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Abstract The purpose of this paper is to obtain exact solu-
tions for charged anisotropic spherically symmetric matter
configuration. For this purpose, we consider known solution
for isotropic spherical system in the presence of electromag-
netic field and extend it to two types of anisotropic charged
solutions through gravitational decoupling approach. We
examine physical characteristics of the resulting models. It
is found that only first solution is physically acceptable as it
meets all the energy bounds as well as stability criterion. We
conclude that stability of the first model is enhanced with the
increase of charge.

1 Introduction

General relativity is one of the cornerstones that provides
basic understanding of astrophysical phenomena as well
as the cosmos. The structure of self-gravitating systems
is attained by solving the famous Einstein field equations.
Schwarzschild was the first who determined vacuum solution
of these equations describing the geometry of region exterior
to a prefect fluid sphere in hydrostatic equilibrium. Tolman
[1] found several solutions by solving the field equations for
static sphere of perfect fluid with cosmological constant and
discussed the matching of resulting interior solutions with
exterior one. After that, many exact solutions for isotropic
and anisotropic static as well as non-static configurations
have been obtained [2].

The formulation of interior solutions for self-gravitating
systems is a difficult task due to the existence of non-linearity
in the field equations. In this regard, the minimal gravita-
tional decoupling (MGD) approach has been very useful in
finding exact and physically feasible solutions for spherically
symmetric stellar distributions. This strategy was genuinely
proposed by Ovalle [3] to find an exact solution for compact
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stars in the context of the braneworld. In this framework,
Ovalle and Linares [4] developed an exact interior solution to
the field equations for isotropic spherically symmetric com-
pact distribution. They concluded that this solution represents
braneworld version of the Tolman IV solution [1]. Casadio et
al. [5] used MGD concept by modifying the temporal as well
as radial metric function and found a new exterior solution
for spherical self-gravitating system which presents a naked
singularity at the Schwarzschild radius. Ovalle [6] decoupled
gravitational sources to construct anisotropic solutions from
perfect fluid solutions with spherical symmetry. Ovalle et al.
[7] extended isotropic interior solution [1] by means of MGD
for static stellar models to include the effects of anisotropy.

In astrophysical context, pressure anisotropy (generated
by various physical phenomena) plays a key role in the
evolution of stellar bodies. Mak and his collaborators [8,9]
obtained exact solutions by taking a particular form of
anisotropy (difference of radial and tangential pressures) and
found that spherical star supports positive and finite density
as well as pressures. They also discussed that the obtained
radius and mass can describe realistic astrophysical objects.
Gleiser and Dev [10] explored the existence of anisotropic
self-gravitating sphere and found that anisotropy can support
stars with compactness 2M/R = 8/9 (M and R represent
mass and radius, respectively). They also concluded that sta-
ble configurations exist for smaller values of the adiabatic
index as compared to isotropic fluid. Sharma and Maharaj
[11] obtained some exact solutions for spherically symmet-
ric anisotropic matter distribution satisfying linear equation
of state (EoS) to describe compact stars. We investigated the
equilibrium structure of static spherical as well as cylindri-
cal polytropic configurations with anisotropic source [12].
Azam et al. [13] generalized these structures for generalized
polytropic EoS.

The inclusion of electromagnetic field in stellar models is
very fascinating in describing their evolution. Xingxiang [14]
discussed the characteristics of an exact solution for static
spherical symmetry with charged perfect fluid distribution.
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Di Prisco et al. [15] investigated the impact of electromag-
netic field on the dynamics of imperfect collapsing sphere and
discussed a relationship between the Weyl tensor and inho-
mogeneity of energy density. Sharif and Bhatti [16] analyzed
the behavior of physical parameters and energy conditions for
charged anisotropic spherically symmetric solutions. Takisa
and Maharaj [17] formulated exact solutions of the Einstein-
Maxwell field equations with polytropic EoS which can be
used to model charged anisotropic compact objects. Singh
and Pant [18] presented charged anisotropic spherical solu-
tion and found that the developed model is stable and well-
behaved for a wide range of anisotropy as well as charge
parameter. They also obtained that charged anisotropic neu-
tron and quark stars with large masses can be modeled from
the resulting solution. Khan et al. [19] studied the effects of
charge on anisotropic spherical collapse with cosmological
constant and concluded that electromagnetic field enhances
the rate of destruction.

