maximum mass. They
also showed that the presence of anisotropic stress enhances
stability of the relativistic stellar system compared to the
isotropic cases and predicted that for the lower adiabatic
index values too anisotropic systems are stable. In this line
several authors as in Refs. [20,25,38–49] have studied the
effect of anisotropy on the spherically symmetric compact
stellar system and examined it’s effect on the different phys-
ical properties of the stellar system.

In their important work Sunzu et al. [29] have presented a
detailed study on the quarks stars for the Einstein–Maxwell
equations by assuming the MIT bag EOS. They have shown
that due to parametric choices in the most of the cases the
mass and the radius of the anisotropic stellar system is less
than the corresponding values in the case of isotropy. How-
ever, for the few values of the relevant parameters in their
article the mass and radius of the anisotropic stellar sys-
tem is greater than the corresponding values of the isotropic
stellar system. Interestingly, their study reveals that with the
increase of the anisotropic parameters the effective density
of the stellar system gradually decreases and turns the EOS
of the system stiffer.

The present work is the charged generalization of the ear-
lier work done by Deb et al. [47], where they presented an
unique anisotropic model for the strange stars and showed the
typical mass–radius relation for the strange stars by solving
the Einstein field equations. To this end, they assumed sim-
plified MIT bag EOS and showed that maximum anisotropy
at the surface of the ultra dense strange stars is their inherent
property. Using the motivation of the earlier work [47], in
the present article we have studied charged and anisotropic
spherically symmetric stellar systems for the strange stars by
considering a specific form of the electric charge distribution,
q(r). We also presented exact solutions for the Maxwell–
Einstein field equations. It is interesting to note that though
there are several literature which separately studied the effect
of anisotropy or charge on the strange stars. But we found

there is no other literature, which has studied the combined
effects of anisotropy and charge on the compact stellar system
by providing typical mass–radius relation for the strange stars
in the framework of the Maxwell–Einstein gravity. However,
in the present study by considering the combined effects of
anisotropy and charge on the stellar system we attempt to
present the exact solutions for the Maxwell–Einstein field
equations by providing the typical mass–radius relation for
the strange stars. Further, we have also examined the physical
validity of the obtained solutions.

The outline of our study is as follows: in Sect. 2 we
have presented the basis of using the MIT bag EOS and the
chosen form of the electric charge distribution. The basic
equations to describe the anisotropic charged stellar sys-
tem are presented in Sect. 3. In Sect. 4 we have derived
the solutions for the Maxwell–Einstein field equations and
presented expressions for the different physical parameters.
Further, in Sect. 5 to show physical acceptability of the stel-
lar system on the basis of the obtained solutions we have
performed different tests like Energy conditions (Sect. 5.1),
mass–radius relation (Sect. 5.2), compactification factor and
redshift (Sect. 5.3), and the stability of the system (Sect. 5.4).
Finally, in Sect. 6 we have concluded our study by discussing
in detail the effects of the electric charge distribution on the
anisotropic stellar system.

2 The MIT bag equation of state and the electric charge
distribution

In the present article we consider MIT bag model EOS [50]
to describe the SQM distribution. In MIT bag model EOS to
maintain all the corrections due to energy and pressure func-
tions of SQM an ad hoc bag function has been introduced.
For the simplicity we assume that the up (u), down (d) and
strange (s) quarks are are massless and non-interacting in
nature. Hence, the quark pressure, pr is defined as

pr =
∑

f =u,d,s

p f − B, (1)

where p f is the pressure due to individual quark flavors viz.
u, d and s. B is the vacuum energy density and usually known
as ‘Bag constant’. The relation between p f and ρ, energy
density due to each quark flavors reads p f = 1

3ρ f . Hence,
the energy density, ρ due to de-confined SQM distribution
inside the bag is defined as

ρ =
∑

f =u,d,s

ρ f + B, (2)

Hence, substituting relation between p f and ρ f into Eq. (2)
and using Eq. (1) we have the simplified form of the MIT
bag model EOS given as
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pr = 1

3
(ρ − 4 B). (3)

In the recent times applying this simplified form of the MIT
bag EOS several authors successfully studied strange star
model [24,26,27,29–31,47,51–58]. Following Rahaman et
al. [59] we consider the value of the bag constant as B =
83 MeV/fm3.

To study the effects of charge on the relativistic stellar
system Felice et al. [60,61] in their literature considered
an specific form of electric charge distribution q(r) given
as q(r) = Q(r/R)n . Following Felice et al. [60,61] in the
present study we choose this specific simplest form of q(r),
for the parametric values of n = 3 as follows

q (r) = Q
( r

R

)3 ≡ α r3, (4)

where Q and R are the total charge and the total radius of the
stellar system, respectively and α is a constant which can be
defied as α = Q/R3.

