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Abstract In this paper, we have derived a spatially flat
homogeneous and isotropic cosmological model in f (R, T φ)

gravity with a scalar field. In addition to a minimally coupled
scalar field with self interacting potential, we also have a con-
tribution from the coupling of the geometry and the field. We
have reconstructed a form of f (R, T φ) by requiring the con-
servation of energy–momentum tensor of the scalar field. The
behavior of the reconstructed f (R, T φ) gravity is examined
for a flat potential as well as a massless scalar field model.
The evolution of the universe is studied via the decelera-
tion and equation of state parameters. The promising feature
of the model is the transition behavior of the universe from
deceleration to the present acceleration.

1 Introduction

In recent years, the observations of H(z) data from Ia super-
nova [1–3], cosmic microwave background (CMB) [4], large
scale structures (LSS) [5], Wilkinson microwave anisotropy
probe (WMAP) [6], baryon acoustic oscillations (BAO) [7],
PLANCK [8], etc, have generated strong theoretical and
observational evidence that the present expansion of the uni-
verse is in an accelerated phase. These observations also sug-
gest that about two thirds of the critical energy density in the
universe seems to be stored in a form of an unknown compo-
nent. The late time cosmic acceleration is usually assumed
to be driven by such a mysterious fluid or field which is gen-
erally known as ‘dark energy’ (DE) [9]. Some hypothetical
candidates for DE are the cosmological constant [10,11],
quintessence [12], phantom [13], k-essence [14], tachyons
[15,16], Chaplygin gas [17] and the quintom [18]. The big-
bang model of Einstein’s general relativity (GR) with a cos-
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mological constant Λ, called the ΛCDM model [19], is the
most acceptable model amongst the scientific community to
explain the observed late time accelerated expansion, except
its fine-tuning at the Planck scale [20]. The fine-tuning prob-
lem confronts the fundamental theories with great challenges,
and makes research on this problem a major endeavour in
modern astrophysics and cosmology.

The fine-tuning and coincidence problems [21] of the
ΛCDM model have led to a search for dynamical DE models
[22–24]. One of the most common candidates for dynamical
DE is ‘quintessence’ (see [12] and references therein). The
concept of quintessence basically uses a scalar particle field
which is used as the responsible agent for driving a super-fast
expansion during the inflationary phase [25–31]. Due to the
remarkable qualitative similarity between the present DE and
the primordial DE that is supposed to drive inflation in the
early universe, scalar field models have also been success-
fully implemented for the description of late-time cosmic
acceleration [32–36]. However, constructing viable scaling
models which can start the universe with inflation followed
by the radiation- and matter-dominated epochs, and finally
which can allow the universe to enter into the present accel-
erating phase, is still a challenging task [37,38]. Keeping in
mind that scalar fields play an important role in explaining
early and late-time cosmic acceleration, one of the motiva-
tions of the present work is to study FRW models with a
scalar field.

Another perspective to understand the problem of DE is
the reconstruction of the gravitational field theory or modi-
fication of Einstein’s GR which could be capable of repro-
ducing late time cosmic acceleration. However, the idea of
modification of GR was not born just after the discovery of
the accelerating universe. Many modified theories of gravi-
tation exist since a long time due to the combined motiva-
tion coming from cosmology, astrophysics and high-energy
physics. The attention in modified theories has just acceler-
ated with the discovery of the accelerating expansion of the
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universe. The possibility that the modification of GR at galac-
tic and cosmological scales can explain dark matter (DM)
and DE has been become an active area of research since the
beginning of the 21st century [39–43]. At present, there exist
numerous proposals which are the modifications in some way
or another of the Einstein-Hilbert (EH) gravitational action,
namely, f (R) theories [44–46], Gauss–Bonnet, f (G) grav-
ity [47,48], brane world theory [49], f (T ) theory [50] etc.
Although, these modified theories have already given qual-
itative answers to a number of fundamental questions, none
of them satisfactorily explain the greatest mystery gifted to
the scientific community in the 20th century [51]. Therefore,
there is still a resurgence of interest in these modified theories
to seek the answer of several cosmological problems such as
the singularity problem, inflation, DE, DM, late-time cosmic
acceleration and the cosmological constant problem.

In the beginning, interest in modified theories was focused
on the modification of the geometric part of the EH action. In
2011, Harko et al. [52] have proposed a general non-minimal
coupling between matter and geometry in the framework of
an effective gravitational Lagrangian consisting of an arbi-
trary function of the Ricci scalar R and the trace T of the
energy–momentum tensor, and introduced f (R, T ) gravita-
tional theory. The authors have justified choosing T as an
argument for the Lagrangian from exotic imperfect fluids
or quantum effects (conformal anomaly). The new matter
and time-dependent terms in the gravitational field equations
play the role of an effective cosmological constant. A strange
behavior of f (R, T ) gravity is the non-vanishing covariant
derivative of the stress-energy tensor. As a consequence, the
equations of motion show the presence of an extra-force act-
ing on a test particle, and consequently the motion is non-
geodesic. The authors have applied this theory to analyse
the Newtonian limit of the equations of motion and provided
a constraint on the magnitude of the extra acceleration by
studying the perihelion precession of Mercury. They con-
clude that the extra acceleration in f (R, T ) gravity results
not only from a geometrical contribution, but also from the
matter content. This extraordinary behavior of f (R, T ) grav-
ity has attracted many researchers to explore this theory in
different contexts of cosmology and astrophysics [53–60].
One of the interesting issues in cosmology is the reconstruc-
tion of modified theories of gravity. Therefore, many authors
have reconstructed f (R, T ) gravity in different frameworks
[61–64].