The significance of relativistic models is based on their
stable structure. Herrera [20] proposed the notion of crack-
ing as well as overturning (when the total radial forces in a
system reverse their signs from positive to negative, crack-
ing occurs while the opposite situation experiences overturn-
ing) to investigate the behavior of isotropic and anisotropic
configurations just after the equilibrium state is perturbed.
He concluded that perfect fluid distribution remains stable
while cracking appears in anisotropic case. Abreu et al. [21]
broadened the idea of cracking by means of sound speed for
anisotropic spherical configuration and concluded that the
system is unstable for v2

st > v2
sr (v2

sr and v2
st indicate radial

and tangential sound speeds, respectively). We explored the
stability of charged anisotropic polytropes and found that
compact object remains stable for a reasonable choice of per-
turbed polytropic index [22]. Mardan and Azam [23] exam-
ined the stability of charge anisotropic cylindrical system
admitting generalized polytropic EoS and concluded that the
constructed model is unstable for several choices of poly-
tropic parameters.

In this paper, we explore exact charged anisotropic spher-
ical solutions using a known charged isotropic solution with
MGD approach. The plan of the paper is as follows. In Sect.
2, we deal with the basic formalism of MGD and formu-
late the corresponding field equations. The matching of inte-
rior spacetime with the exterior one is also investigated. In
Sect. 3, we obtain two types of exact solutions for anisotropic
spherical source in the presence of electromagnetic field and
investigate physical characteristics of all solutions. Finally,
we conclude our results in the last section.

2 Fluid configuration and MGD approach

We consider static spherically symmetric spacetime describ-
ing the interior geometry as

ds2− = −eη−(r)dt2+eχ−(r)dr2+r2
(
dθ2 + sin2 θdφ2

)
. (1)

The energy-momentum tensor for internal constitution is
given as

T (tot)
αβ = T (m)

αβ + α�αβ, (2)

where

T (m)
αβ = (ρ + P)VαVβ + Pgαβ

+ 1

4π

(
Fα

μFβμ − 1

4
FμνFμνgαβ

)
, (3)

which represents charged perfect fluid distribution with ρ, P
and Vα indicating the density, pressure and four velocity,
respectively. The term �αβ is an additional source coupled
to gravity through constant α which may contain some new
fields (scalar, vector or tensor) and generate anisotropies in
self-gravitating bodies. In Eq. (3), Fαβ = φβ,α − φα,β is the
Maxwell field tensor and φα is four potential. The Maxwell
field tensor satisfies the following field equations

Fαβ

;β = μ0 J
α, F[αβ;γ ] = 0,

here, μ0 is the magnetic permeability and Jα is the four
current. In comoving coordinates, we have

φα = φδ0
α, Jα = ζVα, V α = e−η/2δα

0 ,

where ζ = ζ(r) and φ = φ(r) represent scalar potential and
charge density, respectively. The Maxwell field equation for
our spacetime yields

φ′′ +
(

2

r
− η′

2
− χ ′

2

)
φ′ = 4πζe

η
2 +χ ,

where prime denotes differentiation with respect to r . Inte-
gration of the above equation yields

φ′ = e
η+χ

2 q(r)

r2 .