3 Basic stellar structure equations

To describe interior spacetime of the ultra dense spheri-
cally symmetrical stellar system in Schwarzschild-like coor-
dinates [62,63] we use metric as follows

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2), (5)

where the metric potential ν and λ are the functions of the
radial coordinate r only. Now, to obtain hydrostatic stellar
structure of the charged sphere we have to solve the Einstein–
Maxwell field equations provided as

Ri
j − 1

2
R gij = 8π

(
T i
j + Ei

j

)
, (6)

where we assumed G = 1 = c in the relativistic geometrized
unit. Here T i

j and Ei
j represent stress-energy tensor for the

locally anisotropic fluid distribution and the existing electro-
magnetic field, respectively and they are defined as [64]

T i
j =

[
(ρ + pt )v

iv j − ptδ
i
j + (pr − pt )u

iu j

]
, (7)

Ei
j = 1

4π

(
−Fim Fjm + 1

4π
δi j F

mnFmn

)
, (8)

where vi and ui are the four-velocity and radial four-vector,
respectively, ρ is the energy density of SQM, pr represents
pressure in the direction of ui , known as radial pressure and
pt represent component of pressure normal to ui , known as
tangential pressure. Here, Fi j is the anti-symmetric electro-
magnetic field tensor and can be defined as

Fi j = ∂A j

∂xi
− ∂Ai

∂x j
, (9)

where, A j = (φ(r), 0, 0, 0) is the four-potential. Fi j satisfies
the covariant Maxwell equations,

Fik, j + Fkj,i + Fji,k = 0, (10)
[√−gFik

]

,k
= −4π J i

√−g, (11)

where J i is the electromagnetic four-current vector defined
as

J i = σ√
g44

dxi

dx4 = σvi , (12)

where σ = eν/2 J 0 (r) represents the charged density and g
is the determinant of the metric gi j defined by

g =

⎛

⎜⎜⎝

eν 0 0 0
0 −eλ 0 0
0 0 −r2 0
0 0 0 −r2sin2θ

⎞

⎟⎟⎠ = −eν+λr4sin2θ. (13)

For a static spherically symmetric stellar system J 0 is the
only non vanishing component of the the electromagnetic
four-current J i which is a function radial coordinate, r only.
F01 and F10 are the only non zero components of the electro-
magnetic field tensor and they are related by F01 = −F10.
F01 and F10 are the radial components of the electric field.
Using Eqs. (11) and (12) the expression for the electric field
is given as

E (r) = F01 (r) = 1

r2 e
−(ν+λ)/24π

∫ r

0
r ′2σeλ/2dr ′. (14)

If q(r) represents the total charge of a spherical system
of radius r then following the relativistic Gauss’s law the
electric charge q(r) can be defined as

q(r) = 4π

∫ r

0
σr ′2eλ/2dr ′ = r2

√
−F14F14. (15)

Using Eqs. (7), (8), (11), (12), (14) and (15) the stress-
energy tensor for the anisotropic charged matter distribution
can be written as

T a
b =

⎛

⎜⎜⎜⎜⎜⎝

−
(
ρ + q2

8πr4

)
0 0 0

0 pr − q2

8πr4 0 0

0 0 pt + q2

8πr4 0

0 0 0 pt + q2

8πr4

⎞

⎟⎟⎟⎟⎟⎠
,

(16)

where the electric charge and the electric field are related by
q2(r)/8πr4 = E2(r)/8π .
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Substituting Eq. (16) into Eq. (6) we have the explicit
form of the Einstein field equation for the anisotropic charged
spherically symmetric stellar system as follows [64]

e−λ

(
λ′

r
− 1

r2

)
+ 1

r2 = 8πρ + E2, (17)

e−λ

(
ν′

r
+ 1

r2

)
− 1

r2 = 8πpr − E2, (18)

e−λ

2

(
ν′′ + ν′2

2
+ ν′ − λ′

r
− ν′λ′

2

)
= 8πpt + E2. (19)

In the analogy of the uncharged case, let we define the
mass function of the spherically symmetric charged stellar
system as follows

m (r) = 4π
∫ r

0 ρe f f (r) r2dr = 4π
∫ r

0

(
ρ + E2

8π

)
r2dr ,

(20)

where ρe f f = ρ + E2

8π
.

To describe the exterior spacetime of our system we con-
sider the exterior Reissner-Nordström metric given as

ds2 =
(

1 − 2M

r
+ Q2

r2

)
dt2 − 1(

1 − 2M
r + Q2

r2

)dr2

−r2(dθ2 + sin2θdφ2). (21)

Now using Eqs. (4), (20) and (21) we find from Eqs. (17)
as follows

e−λ(r) = 1 − 2m

r
+ q2

r2 . (22)

Following Mak and Harko [65] to obtain singularity free
monotonically decreasing SQM density functionρ, we define

ρ(r) = ρc

[
1 −

(
1 − ρ0

ρc

)
r2

R2

]
, (23)

where ρc and ρ0 are the central and surface densities, respec-
tively.