The study of different phenomena in f (R, T ) gravity may
also provide some significance signatures and effects which
could distinguish and discriminate between various gravita-
tional models. So far, a serious shortcoming of f (R, T ) the-
ory is the non-vanishing covariant derivative of the energy–
momentum tensor and, consequently, the standard continuity
equation does not hold in this theory, in general. Similarly, the
Klein–Gordon equation does not hold if the matter is taken as

the scalar field. Therefore, an interesting problem is to search
out the form of f (R, T ) for which the standard continuity
and Klein–Gordon equations hold. This issue has been under-
taken firstly by Chakraborty [65] who has shown that a part
of an arbitrary function of f (R, T ) theory can be determined
by taking into account conservation of the stress-energy ten-
sor. Later on, Alvarenga and collaborators [66] have also
circumvented this problem by showing that the functions of
f (R, T ) theory can always be constructed that gives a guar-
antee of the standard continuity equation. The authors also
have shown that for a well motivated f (R, T ) Lagrangian,
the quasi-static approximation leads to very different results
as compared to the concordance ΛCDM model. Recently,
Baffou et al. [67] have obtained a model by imposing the
conservation of the energy–momentum tensor. The authors
have studied the dynamics and stability of the model using
de Sitter and power-law solutions. Very recently, Moraes et
al. [68] have considered a new approach of the conservation
of the effective energy–momentum tensor in the f (R, T )

gravity formalism. The results obtained in all these works
are quite reasonable due to the choice of the ordinary matter
content. Thus, there is a need to explore f (R, T ) gravity tak-
ing into account the consideration of the continuity equations
of some other matter sources such as a scalar field. The theo-
retical and observational investigation of scalar field models
is an essential task in cosmology. Recently, Singh and Singh
[69] have reconstructed flat scalar and exponential potential
models of f (R, T ) gravity in scalar field cosmology.

In the present work, we extend the work carried out by
Singh and Singh [69] by taking into account the Klein–
Gordon equation for the scalar field. We reconstruct the
f (R, T φ) = R + 2 f (T φ) gravity model in scalar field cos-
mology with a self interacting scalar potential in the frame-
work of a flat FRW space-time; here T φ refers to the trace of
the energy–momentum tensor of the scalar field. We investi-
gate the features of a reconstructed form of f (R, T φ) grav-
ity by considering a flat potential and a massless scalar field
model. The paper is organised as follows. The model and
field equations of f (R, T φ) gravity in scalar field cosmol-
ogy are presented in the next Sect. 2. A flat potential model
is studied in Sect. 3. In Sect. 4, we study a massless scalar
field model and we also differentiate this model from the flat
potential model studied in Sect. 3. The sum up of the findings
are accumulated in the concluding Sect. 5.

2 The model and field equations in f (R, Tφ) gravity

Harko et al. [70] have presented several exact cosmological
solutions with a scalar field as the only matter source in GR.
Many researchers have studied some of the most intriguing
aspects of our universe containing a self-interacting scalar
field possessing an interaction potential as the only matter
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source in modified gravity [69,71,72]. In [52], the authors
also have introduced a version of f (R, T ) gravity for scalar
field cosmology, namely, f (R, T φ) gravity by considering
in the action an algebraic function F(R, φ) of the Ricci cur-
vature R and scalar field φ. The authors have expressed φ

as a function of R and T φ , where T φ is the trace of the
energy momentum tensor of the scalar field. Thus, they have
formulated the gravitational action of f (R, T φ) by consid-
ering a function F̃(R, T φ) ≡ F

[
R, φ(R, T φ)

]
plus matter

fields in the gravitational action. In an example, the authors
have presented the gravitational action for a particular model
where f (R, T φ) = R + f (T φ), which, under the consid-
eration of massless scalar fields, leads to the gravitational
action of k-essence models [14]. Further, they have shown
that an exponential form of F(R, φ) for a massless scalar
field model leads to a power-law solution.

Singh and Singh [69] have reconstructed a particular
form of f (R, T φ) = R + f (T φ) for a flat scalar poten-
tial model and exponential potential model without taking
into account the Klein–Gordon equation. Since the covariant
derivative of the stress-energy tensor does not vanish in gen-
eral in f (R, T φ) gravity, in the present study we reconstruct
f (R, T φ) = R+ f (T φ) for which the covariant derivative of
the stress-energy tensor of the scalar field vanishes. In other
words, we find the above said form of f (R, T φ) for which
the Klein–Gordon equation holds.

We consider a minimally coupled scalar field φ self inter-
acting with a scalar potential V (φ) in the gravitational action
of f (R, T φ) theory of gravity, i.e.,

S = 1

2

∫ [
f (R, T φ) + 2Lφ

] √−gd4x, (1)

where f (R, T φ) is an arbitrary function of the Ricci scalar
curvature R and the trace T φ of the energy–momentum ten-
sor, andLφ corresponds to the matter Lagrangian of the scalar
field. We use the system of units in which 8πG = 1 = c. The
energy–momentum tensor of the matter source is defined as

Tμν = − 2√−g

δ(
√−g Lφ)

δgμν
, (2)

where gμν is the metric tensor. We consider the matter
Lagrangian Lφ to depend only on the metric tensor gμν , and
not on its derivatives. Therefore, the energy–momentum ten-
sor in Eq. (2) simplifies to

Tμν = gμνLφ − 2
∂Lφ

∂gμν
. (3)

The variation of action (1) with respect to the metric tensor
gμν , yields the field equations of f (R, T φ) gravity

fR(R, T φ)Rμν − 1

2
f (R, T φ)gμν

+ (gμν� − ∇μ∇ν) fR(R, T φ) = Tμν

− fT (R, T φ)(Tμν + �μν), (4)

where fR and fT φ denote the partial derivatives of f (R, T φ)

with respect to R and T φ , respectively. As per usual notation,
�μ is the covariant derivative, � ≡ �μ�μ is the d’Alembert
operator and �μν is defined by

�μν ≡ gαβ
δT φ

αβ

δgμν
, (5)

which by use of (3) becomes

�μν = −2T φ
μν + gμνLφ − 2gαβ ∂2Lφ

∂gμν∂gαβ
. (6)

Since we are interested in constructing a form of f (R, T φ)

for which the scalar field satisfies the Klein–Gordon equa-
tion, we take the covariant derivative of Eq. (4), which results
in

fR(R, T φ)∇μRμν + Rμν∇μ fR(R, T φ)

− 1

2
gμν

(
fR(R, T φ)∇μR + fT φ (R, T φ)∇μT φ

)

+ (gμν∇μ� − ∇μ∇μ∇ν) fR(R, T φ)

= ∇μT φ
μν − fT φ (R, T φ)(∇μT φ

μν + ∇μ�μν)

− (T φ
μν + �μν)∇μ fT φ (R, T φ). (7)

The above equation can be simplified as

∇μT φ
μν = 1

1 − fT φ (R, T φ)

[
fT φ (R, T φ)∇μ�μν

+ (T φ
μν + �μν)∇μ fT φ (R, T φ)

− 1

2
gμν fT φ (R, T φ)∇μT φ

]
. (8)

The outcomes from different observational data also show a
possibility for the existence of some strange kind of fields in
the universe such as phantom fields having negative kinetic
energy as proposed by Caldwell [13]. We consider that the
universe is filled with the scalar field (quintessence or phan-
tom) minimally coupled to gravity. The energy–momentum
tensor of a scalar field φ with self-interacting scalar potential
V (φ), reads as

T φ
μν = εφ,μ φ, ν −gμν

[ε

2
g�σ φ, � φ, σ − V (φ)

]
, (9)

where ε = ± 1 correspond to quintessence and phantom
scalar fields, respectively.

We consider a spatially flat homogeneous and isotropic
Friedmann–Robertson–Walker (FRW) model of the universe
which is given by the line-element

ds2 = dt2 − a2(t)
[
dr2 + r2(dθ2 + sin2θdϑ2)

]
, (10)

where a(t) is the scale factor.
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The trace of the energy–momentum tensor (9) is defined
as T φ = gμνT φ

μν which becomes, for the above line element

T φ = −εφ̇2(t) + 4V (φ), (11)

where a dot denotes the derivative with respect to cosmic
time t .

Since the field equations of f (R, T φ) theory depend on
�μν , i.e., on the physical nature of the matter source, a num-
ber of models corresponding to different forms of f (R, T φ)

may be generated for different kinds of matter source. We
choose the matter Lagrangian of the scalar field as

Lφ = −
[

1

2
εφ̇2(t) − V (φ)

]
. (12)

Using (12) in (6), we get

�μν = −2T φ
μν − gμν

[
1

2
εφ̇2(t) − V (φ)

]
. (13)

Consequently, Eq. (8) takes the form

∇μT φ
μν = φ̇(t)

1 + fT φ (R, T φ)
[

2
(
εφ̈(t) − 2V ′(φ)

)
fT φT φ (R, T φ)

{
T φ

μν + gμν

(
1

2
εφ̇2(t) − V (φ)

)}

−gμνV
′(φ) fT φ (R, T φ)

]
. (14)

Here, a prime denotes a derivative with respect to the argu-
ment.

Equation (14) for the energy–momentum tensor (9), yields

εφ̈(t) + 3ε

(
ȧ

a

)
φ̇(t) + dV (φ)

dφ
= 2εφ̇2(t)

[
εφ̈(t) − 2V ′(φ)

]

fT φT φ (R, T φ) + V ′(φ) fT φ (R, T φ). (15)

The Klein–Gordon equation for a scalar field is given as

εφ̈(t) + 3ε

(
ȧ

a

)
φ̇(t) + dV (φ)

dφ
= 0, (16)

Now, in order to hold the Klein–Gordon equation, the r.h.s
of Eq. (15) has to vanish, i.e.,

2εφ̇2(t)
[
εφ̈(t) − 2V ′(φ)

]
fT φT φ (R, T φ)

− V ′(φ) fT φ (R, T φ) = 0. (17)

In general, it is not possible to find the explicit solution of
Eq. (17). However, a number of forms of f (R, T φ), e.g.,
f (R, T φ) = R + 2 f (T φ), f (R, T φ)= μ f1(R) + ν f2(T φ),
where f1(R) and f2(T φ) are arbitrary functions of R and T φ ,
and μ and ν are real constants, respectively and f (R, T φ) =
R f (T φ) etc., have been proposed in [52]. We choose the
most popular one, viz.,

f (R, T φ) = R + 2 f (T φ), (18)

where R is a function of t and f (T φ) is an arbitrary function
of the trace T φ of the energy–momentum tensor.

Equation (18) shows that the action is given by the same
EH action of GR plus a function of T φ . The term 2 f (T φ) in
the gravitational action modifies the gravitational interaction
between matter and curvature. Equation (17), by use of Eq.
(18), reduces to

2εφ̇2(t)
[
εφ̈(t) − 2V ′(φ)

]
fT φT φ (T φ)

− V ′(φ) fT φ (T φ) = 0. (19)

The most general solution of the above equation is given as

f (T φ) = T0

+
2T1εβφ̇2(t)

[
εφ̈(t) − 2V ′(φ)

]
exp

[
T φV ′(φ)

2εφ̇2(t)(εφ̈(t)−2V ′(φ))

]

V ′(φ)
,

(20)

where T0 and T1 are integration constants. It is not possible to
draw any physical conclusion from the above form of f (T φ)

as it cannot be written explicitly in terms of its argument.
Therefore, in what follows, we consider a flat potential model
and a massless scalar field model.

3 Flat potential model

Let us assume a constant potential V (φ) = V0 for which Eq.
(19) has the solution

f (T φ) = αT φ + β, (21)

where α and β are constants of integration. Consequently,
we have

f (R, T φ) = R + 2(αT φ + β), (22)

which is the reconstructed form of f (R, T φ) for which the
Klein–Gordon equation is satisfied for a flat potential. Fur-
ther, one can rewrite the Klein–Gordon equation for V (φ) =
V0 as

φ̈(t)

φ̇(t)
= −3

(
ȧ

a

)
. (23)

Now, we look for the field equations to study the evolution of
the universe in the framework of a form of f (R, T φ) gravity
as obtained in Eq. (22). Using Eq. (22) in Eq. (4), the field
equations become

Rμν − 1

2
Rgμν = T φ

μν − 2(T φ
μν + �μν)α + (αT φ + β)gμν.