To obtain hydrostatic equilibrium equation for the anisotr-
opic charged stellar system we perform covariant divergence
of the electromagnetic stress-energy tensor, i.e., ∇aT a

b = 0,
which leads to the equation of energy conservation as follows

dpr
dr

= − (ρ + pr )

[
m + 4 π r3

(
pr − q2

4πr4

)]

r2
(

1 − 2m
r + q2

r2

)

+ q

4πr4

dq

dr
+ 2

r
(pt − pr ) . (24)

For q = 0 in Eq. (24) we retrieve the usual form of
the Tolman–Oppenheimer–Volkoff (TOV) equation for the
anisotropic matter distribution.

4 Solution of the Maxwell–Einstein field equations

Using Eqs. (3), (4), (20), (22) and (23) and by solving
the Maxwell–Einstein field equations (17)–(18) we derive
expression for the different physical parameters as follows

λ = − ln

{
1 +

(
λ2 + λ1r2

)
r2

R5

}
, (25)

ν = 1024

3 ν1ν4

[
ν2arctanh

×
(

−4 R5α2r2 − 32 Bπ R3r2 + 6 Mr2 − ν5

R2ν1

)

+ν2arctanh

(
R5α2 + 16BπR3 − M

ν1

)

−3ν1
{
ν3 ln

(−R5 + ν4r4 + ν5r2
) − ν6

}

64

]
, (26)

ρ = − 9 R7α2−9 R5α2r2+48 Bπ R5−80 Bπ R3r2−15 MR2+15 Mr2

8πR5
,

(27)

pr = − 9 R7α2−9 R5α2r2+80 Bπ R5−80 Bπ R3r2−15 MR2+15 Mr2

24πR5
,

(28)

pt =
[(

81 R14α4r2 − 135 R12α4r4 + 54 R10α4r6

+1008 Bπ R12α2r2 − 1632 Bπ R10α2r4

+720 Bπ R8α2r6

+3328 B2π2R10r2 − 5888 B2π2R8r4

+2560 B2π2R6r6

−270 MR9α2r2 + 360 MR7α2r4 − 135 MR5α2r6

−27 R12α2 + 27 R10α2r2 − 1680 BMπ R7r2

+2304 BMπ R5r4 − 960 BMπ R3r6 − 240 Bπ R10

+480 Bπ R8r2 + 225 M2R4r2 − 225 M2R2r4

+90 M2r6

+45 MR7 − 90 MR5r2
)/

72 R5π
(

3 R7α2r2

−2 R5α2r4 + 16 Bπ R5r2 − 16 Bπ R3r4 − 5 MR2r2

+3 Mr4 + R5
)]

, (29)

where λ1, λ2, ν1, ν2, ν3, ν4, ν5 and ν6 are constants and their
expressions are shown in Appendix 6.

We featured variation of the physical parameters, viz.
eλ, eν , ρ, pr and pt with respect to the radial coordinate
r/R in Figs. 1 and 2.

The anisotropy for our system is given as

Δ = pt − pr =
[
r2

(
162 R14α4 − 270 R12α4r2

+108 R10α4r4 + 2160 Bπ R12α2

−3696 Bπ R10α2r2
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Fig. 1 Variation of (i) eν(r) (upper panel) and (ii) eλ(r) (lower panel) as
a function of the radial coordinate r/R for the strange star LMC X −4.
Here B = 83 MeV/fm3

+1632 Bπ R8α2r4 + 7168 B2π2R10

−13568 B2π2R8r2

+6400 B2π2R6r4 − 540 MR9α2 + 801 MR7α2r2

−306 MR5α2r4 − 3600 BMπ R7 + 5664 BMπ R5r2

−2400 BMπ R3r4 + 240 Bπ R8 + 450 M2R4

−585 M2R2r2 + 225 M2r4

−45 MR5
)/

72 R5π
(

3 R7α2r2

−2 R5α2r4 + 16 Bπ R5r2 − 16 Bπ R3r4 − 5 MR2r2

+3 Mr4 + R5
)]

. (30)

The variation of the anisotropic stress (Δ) with respect to
the radial coordinate r/R is shown in Fig. 3. We find from

Fig. 2 Variation of (i) ρ (upper panel), (ii) pr (middle panel) and (iii)
pt (lower panel) as a function of the radial coordinate r/R for the strange
star LMC X − 4
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Fig. 3 Variation of anisotropy as a function of the radial coordinate
r/R for the strange star LMC X − 4

Fig. 3 anisotropy is zero at the center and maximum at the
surface as predicted by Deb et al. [47].