(24)

In f (R, T φ) gravity, the cosmic acceleration can be shown
to be a result of geometry-matter coupling. The presence
of coupling terms in the gravitational action may even be
understood as the introduction of an effective fluid for which
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the usual energy conditions may not hold. Therefore, they
may even lead to the cosmological constant, quintessence or a
phantom model at late times. Houndjo and Piattella [63] have
considered the matter-geometry coupling terms in f (R, T )

gravity as exotic matter which represents quintessence and
phantom DE. Therefore, in order to compare the gravitational
field equations (24) with Einstein’s, we recast these in such a
way that the corrections coming from the coupling between
the scalar field and geometry of f (R, T φ) gravity describes
an effective source. Moreover, in the present scenario the
contribution due to the coupling of geometry and scalar field
may be taken as the “matter” component which is responsible
for accelerating the universe. Now from hereon, we call this
contribution the matter due to f (R, T φ) gravity [64,69].

Let ρ f and p f be, respectively, the energy density and
pressure of the DE coming from the coupling of the scalar
field and the geometry. Thus, the field equations (24) in the
background of the FRW metric (10) yield, the Friedmann
equations

3

(
ȧ

a

)2

= ρφ + ρ f , (25)

2ä

a
+

(
ȧ

a

)2

= −(pφ + p f ), (26)

where ρφ and pφ are the energy density and pressure of the
scalar field, respectively, and are given as

ρφ = 1

2
εφ̇2 + V (φ), (27)

pφ = 1

2
εφ̇2 − V (φ), (28)

and

ρ f = 2(ρφ + pφ)α + αT φ + β = α(εφ̇2 + 4V0) + β,

(29)

p f = − f (T φ) = α(εφ̇2 − 4V0) − β. (30)

where ρ f is computed from the 00-component of 2(Tμν +
�μν) f ′(T )+ f (T )gμν of Eq. (24) and p f is computed from
the 11-component of the same expression.

Since we have three equations, namely, the Klein–Gordon
equation (16) and, Friedmann equations (25) and (26) with
three unknowns a(t), φ(t) and V (t). But as we have already
considered the potential as flat in the reconstruction of
f (R, T φ) (to get the solution of Eq. (19)), in order to obtain
the exact solution of the remaining two physical unknowns
a(t) and φ(t), we can use only two independent equations.
We select the Klein–Gordon (23) for the flat potential and the
Friedmann equation (25). One may readily verify that the Eq.
(26) must satisfy all solutions.

From Eqs. (23) and (25), we have
(

φ̈

φ̇

)2

= Aεφ̇2 + B, (31)

where A = 3( 1
2 + α) and B = 3V0(1 + 4α) + 3β. We

observe that Eq. (31) does not have any real solution for a
phantom scalar field (ε = − 1) but for a quintessence scalar
field (ε = 1), we obtain

φ(t) = φ0 + 2√
A

tanh−1
(√

ABe
√
Bt

)
, (32)

φ(t) = φ0 − 2√
A

tanh−1

(
e
√
Bt

√
AB

)

, (33)

where φ0 is an integration constant. Another integration
constant is taken zero without any loss of generality. We
observe that Eq. (32) leads to an imaginary solution. There-
fore, we shall proceed with Eq. (33) which possesses real
solutions provided A > 0 and B > 0, i.e, α > − 1

2 and
β > −V0(1 + 4α). Using Eq. (33) in Eq. (25), we have

9

(
ȧ

a

)2

= 4AB2e2
√
B t

(
1 − ABe2

√
B t

)2 + B. (34)

On integrating, the above equation gives two solutions for
the scale factor:

a(t) = a0e
√
B

3 t
(
e2

√
B t − AB

)− 1
3
, (35)

a(t) = a0e
−

√
B

3 t
(
e2

√
B t − AB

) 1
3
, (36)

where a0 is an integration constant. The scale factor given by
Eq. (35) corresponds to a contracting model, whereas the
scale factor in Eq. (36) describes an expanding universe.
Since we are living in an expanding universe, we discard Eq.
(35) here. Thus, the evolution of the universe is governed by
Eq. (36). Real solutions exist when one has t ≥ log(AB)

2
√
B

. It is

to be noted that a(t) = a0(1 − AB)
1
3 at t = 0. This model

avoids the Big-Bang singularity provided 1 − AB > 0, i.e.,

β <
2−(8α2−6α− 1)V0

2α+1 . Otherwise an initial singularity occurs

at t = log(AB)

2
√
B

.

Figures 1 and 2 plot the scale factor a(t) versus t which
describes the evolution of the universe for singular and non-
singular models, respectively. The significance of f (R, T φ)

gravity and the potential V0 of the scalar field is shown in
these figures. One may see that larger values of α, β and V0

enhance the rate of expansion of the universe throughout its
evolution. A higher value of α allows expansion faster than a
higher value of β, whereas a large scalar field potential dom-
inates over both α and β, and it gives rise to the fastest cos-
mological expansion as shown in Fig. 1. The effect of these
parameters is quiet different for negative values of α as shown
in Fig. 2. For negative values of α, the parameter β dominates
both α and V0 and it enhances the expansion fastest. How-
ever, some small negative values of α dominate over higher
scalar potentials, but these are dominated by higher values of
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Fig. 1 a(t) versus t with a0 = 1

Fig. 2 a(t) versus t with a0 = 1

β. From Fig. 2 we note that the singularity free models are
not only possible for negative α, but also for positive ones.

The scale factor in terms of red shift is defined by

a = a0

1 + z
. (37)

The deceleration parameter is defined as q = − aä
ȧ2 which by

the use of (36) and (37) can be written in terms of z as

q(z) = 2 − 3

1 + 4γ (1 + z)6 , (38)

where γ = AB and we have chosen e−
√
B

3 t0(e2
√
Bt0 − γ )

1
3

as unity. The present value of deceleration parameter is
q(z = 0) = 2 − 3

1+4γ
. As we know, the positive values

of deceleration parameter (q > 0) describe the decelerated
phases of the universe, whereas the negative values (q < 0)
describe the accelerated phases of the universe. For a negative
deceleration parameter at z = 0, i.e., 2− 3

1+4γ
< 0, we must

have − 1
4 < γ < 1

8 which implies that − 1
4B < A < 1

8B , thus,
we have the constraint − 1+6B

12B < α < 1−6B
12B to accommodate

late time acceleration of the universe.
Since the deceleration parameter given by (38) is a single

parameter expression, so the value of γ can be determined for
the present value of deceleration parameter, consistent with
the various observational data. In Table 1 we borrow some
of the present values of deceleration parameter from vari-
ous observational outcomes and calculate the corresponding
values of γ .

Figure 3 plots q versus z for different values of γ cal-
culated in Table 1. We see that q transits from q = 2 to
some negative values q ≤ − 1. The universe enters into
present accelerated phase from a decelerated phase at a red
shift somewhere around 0.2 ≤ z ≤ 1.3. The exact numeri-
cal values of transition red shift is listed in Table 1 in each
case. In the first two cases, i.e., γ = 0.05 and γ = 0.028,
the universe enters into the accelerating phase very recently,
i.e., z = 0.2 and z = 0.3, respectively. For γ = 0.009
the transition occurs at z = 0.6 while for γ = 0.001 the
transition takes place quite a long back at z = 1.3. The red
shift where the transition of the universe from deceleration to
acceleration takes place for the first three cases fall in interval
0.2 ≤ z ≤ 0.6 which is consistent with many observational
outcomes (see Ref. [78] and references therein).
The expressions for energy density and pressure of the scalar
field become

ρφ = 2B2e2
√
B t

(
e2

√
B t − γ

)2 + V0, (39)

pφ = 2B2e2
√
B t

(
e2

√
B t − γ

)2 − V0, (40)

Table 1 The present values of q0 from some observational outcomes and the corresponding values of γ

q0 The sources of observational outcomes of q0 Transition value of red shift γ

(from deceleration to acceleration)

− 0.5 Aviles et al. [73] (JLA+Union2.1) z = 0.17 0.05

Vargas et al. [74] (SNeIa+BAO/CMB+H(z))

Mukherjee and Banerjee [75] (OHD+SNe +BAO)

− 0.7 Magana et al. [76] (51 H(z) data points) z = 0.28 0.028

− 0.9 Moresco et al. [77] (WMAP+SNIa) z = 0.56 0.009

− 0.99 – z = 1.31 0.001
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Fig. 3 q versus z with different values of γ calculated in Table 1

Fig. 4 ωφ versus z with B = 0.000012 and different values of V0
(vertical lines are grid)

respectively.
The recent results from Planck Collaboration [8], and first

Panoramic Survey Telescope & Rapid Response System [79]
give the motivation to concentrate especially on the present
value of the EoS parameter. We study the EoS parameters of
the scalar field and matter due to f (R, T φ) gravity which are
defined as ωφ = pφ

ρφ
and ω f = p f

ρ f
, respectively. We also con-

sider that the scalar field and matter due to f (R, T φ) gravity
are non-interacting and together represent an effective matter,
i.e, ρe f f = ρφ +ρ f and pef f = pφ + p f . Therefore, the EoS
parameter of effective matter can be defined as ωe f f = ρe f f

pe f f
.

The EoS parameter of the scalar field in terms of red shift
gives

ωφ(z) = −V0 − 2B2(1 + z)6

V0 + 2B2(1 + z)6 . (41)

Considering the case γ = 0.05 corresponding to the best
fit current value q0 = − 0.5 with the recent observational
data [73–75] and assuming the present age of the universe
t0 = 13.7 Gyr [80], we calculate B from the expression

e−
√
B

3 t0(e2
√
Bt0 − γ )

1
3 = 1, which gives B = 0.000012.

The behavior of ωφ versus z with B = 0.000012 and some
physically consistent values of potential is shown in Fig. 4.

We see that ωφ transits from ωφ = 1 to some negative
values ωφ ≤ − 1. It crosses the quintessence dividing line
ωφ = − 1

3 somewhere between 0.1 ≤ z ≤ 1.4 depending on
the scalar potential. Therefore, the scalar field acts as ordinary
matter at early times whereas it acts like quintessence at late
times. It means that the scalar field behaves like an ordinary
matter in the decelerated phases, and eventually becomes the
candidate for quintessence DE at late times for lower scalar
potential. However, the scalar field behaves as a cosmologi-
cal constant at late times for higher scalar potential. Thus, the
scalar field describes all kinds of matter represented by the

EoS− 1 ≤ ωφ ≤ 1. One must note that the term 2B2e2
√
B t

(
e2

√
B t−AB

)2

in (40) remains always positive, which shows that it is only
the scalar field potential which generates the negative pres-
sure to accelerate the universe at late times.

The energy density and pressure of the matter due to
f (R, T φ) gravity become

ρ f = β + 4α

⎡

⎢
⎣V0 + B2e2

√
β t

(
e2

√
B t − γ

)2

⎤

⎥
⎦ , (42)

p f = −β − 4α

⎡

⎢
⎣V0 − B2e2

√
β t

(
e2

√
B t − γ

)2

⎤

⎥
⎦ , (43)

respectively. Consequently, the EoS parameter of the matter
due to f (R, T φ) gravity in terms of red shift can be expressed
as

ω f = −β + 4α
[
v0 − B2(1 + z)6

]

β + 4α
[
v0 + B2(1 + z)6

] . (44)

If α = 0, we have ω f = − 1, which shows that the constant
β in the reconstructed form f (R, T φ) gravity is nothing but
a cosmological constant. Since we are interested to analyze
the behavior of f (R, T φ) gravity without a cosmological
constant, therefore, we consider β = 0. The behavior of ω f

with B = 0.000012 and different values of V0 is shown in
Fig. 5.

We observe that ω f transits from ω f = 1 to some neg-
ative values for lower potential, whereas it approaches to
ω f = − 1 for higher potential. Therefore, at early times, ω f

describes ordinary matter, whereas it describes quintessence
at late times for small values of potential. However, a higher
scalar potential is required for ω f to describe the behavior of
a cosmological constant at late times. Thus, the matter due to
f (R, T φ) gravity can also describe all kinds of matter given
by the EoS − 1 ≤ ω f ≤ 1.