Now, using the observed values of the mass of the different
strange star candidates as shown in Table 1 and following Deb
et al. [47] we shall maximize the anisotropic stress, Δ(r) at
the surface r = R to predict the exact value of the radius, R
for the different strange stars. To this end, we consider that the
value of the bag constant is B = 83 MeV/fm3 [59] and the
chosen values of α are 0, 0.0005, 0.0010 and 0.0015 km−2.
Clearly, Δ′(R) = 0 will yield several values of R and we
will choose only that value of R for which the Buchdahl
conditions [66] will be satisfied.

In Fig. 4 we have featured the variation of the elec-
tric charge distribution q(r) and electrical energy density
E2(r)/8π with respect to the radial coordinate r/R in the
upper and lower panel, respectively. Figure 4 clearly suggests
that both the distribution of the electric charge and electri-
cal energy density is minimum, i.e., zero at the center and
maximum at the surface.

5 Salient physical features of the anisotropic charged
stellar system

In this section to discuss physical validity of the achieved
solution we will study some salient physical features of the
stellar system as follows:

5.1 Energy conditions

To satisfy energy conditions, viz., Null Energy Condition
(NEC),Weak Energy Condition (WEC), Strong Energy Con-
dition (SEC) and Dominant Energy Condition (DEC) the

Fig. 4 Variation of (i) q (r) (upper panel) and (ii) E2 (r) /8π (lower
panel) as a function of the radial coordinate r/R for the strange star
LMC X − 4

anisotropic charged stellar system have to be consistent with
all the inequalities simultaneously as follows

NEC : ρ + pr ≥ 0, ρ + pt + E2

4π
≥ 0, (31)

WEC : ρ + pr ≥ 0, ρ + E2

8π
≥ 0, ρ + pt + E2

4π
≥ 0,

(32)

SEC : ρ + pr ≥ 0, ρ + pt + E2

4π

≥ 0, ρ + pr + 2 pt + E2

4π
≥ 0,

(33)

DEC : ρ + E2

8π
≥ 0, ρ − pr + E2

4π
≥ 0, ρ − pt ≥ 0.

(34)
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Fig. 5 Variation of energy conditions with the radial coordinate r/R
for LMC X − 4 due to different chosen values of α

We have featured all the inequalities in Fig. 5 due to the
different values of α and Fig. 5 shows that our system is
consistent with all the energy conditions.

5.2 Mass–radius relation

Andréasson [67] predicted the upper bound of the mass–
radius ratio for the charged spherically symmetric stellar
system, which was generalization of the Buchdahl limit [66]
that provides upper limit for the allowed mass–radius ratio in
the uncharged case. Hence, in the present system the upper
bound [67] is given as

2M

R
≤ 2

9R2

[
3 Q2 + 2 R2 + 2 R

√
3 Q2 + R2

]
. (35)

The mass function for our system is provided as follows

m (r) = − r3

2R5

[
3 R7α2 − 3 R5α2r2 + 16 Bπ R5

−16 Bπ R3r2 − 5 MR2 + 3 Mr2
]
. (36)

We have presented variation of the total mass, M (normal-
ized in solar mass, M�) with respect to the total radius, R
due to different parametric values of α in Fig. 6, where we
chose that the bag constant is B = 83 MeV/fm3 [59]. We
find the maximum mass of the system increases as the value
of α increases, which is clearly shown in the lower panel of
Fig. 6.

We have featured variation of M (normalized in M�) with
respect to the central density ρc in the left and right upper
panel of Fig. 7. For α = 0 the maximum mass, Mmax =
3.66 M� is achieved for ρc = 1.866×1015 gm/cm3, whereas

Fig. 6 (i) The upper panel features Mass (M/M�) vs Radius (R in
km) curve for the strange stars due to different values of α and (ii) the
lower panel shows enlarged plot of the M − R curve. The solid circles
represent maximum mass points

for α = 0.0015 the value of Mmax increases to Mmax =
3.81 M� and the value of the corresponding central density
decreases to ρc = 1.753 × 1015 gm/cm3. The left and right
lower panel of Fig. 7 show the variation of R with respect
to ρc. We find, RMmax , the radius corresponding to Mmax

decreases from 11.734 km to 11.634 km as the value of α

decreases from α = 0.0015 to α = 0, respectively.

5.3 Compactification factor and redshift

The compactification factor for our system is defined as

u = m(r)

r
= − r2

2R5

[
3 R7α2 − 3 R5α2r2 + 16 Bπ R5

−16 Bπ R3r2 − 5 MR2 + 3 Mr2
]
. (37)
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Fig. 7 Variation of the (i) mass M/M� (upper left panel) and (ii)
radius R in km (lower left panel) of the strange stars as a function of the
central density (ρc) are shown. The enlarged versions of the M/M� vs
(ρc) and R vs (ρc) curves are shown in the upper right panel and the
lower right panel. Here, solid circles are representing maximum mass
points

Fig. 8 Variation of the redshift function with respect to the radial coor-
dinate r/R for the strange star LMC X − 4

Hence, the surface redshift, Zs corresponding to the com-
pactification factor u is given as

Zs = 1√
1 − 2 u (R)

− 1 =
√
R√

R5α2 − 2 M + R
. (38)

The variation of the redshift function, Z(r) with respect
to the radial coordinate r/R is presented in Fig. 8. Clearly, in
a spherically symmetric anisotropic charged stellar system

as the value of α increases the values of the surface redshift
gradually decreases.

5.4 The stability of the system

To examine stability of our system we will study (i) gen-
eralized TOV equation and (ii) Herrera cracking concept as
follows

5.4.1 Generalized TOV equation

The generalized form of the TOV equation in the present
anisotropic charged system reads

− Mg(ρ + pr )

r2 e
λ−ν

2 − dpr
dr

+ σ
q

r2 e
λ
2 + 2

r
(pt − pr ) = 0,

(39)

where Mg denotes the effective gravitational mass and given
as follows

Mg(r) = 1

2
r2e

ν−λ
2 ν′. (40)

Equation (39) features that the system is completely stable
under the equilibrium of the different forces, i.e., Fg + Fh +
Fe + Fa = 0, where Fg , Fh , Fe and Fa represent gravita-
tional, hydrodynamic, electric and anisotropic force, respec-
tively. We have presented variation of the different forces
with respect to the radial coordinate r/R due to different
values of α in Fig. 9. The figure features that the attractive
gravitational force Fg , which acts toward the inward direc-
tion along the system is counterbalanced by the combined
effects of the forces Fh , Fe and Fa .

5.4.2 Herrera cracking concept

To examine stability of the system in terms sound speeds the
systems have to be consistent with the (i) causality condi-
tion and (ii) Herrera cracking concept. To be consistent with
the causality condition, the square of the radial (v2

sr ) and
tangential (v2

st ) sound speeds should satisfy the inequalities
0 ≤ v2

sr ≤ 1 and 0 ≤ v2
st ≤ 1 simultaneously. According to

the concept of Herrera’s cracking [68,69] for a potentially
stable region v2

sr should be greater than v2
st and the difference

of the square of the sound speeds should maintain it’s sign
same through out that region, i.e., |v2

st −v2
sr | ≤ 1. The square

of sound speeds are defined as

v2
sr = pr

ρ
, (41)

v2
st = pt

ρ
. (42)

In Fig. 10 we have shown the variation of the square of the
sound speeds (upper panel) and |v2

st −v2
sr | (lower panel) with
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Fig. 9 Variation of the different forces as a function of the radial coor-
dinate r/R for the strange stars LMC X − 4

respect to the radial coordinate r/R due to different paramet-
ric values of α. The figure clearly features that our system
satisfies both the causality condition and Herrera cracking
concept. Hence, our system is completely stable.

6 Discussion and conclusion

In this literature we have presented a detailed study on
the effect of the electrical charge on the spherically sym-
metric anisotropic stellar system, which is made of SQM
and governed by the MIT bag EOS. Assuming a simplified
form of the electrical charge distribution given as q (r) =
Q (r/R)3 ≡ α r3, we have obtained exact solutions for the
Maxwell–Einstein field equations. Further, using the exterior
Reissner–Nordström metric we have presented expressions
for the different physical parameters in Eqs. (25)–(30). We
have presented the obtained solutions and studied their phys-
ical validity in terms of the star LMC X−4 of mass 1.29 M�,
by considering it as the representative of strange star candi-
dates. Throughout the study we have considered bag constant
as B = 83 MeV/fm3 and the chosen parametric values of
α (in km−2) as 0, 0.0005, 0.0010 and 0.0015.

The profile of the metric potentials
(
eν, eλ

)
are shown in

Fig. 1, which shows that at the center both the metric poten-
tials are finite. It confirms that our system is free from any
sort of singularities, i.e., physical or geometrical singulari-
ties. The variations of ρ, pr and pt are shown in the upper,
middle and lower panel in Fig. 2, respectively. We find that
density and pressure functions are maximum at the surface

Fig. 10 Variation of (i) v2
sr and v2

st (upper panel) and (ii) |v2
st −v2

sr | ≤ 1
(lower panel) as a function of the radial coordinate

and decrease monotonically through out the system to reach
the minimum value at the surface and confirms regularity of
the achieved solutions. We have predicted different values of
the central density, ρc and central pressure pc for the differ-
ent strange star candidates in Table 1. We find that the den-
sities and radial pressures of the different strange stars are in
the order of 1014 gm/cm3 and 1034 dyne/cm2, respectively.
Due to the strange star candidates as mentioned in Table 1 we
find density is much higher than the normal nuclear density
ρnormal = 2.3×1014 gm/cm3, which confirms that the stars
are made of SQM. The variation of the anisotropic stress for
the different values of α is shown in Fig. 3 and it confirms the
prediction by Deb et al. [47] that for an anisotropic strange
star the anisotropic stress should be maximum at the surface.