It is to be noted that if one chooses α = 0 and β = Λ,
i.e., f (R, T φ) = R + 2Λ, the solutions of the GR model
with a cosmological constant can be recovered. Further, when
β = 0 then ω f → − 1 as t → ∞, the term 4αV0 plays the
role of a cosmological constant at late times. If α = 0 and
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Fig. 5 ω f versus z with β = 0, B = 0.000012 and different values of
V0 (vertical lines are grid)

β = 0, then ρ f = 0 = p f which shows that the matter due
to f (R, T φ) gravity vanishes.

Now it is of worthwhile to study the nature of effective
matter. The effective energy density and pressure are obtained
as

ρe f f = 1

3

⎡

⎢
⎣B + AB2e2

√
B t

(
e2

√
B t − γ

)2

⎤

⎥
⎦ , (45)

pef f = 1

3

⎡

⎢
⎣− B + AB2e2

√
B t

(
e2

√
B t − γ

)2

⎤

⎥
⎦ . (46)

Note that instead of ω f , if we consider the effective EoS
parameter ωe f f , then

we f f = pφ + p f

ρφ + ρ f
= −1 − 4γ (1 + z)6

1 + 4γ (1 + z)6 . (47)

In Fig. 6, the behavior of ωe f f is shown for values of γ cal-
culated in Table 1. The effective matter describes transitions
within the EoS − 1 ≤ ωe f f ≤ 1. We see that ωe f f starts
from ωe f f = 1, and after crossing the quintessence div-
ing line ωe f f = − 1

3 , it finally attains some negative values
nearby ωe f f = − 1 at z = 0.

Fig. 6 ωe f f versus z with different values γ calculated in Table 1
(vertical lines are grid)

One may note that when the transition from decelerating
to accelerating universe takes place, then the effective matter
also exhibits a transition from ordinary matter to quintessence
somewhere between 0.2 ≤ z ≤ 1.3, and finally approaches
towards ωe f f ≈ − 1 at z = 0. Thus, the transiting behavior
of effective matter from baryonic to quintessence causes the
transition of the universe from decelerating to accelerating.

A comparison of present values of effective EoS param-
eter corresponding to different values of γ with some
observational outcomes is presented in Table 2. It is to
be noted that the present values ωe f f = −0.67γ=0.05,
ωe f f = −0.80γ=0.028, and ωe f f = −0.931γ=0.009, are con-
sistent with the various observational outcomes mentioned
in Table 2. The value ωe f f = − 0.992γ=0.001 is quite near
to a cosmological constant which is consistent with many
observational data [82–86]. The viability of the model proves
from the fact that we borrow the current values of deceler-
ation from some set of observational outcomes mentioned
in Table 1 but the effective EoS parameter for those values
comes out to be consistent with the other observational data
mentioned in Table 2.

Table 2 A comparison of effective EoS parameter with some observational outcomes

γ ωe f f (z = 0) Moresco et al. [77] Mukherjee and Banerjee [75] Spergel et al. [81]

0.05 − 0.67 – – –

0.028 − 0.80 ω0 = − 0.90 ± 0.18 – ω0 = − 0.919 ± 0.080

(WMAP7yr+OHD) (WMAP+SN Gold)

0.009 − 0.931 – – ω0 = − 0.926 ± 0.054

(CMB+LSS+SN)

0.001 −0.992 ω0 = − 0.997 ± 0.060 ω0 = − 0.98 ω0 = − 0.967 ± 0.072

(WMAP7yr+BAO+SNe) (H(z)+SNe Ia) (WMAP+SNLS)
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The dimensionless density parameter Ωφ = ρφ

3H2 of the scalar
field gives

Ωφ =
3

[
2B2e2

√
Bt

(
e2

√
Bt−AB

)2 + V0

]

B
(

1 + 2AB
e2

√
Bt−AB

)2 . (48)

The density parameter of the matter due to f (R, T φ) gravity
Ω f = ρ f

3H2 yields

Ω f =
3

[

4α

(
B2e2

√
Bt

(
e2

√
Bt−AB

)2 + V0

)

+ β

]

B
(

1 + 2AB
e2

√
Bt−AB

)2 . (49)

Thus, in the present model, we have Ωe f f = Ωφ + Ω f = 1,
which not only ensures that the model is effectively flat but
also confirms the validity of the solutions.

4 Massless scalar field model

The massless scalar field model corresponds to zero poten-
tial, i.e., V0 = 0. One may observe that Eq. (19) gives the
same form of f (R, T φ) for a massless scalar field as we
have obtained for a non-vanishing scalar potential in Eq.
(22). Therefore, we can express all physical quantities just
by substituting B = 3β and V0 = 0 in the solutions of the
flat potential model. However, we shall rewrite all physical
quantities in terms of α and β by dropping the constants A
and B which were taken in the flat potential model for the
sake of convenience.

The scale factor (36) can be written as

a(t) = a0e
−

√
β
3 t

[
e2

√
3β t − 9β

(
1

2
+ α

)] 1
3

. (50)

For real solutions one must have β > 0 and t ≥
log

[
3β

(
α+ 1

2

)]

2
√

3β
. An initial singularity occurs at t =

log
[
3β

(
α+ 1

2

)]

2
√

3β
. However, since a(t) = a0

[
1 − 9β

( 1
2 + α

)] 1
3

at t = 0, the massless scalar field model also avoids the
Big-Bang singularity provided 1 − 3β

( 1
2 + α

)
> 0, i.e.,

β < 2
1+2α

. Here, we would like to differentiate the present
model with the model discussed by Harko et al. [52] as a
particular example. In [52], the authors considered an expo-
nential form of F(R, φ) for a massless scalar field, which
leads to a power-law solution. Moreover, the authors have not
incorporated the covariant divergence of the energy momen-
tum tensor. As we have mentioned earlier, the covariant
derivative of the energy momentum tensor does not van-
ish in f (R, T ) gravity in general. Consequently, the mat-
ter in f (R, T ) gravity does not satisfy the standard conti-

Fig. 7 a(t) versus t with a0 = 1 and different values of α and β

nuity equation. In the present study we have reconstructed
a particular form of f (R, T φ) considered in Eq. (18), tak-
ing into account that the covariant derivative of the energy
momentum tensor of the scalar field is equal to zero. For
the reconstructed form of f (R, T φ) given in Eq. (22), the
Klein–Gordon equation holds as well. One may also observe
that the evolution of the scale factor given by Eq. (50) is dif-
ferent from the power-law expansion which was obtained in
[52].