The profiles of the electrical charge q(r) and electrical
energy density E2(r)/8π are featured in the upper and lower
panel in Fig. 4, respectively. We find that the total charge Q
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Fig. 11 Variation of Q in coulomb as a function of the central density
ρc for the strange star LMC X − 4

and the associated electric field E are in the order of 1020 C
and 1021−1022 V/cm, respectively. Our study clearly reveals
that the electric charge has a significant effect on the different
physical parameters and the stability of the anisotropic spher-
ically symmetric system. Both Fig. 2 and Table 2 show that
as the charge increases the density and pressures of the stel-
lar system decrease gradually. Interestingly, Fig. 3 features
that the effect of anisotropy on the stellar system is maximum
when the system is neutral. However, the anisotropic stress of
the system decreases consequently with the increasing effect
of the charge.

We perform different physical tests, viz., energy condi-
tions, mass–radius relation, generalized TOV equation and
Herrera cracking concept, etc. In Fig. 5 we have shown that
our system is consistent with all the energy conditions. We
have featured variation of M (normalized in M�) with respect
to R for the different values of α in Fig. 6. The solid circles
in Fig. 6 denotes the maximum mass points due to different
values of α. We found as the charge increases both Mmax

and RMmax increases gradually. For α = 0.0015 the values
of Mmax and RMmax increase 4.1% and 0.86%, respectively,
than the uncharged case. In the upper and lower panel in Fig. 7
we have presented variation of M and R with respect to ρc,
respectively. For α = 0.0015 km−2 the maximum mass point
is achieved for ρc = 7.024 ρnuclear , which is 6.07% lower
than the value of ρc as in uncharged case. We have also pre-
sented variation of the total charge Q with respect to ρc due to
different values of α in Fig. 11. The figure reveals that as the
value of α increases the total charge (Qmax ) corresponding
to Mmax is achieved for the lower value of ρc. The varia-
tion of the redshift function with respect to r/R is shown in
Fig. 8. To examine stability of the system we have studied
Generalized TOV equation which predicts that for our sys- Ta
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tem sum of the forces Fg , Fa , Fe and Fh is zero and variation
of the forces due to different values of α is shown in Fig. 9.
Further, Fig. 10 features that our system is consistent with
the Herrera cracking concept by satisfying all the inequali-
ties simultaneously given as 0 ≤ v2

sr ≤ 1, 0 ≤ v2
st ≤ 1 and

|v2
st − v2

sr | ≤ 1.
In Table 1 we have predicted a detailed data sheet of the

different physical parameters for the different strange star
candidates due to α = 0.0010 km−2 and B = 83 MeV/fm3.
Further, with the motivation to discuss the effects of the
electric charge, we have predicted numerical values of the
different physical parameters for the strange star candi-
date LMC X − 4 in Table 2. The high redshift value
(0.2824 − 0.2853) supports that the proposed model is suit-
able to study strange star candidates. Both Tables 1 and 2
feature that due to different values of α the predicted values
of mass to radius ratio for the different strange star candi-
dates are well with in the upper limit of the mass–radius
ratio provided by Andréasson [67].

Following Rahaman et al. [59] we initially considered
value of the bag constant B = 83 MeV/fm3 as a reference to
study the different physical parameters of the stellar system
and as such there was no specific reason for the choice only
of that one. However, to get a clear picture of the variation
on the different physical parameters of the stellar system we
have later on also studied the effect of some other values
of the bag constants, viz., B = 70 and 90 MeV/fm3 and
presented all the results in a tabular format in Table (3).

Table 3 features that as the values of B increase along
with the decreasing values of radius and the total charge we
observe that the values of ρc, pc, 2M/R and surface redshift
increase. Clearly, with the increasing values of B the values
of the maximum anisotropy at the surface, Δ(R), increase
consequently. Interestingly, as the values of B decrease one
can find the increase of the total charge of the stellar system
whereas the density of the system decreases gradually turning
the system into a less compact stellar object.

In a summery, in this article we have presented an
anisotropic charged spherically symmetric stellar model
which is suitable to study ultra-dense strange stars.
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Appendix: expressions of the constants

The expressions of the constantsλ1,λ2,ν1,ν2,ν3,ν4,ν5 andν6

which are used in Eqs. (25) and (26) given as

λ1 = −2 R5α2 − 16 Bπ R3 + 3 M, (43)

λ2 = 3 R7α2 + 16 Bπ R5 − 5 MR2, (44)

ν1 =
(

9 R10α4 + 96 Bπ R8α2 + 256 B2π2R6

−30 MR5α2 + 8 R6α2 − 160 BMπ R3 + 64 Bπ R4

+25 M2 − 12 MR
)1/2

, (45)

ν2 =
[ 9

512
R10α4 + 1

4
Bπ R8α2 + B2π2R6 − 3

64
MR5α2

−11

32
BMπR3 + 15

512
M2

]
, (46)

ν3 = 1

16
R5α2 + 2

3
BπR3 − M

8
, (47)

ν4 = 2 R5α2 + 16 Bπ R3 − 3M, (48)

ν5 = −3 R7α2 − 16 Bπ R5 + 5 MR2, (49)

ν6 =
[
ν3 ln

(
2M − R5α2 − R

)
+ 1

16
ν4 ln

(
Q2 + R2

−2MR
) + 2

3

(
Bπ R3 − 3

16
M

)
ln (R)

]
. (50)

References

1. N. Itoh, Prog. Theor. Phys. 44, 291 (1970)
2. E. Farhi, R.L. Jaffe, Phys. Rev. D 30, 2379 (1984)
3. C. Alcock, E. Farhi, A. Olinto, Astrophys. J. 310, 261 (1986)
4. P. Haensel, J.L. Zdunik, R. Schaefer, Astron. Astrophys. 160, 121

(1986)
5. A.R. Bodmer, Phys. Rev. D 4, 1601 (1971)
6. E. Witten, Phys. Rev. D 30, 272 (1984)
7. H. Terazawa, INS, Univ. of Tokyo Report No. INS-Report-338

(1979)
8. H. Terazawa, J. Phys. Soc. Jpn. 58, 3555 (1989)
9. H. Terazawa, J. Phys. Soc. Jpn. 58, 4388 (1989)

10. H. Terazawa, J. Phys. Soc. Jpn. 59, 1199 (1990)
11. C. Alcock, A.V. Olinto, Annu. Rev. Nucl. Part. Sci. 38, 161 (1988)
12. J. Madsen, Lect. Notes Phys. 516, 162 (1999)
13. N.K. Glendenning, Ch. Kettner, F. Weber, Astrophys. J. 450, 253

(1995)
14. N.K. Glendenning, Ch. Kettner, F. Weber, Phys. Rev. Lett. 74, 3519

(1995)
15. Ch. Kettner, F. Weber, M.K. Weigel, N.K. Glendenning, Phys. Rev.

D 51, 1440 (1995)
16. F. Weber, Prog. Part. Nucl. Phys. 54, 193 (2005)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2018) 78 :465 Page 13 of 13 465

17. M.A. Perez-Garcia, J. Silk, J.R. Stone, Phys. Rev. Lett. 105, 141101
(2010)

18. H. Rodrigues, S.B. Duarte, J.C.T. de Oliveira, Astrophys. J. 730,
31 (2011)

19. G.H. Bordbar, A.R. Peivand, Res. Astron. Astrophys. 11, 851
(2011)

20. V. Usov, Phys. Rev. D 70, 067301 (2004)
21. V. Usov, T. Harko, K.S. Cheng, Astrophys. J. 620, 915 (2005)
22. S. Ray, A.L. Espíndola, M. Malheiro, J.P.S. Lemos, V.T. Zanchin,

Phys. Rev. D 68, 084004 (2003)
23. B.B. Siffert, J.R. de Mello, M.O. Calvão, Braz. J. Phys. 37, 2B

(2007)
24. R.P. Negreiros, F. Weber, M. Malheiro, V. Usov, Phys. Rev. D 80,

083006 (2009)
25. V. Varela, F. Rahaman, S. Ray, K. Chakraborty, M. Kalam, Phys.

Rev. D 82, 044052 (2010)
26. M. Malheiro, R.P. Negreiros, F. Weber, V. Usov, J. Phys. Conf. Ser.

312, 042018 (2011)
27. F. Rahaman, R. Sharma, S. Ray, R. Maulick, I. Karar, Eur. Phys. J.

C 72, 2071 (2012)
28. J.D.V. Arbañil, J.P.S. Lemos, V.T. Zanchin, Phys. Rev. D 88,

084023 (2013)
29. J.M. Sunzu, S.D. Maharaj, S. Ray, Astrophys. Space Sci. 352, 719

(2014)
30. J.D.V. Arbañil, M. Malheiro, Phys. Rev. D 92, 084009 (2015)
31. H. Panahi, R. Monadi, I. Eghdami, Chin. Phys. Lett. 33, 072601

(2016)
32. R. Ruderman, Rev. Astron. Astrophys. 10, 427 (1972)
33. R.L. Bowers, E.P.T. Liang, Class. Astrophys. J. 188, 657 (1974)
34. L. Herrera, N.O. Santos, Phys. Report. 286, 53 (1997)
35. K. Dev, M. Gleiser, Gen. Relativ. Gravity 34, 1793 (2002)
36. K. Dev, M. Gleiser, Gen. Relativ. Gravity 35, 1435 (2003)
37. M. Gleiser, K. Dev, Int. J. Mod. Phys. D 13, 1389 (2004)
38. B.V. Ivanov, Phys. Rev. D 65, 104011 (2002)
39. F.E. Schunck, E.W. Mielke, Class. Quantum Gravity 20, 301 (2003)
40. M.K. Mak, T. Harko, Proc. R. Soc. A 459, 393 (2003)
41. F. Rahaman, S. Ray, A.K. Jafry, K. Chakraborty, Phys. Rev. D 82,

104055 (2010)
42. F. Rahaman, P.K.F. Kuhfittig, M. Kalam, A.A. Usmani, S. Ray,

Class. Quantum Gravity 28, 155021 (2011)
43. F. Rahaman, R. Maulick, A.K. Yadav, S. Ray, R. Sharma, Gen.