Figure 7 plots a(t) versus t for a massless scalar field
which shows singular and non-singular models for different
values of α and β. Let us explain that how the massless scalar
field model is different from the model with non-zero scalar
potential. We observe that the parameter α of f (R, T φ) grav-
ity affects only the early evolution of the massless scalar field
model, whereas the behavior of the parameter β is similar to
the non-vanishing scalar potential model. In fact, α decides
the origin of the universe on the time scale. Therefore, suit-
able choices of α under the constraint β < 2

1+2α
give rise

to singularity free models. However, the late time evolution
asymptotically coincides for all values of α if β is fixed. On
the other hand, the parameter β affects the entire cosmologi-
cal evolution. A large value of β enhances the expansion rate
of the universe, whereas a small value slows it down. The
significance of f (R, T φ) gravity of the massless scalar field
model in the context of decelerating or accelerating universe
can be understood in better a way by studying the decelera-
tion parameter.

The deceleration parameter for the massless scalar field
in terms of red shift reads as

q(z) = 2 − 3

1 + 36λ(1 + z)6 , (51)

where λ = β
(
α + 1

2

)
and e−

√
β
3 t0(e2

√
3βt0 − 9λ)

1
3 is taken

to be unity. For a negative value of deceleration parameter
at present, i.e., q(z = 0) = 2 − 3

1+36λ
< 0, we must have
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Table 3 The present values of q0 from some observational outcomes and the corresponding values of λ

q0 The sources of observational outcomes of q0 Transition red shift λ

(from deceleration to acceleration)

− 0.5 Aviles et al. [73] (JLA+Union2.1) z = 0.15 0.006

Vargas et al. [74] (SNeIa+BAO/CMB+H(z))

Mukherjee and Banerjee [75] (OHD+SNe +BAO)

− 0.7 Magana et al. [76] (51 H(z) data points) z = 0.29 0.003

− 0.9 Moresco et al. [77] (WMAP+SNIa) z = 0.55 0.001

− 0.99 – z = 1.27 0.0001

Fig. 8 q versus z for different values of λ calculated in Table 3

− 1
36 ≤ λ < 1

72 which implies that −36β−1
18β

< α <
1−72β

36β
,

this is the constraint on α for attaining an accelerating uni-
verse at present time. It is to be noted that q = − 1 as
α → − 1

2 or β = 0, therefore, the massless scalar field model
can also exhibit an ever accelerating universe in f (R, T φ)

gravity.
The deceleration parameter is a single parameter expres-

sion in λ. The values of λ are calculated in Table 3 using
some present values of deceleration parameter consistent
with observations.

Figure 8 plotsq versus z for different values ofλ calculated
in Table 3. The deceleration parameter starts from a positive
value, and evolves up to some negative values q < − 1.
Hence, the massless scalar field model also exhibits transi-
tions from decelerating to accelerating universe at a red shift
somewhere between 0.2 ≤ z ≤ 1.3. The exact values of
red shift where the transition from deceleration to acceler-
ation takes place in mentioned in Table 3. We note that the
transition red shift for the first three cases occur between
0.2 ≤ z ≤ 0.6, which is consistent with many observational
outcomes (see Ref. [78] and references therein). Thus, the
massless scalar field model is self sufficient to describe the
cosmological evolution without encountering an initial sin-
gularity. In what follows, we shall see that it is the parameter
β of f (R, T φ) gravity which plays the role of the scalar field
potential in the massless scalar field model. Moreover, it is

only the parameter β which provides negative pressure for
driving acceleration of the universe at late times.

The energy density and pressure of the massless scalar
field are equal, having the expression

ρφ = 18β2e2
√

3β t

[
e2

√
3β t − 9β( 1

2 + α)
]2 = pφ. (52)

The EoS parameter for the massless scalar field has the con-
stant value ωφ = 1. Therefore, the massless scalar field acts
similarly to stiff matter.

The energy density and pressure of the matter due to
f (R, T φ) gravity become

ρ f = β + 36αβ2e2
√

3β t

[
e2

√
3β t − 9β( 1

2 + α)
]2 , (53)

p f = −β + 36αβ2e2
√

3β t

[
e2

√
3β t − 9β( 1

2 + α)
]2 . (54)

Consequently, the EoS parameter of the matter due to
f (R, T φ) gravity in terms of red shift can be read as

ω f = −1 − 36αβ(1 + z)6

1 + 36αβ(1 + z)6 . (55)

Now for the best fit value λ = 0.02 with the observa-
tional data [73–75], we calculate β from the expression

e−
√

β
3 t0(e2

√
3βt0 − 9λ)

1
3 = 1, which gives β = 4.52 × 10−6.

The behavior of ω f with β = 4.52×10−6 and different phys-
ically consistent values of α is shown in Fig. 9. We see that
ω f exhibits transition from ordinary matter to quintessence
like behavior at late times for higher values of α while it
becomes the cosmological constant for small values of α.

Since ω f = − 1 for α = 0, the matter due to f (R, T φ)

gravity behaves like a cosmological constant. This follows
from the fact that if α = 0 and β = Λ then f (R, T φ) =
R + 2Λ, i.e., f (R, T φ) gravity becomes equivalent to the
ΛCDM model of GR. Hence, β can be understood as a cos-
mological constant in f (R, T φ) gravity. However, if β = 0
then ρ f = 0 = p f , i.e., the matter due to f (R, T φ) grav-
ity vanishes even when α �= 0. Here, one must understand
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Fig. 9 ω f versus z with β = 4.52 × 10−6 and different values of α

(vertical lines are grid)

the significance of the parameter β in f (R, T φ) gravity. The
f (R, T φ) gravity contributes nothing to the massless scalar
field model if β = 0. Moreover, from Eqs. (52) and (54), we
have p f = −β + 2αpφ , and from Eq. (52) it is also clear
that pφ ≥ 0, which implies that 2αpφ ≥ 0. Therefore, it is
only the parameter β which provides negative pressure for
accelerating the universe at late times. Hence, we can say that
the parameter β of f (R, T φ) gravity mimics the scalar field
potential in the massless scalar field model which becomes
responsible for the acceleration of the universe at late times.