Relativ. Gravity 44, 107 (2012)
44. M. Kalam, F. Rahaman, S. Ray, S.K.M. Hossein, I. Karar, J. Naskar,

Eur. Phys. J. C 72, 2248 (2012)
45. S.K. Maurya, Y.K. Gupta, S. Ray, D. Deb, Eur. Phys. J. C 76, 693

(2016)

46. S.K. Maurya, D. Deb, S. Ray, P.K.F. Kuhfittig, arXiv:1703.08436
[physics.gen-ph]

47. D. Deb, S.R. Chowdhury, S. Ray, F. Rahaman, B.K. Guha, Ann.
Phys. 387, 239 (2017)

48. J. Ovalle, Phys. Rev. D 95, 104019 (2017)
49. J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Eur. Phys. J. C

78, 122 (2018)
50. A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf,

Phys. Rev. D 9, 3471 (1974)
51. M. Brilenkov, M. Eingorn, L. Jenkovszky, A. Zhuk, JCAP 08, 002

(2013)
52. N.R. Panda, K.K. Mohanta, P.K. Sahu, J. Physics, Conf. Ser. 599,

012036 (2015)
53. A.A. Isayev, Phys. Rev. C 91, 015208 (2015)
54. S.D. Maharaj, J.M. Sunzu, S. Ray, Eur. Phys. J. Plus 129, 3 (2014)
55. L. Paulucci, J.E. Horvath, Phys. Lett. B 733, 164 (2014)
56. G. Abbas, S. Qaisar, A. Jawad, Astrophys. Space Sci. 359, 57

(2015)
57. J.D.V. Arbañil, M. Malheiro, JCAP 11, 012 (2016)
58. G. Lugones, J.D.V. Arbañil, Phys. Rev. D 95, 064022 (2017)
59. F. Rahaman, K. Chakraborty, P.K.F. Kuhfittig, G.C. Shit, M. Rah-

man, Eur. Phys. J. C 74, 3126 (2014)
60. F. de Felice, Y.Q. Yu, J. Fang, Mon. Not. R. Astron. Soc. 277, L17

(1995)
61. F. De Felice, S.M. Liu, Y.Q. Yu, Class. Quantum Gravity 16, 2669

(1999)
62. R.C. Tolman, Phys. Rev. 55, 364 (1939)
63. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)
64. D.D. Dionysiou, Astrophys. Space Sci. 85, 331 (1982)
65. M.K. Mak, T. Harko, Chin. J. Astron. Astrophys. 2, 248 (2002)
66. H.A. Buchdahl, Phys. Rev. D 116, 1027 (1959)
67. H. Andréasson, Commun. Math. Phys. 288, 715 (2009)
68. L. Herrera, Phys. Lett. A 165, 206 (1992)
69. H. Abreu, H. Herńandez, L.A. Núñez. Class. Quantum Gravity 24,

4631 (2007)
70. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T.

Hessels, Nature 467, 1081 (2010)
71. T. Gangopadhyay, S. Ray, X.-D. Li, J. Dey, M. Dey, Mon. Not. R.

Astron. Soc. 431, 3216 (2013)
72. T. Güver, P. Wroblewski, L. Camarota, F. Özel, Astrophys. J. 712,

964 (2010)
73. T. Güver, P. Wroblewski, L. Camarota, F. Özel, Astrophys. J. 719,

1807 (2010)
74. F. Özel, T. Güver, D. Psaltis, Astrophys. J. 693, 1775 (2009)

123

http://arxiv.org/abs/1703.08436

	Anisotropic strange stars in the Einstein–Maxwell spacetime
	Abstract 
	1 Introduction
	2 The MIT bag equation of state and the electric charge distribution
	3 Basic stellar structure equations
	4 Solution of the Maxwell–Einstein field equations
	5 Salient physical features of the anisotropic charged stellar system
	5.1 Energy conditions
	5.2 Mass–radius relation
	5.3 Compactification factor and redshift
	5.4 The stability of the system
	5.4.1 Generalized TOV equation
	5.4.2 Herrera cracking concept


	6 Discussion and conclusion
	Acknowledgements
	Appendix: expressions of the constants
	References