The effective EoS parameter as a function of z takes the
form

ωe f f = −1 − 36λ(1 + z)6

1 + 36λ(1 + z)6 . (56)

The behavior of ωe f f is shown in Fig. 10 for observationally
consistent values of λ calculated in Table 3. We see that ωe f f

shows a transition from ωe f f = 1 to some negative values
ωe f f ≤ − 1. If λ → 0, i.e., α → − 1

2 or β → 0 then
ωe f f → − 1.

Thus, the effective matter describes transition from stiff
matter to quintessence (λ = 0.006, λ = 0.003 and λ =
0.001) or cosmological constant (λ = 0.0001) at late times.

Fig. 10 ωe f f versus z with different values of λ calculated in Table 3
(vertical lines are grid)

The transiting behavior of effective matter causes the transi-
tion of the universe from decelerating to accelerating in these
cases.

A comparison of present values of effective EoS corre-
sponding to different values of γ with some observational
outcomes is presented in Table 4. It is to be noted that the
present values ωe f f = −0.65γ=0.006, ωe f f = −0.81γ=0.003,
and ωe f f = −0.93γ=0.001, are consistent with the various
observational outcomes mentioned in Table 4. The value
ωe f f = −0.993γ=0.0001 is very near to a cosmological con-
stant which is consistent with many recent observational data
[82–86].

The density parameter of the scalar field is

Ωφ = 18βe2
√

3β t

[
9β( 1

2 + α) + e2
√

3β t
]2 . (57)

Similarly, the density parameter of the matter due to
f (R, T φ) gravity is

Ω f = 1 − 18βe2
√

3β t

[
9β( 1

2 + α) + e2
√

3β t
]2 . (58)

Table 4 A comparison of effective EoS parameter with some observational outcomes

λ ωe f f (z = 0) Moresco et al. [77] Mukherjee and Banerjee [75] Spergel et al. [81]

0.006 − 0.65 ω0 = − 0.65 ± 0.61 – –

(WMAP7yr)

0.003 − 0.81 – ω0 = − 0.74 –

(OHD+SNe+BAO)

0.001 − 0.93 ω0 = − 0.90 ± 0.18 – –

(WMAP7yr+OHD)

0.0001 − 0.993 ω0 = − 0.997 ± 0.060 ω0 = − 0.98 ω0 = − 0.967 ± 0.072

(WMAP7yr+BAO+SNe) (H(z)+SNe Ia) (WMAP+SNLS)
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From (56) and (57), we have Ω f +Ωφ = 1. Hence, the model
is effectively flat. We have also checked that the obtained
solutions for this model and the flat potential model satisfy the
equation (26) which we have not used to obtain the solutions.

5 Conclusion

In this paper, we have studied modified f (R, T φ) gravity
with a minimally coupled scalar field with self interacting
potential in a flat FRW model. We have reconstructed a partic-
ular form f (R, T φ) = R + 2 f (T φ) by requiring the Klein–
Gordon equation to be satisfied for the scalar field. The solu-
tions are consistent with a quintessence model for the scalar
field. The reconstructed form is f (R, T φ) = R+2(αT φ+β)

which leads to the field equations equivalent to the Ein-
stein field equations with an effective energy momentum
tensor containing the sum of a scalar field, and matter due
to f (R, T φ) gravity. We have investigated the behavior of
the reconstructed form of f (R, T φ) gravity in two models,
namely, a flat potential (V0) model, and a massless scalar
field model. Each model has been intensely examined via
the deceleration and EoS parameters. Both models may avoid
the big-bang singularity under some constraints. Both mod-
els are found consistent with many observational outcomes.
The findings of both models are summarized in the following
points:

– In the first model where we have considered a flat poten-
tial, the scale factors with positive and negative values of
α show that f (R, T φ) gravity and the scalar field poten-
tial both enhance the expansion rate of the universe.

– The deceleration parameter shows a transition from
decelerating to accelerating universe. The transition from
deceleration to acceleration occurs between 0.2 ≤ z ≤
0.6 with the best fit present values of deceleration param-
eter.

– The scalar field and matter due to f (R, T φ) gravity
behave as ordinary matter at early times and eventually
start acting as DE (quintessence) or a cosmological con-
stant at late times. The matter due to f (R, T φ)gravity can
describe all matter governed by an EoS − 1 ≤ ω f ≤ 1,
i.e, quintessence, baryonic matter, stiff matter, DE and a
cosmological constant.

– The constant β in reconstructed form of f (R, T ) gravity
plays the role of a cosmological constant. If β = 0 then
the term 4αV0 serves the role of a cosmological constant
at late times.

– The transition of the effective matter from ordinary matter
to quintessence causes the transition of the universe from
decelerating to accelerating.

– In the massless scalar field model, the parameter α affects
only the early evolution of the universe, whereas the late

time evolution asymptotically coincides if β is fixed. The
parameter β affects the whole cosmological evolution
and a large value of β enhances the expansion rate of the
universe, whereas a small value slows down the expan-
sion. Singularity free models are possible under the con-
straint β < 2

2α+1 .
– The massless scalar field model also shows a transition

from a decelerating to an accelerating universe.
– If β = 0 then ρ f = 0 = p f , i.e., the matter due to

f (R, T φ) vanishes. The parameter β mimics a scalar
field potential in the massless scalar field model which
accelerates the universe at late times.

– The effective matter in the massless scalar field model
also describes transition from ordinary matter to quint-
essence which causes the transition from decelerated to
accelerated universe.

As final concluding remarks, we can say that f (R, T φ) grav-
ity with conservation of energy momentum tensor is capa-
ble of describing a suitable cosmological model in which a
transition from a decelerated to an accelerated phase occurs.
Hence, the f (R, T φ) gravity plays an essential role in the
evolution of the universe.
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