Here q(r) = 4π
∫ r

0 ζe
χ
2 r2dr indicates total charge inside

the sphere.
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The Einstein-Maxwell field equations corresponding to
Eqs. (1) and (2) turn out to be

8π

(
ρ + q2

8πr4 − α�0
0

)

= 1

r2 + e−χ

(
χ ′

r
− 1

r2

)
, (4)

8π

(
P − q2

8πr4 + α�1
1

)

= − 1

r2 + e−χ

(
η′

r
+ 1

r2

)
, (5)

8π

(
P + q2

8πr4 + α�2
2

)

= e−χ

(
η′′

2
+ η′2

4
− η′χ ′

4
+ η′

2r
− χ ′

2r

)
. (6)

The equilibrium structure of stellar object is described by
hydrostatic equilibrium equation obtained through the con-
servation of energy-momentum tensor (T (tot)α

β;α = 0) as

dP

dr
+ α

d�1
1

dr
+ η′

2
(ρ + P) + αη′

2

(
�1

1 − �0
0

)

+ 2α

r

(
�1

1 − �2
2

)
− qq ′

4πr4 = 0. (7)

We see that Eqs. (4–7) form a system of four non-linear differ-
ential equations consisting of eight unknowns (η, χ, ρ, P,

q, �0
0, �1

1, �2
2). In order to find these unknowns, we fol-

low a systematic scheme developed by Ovalle [7]. From Eqs.
(4–6), we identify the matter components as

ρ̄ = ρ − α�0
0, P̄r = P + α�1

1,

P̄t = P + α�2
2, (8)

where ρ̄, P̄r , P̄t represent effective energy density, radial/
tangential pressure, respectively. This shows that the source
�αβ can produce anisotropy �̄ = P̄t − P̄r = α(�2

2 − �1
1)

in the interior of stellar distribution.
Now, we consider the MGD approach to solve the system

of Eqs. (4–6). The basic ingredient of MGD is to consider a
perfect fluid solution (ξ, λ, ρ, P, q) for the line-element
given as

ds2 = −eξ(r)dt2 + dr2

λ(r)
+ r2

(
dθ2 + sin2 θdφ2

)
,

where λ = 1− 2m
r + q2

r2 withm representing the Misner-Sharp
mass of fluid configuration. In order to incorporate the effects
of source �αβ in charged isotropic model, we consider the
geometric deformation as [7]

ξ → η = ξ, λ → e−χ = λ + αg∗, (9)

where g∗ is the deformation endured by radial metric func-
tion. Making use of the above radial coefficient, the field
equations can be divided into two sets. The first set is given
as

8πρ + q2

r4 = 1

r2 + e−χ

(
χ ′

r
− 1

r2

)
, (10)

8π P − q2

r4 = − 1

r2 + e−χ

(
η′

r
+ 1

r2

)
, (11)

8π P + q2

r4 = e−χ

(
η′′

2
+ η′2

4
− η′χ ′

4
+ η′

2r
− χ ′

2r

)
, (12)

while the second one is

α�0
0 = g∗′

r
+ g∗

r2 , (13)

α�1
1 = g∗

(
η′

r
+ 1

r2

)
, (14)

α�2
2 = g∗

(
η′′

2
+ η′2

4
− η′χ ′

4
+ η′

2r
− χ ′

2r

)
. (15)

The above set of equations looks like the field equations for
anisotropic spherical source (ρ̄ = �∗0

0 = �0
0 − 1

8πr2 , P̄r =
�∗1

1 = �1
1 − 1

8πr2 , P̄t = �∗2
2 = �2

2) with the metric

ds2 = −eηdt2 + dr2

g∗ + r2
(
dθ2 + sin2 θdφ2

)
.

The matching of interior and exterior regions is obtained by
junction conditions which yield a smooth matching of two
regions and play a vital role in the study of evolution of
relativistic objects. If we consider the general outer metric as

ds2+ = −eη+dt2 + e−χ+dr2 + r2
(
dθ2 + sin2 θdφ2

)
,

then the first fundamental form ([ds2]� = 0, � represents
the hypersurface) of junction conditions yield

η−(R) = η+(R), 1 − 2M0

R
+ Q2

0

R2

+ αg∗(R) = e−χ+(R), (16)

where λ = e−χ − αg∗ has been used. Here, M0 and Q0

indicate total mass and charge within the sphere, respectively.
The second fundamental form ([Tαβ Sβ ]� = 0, Sβ is the unit
four-vector in radial direction) [7] gives

P(R) − Q2
0

8πR4 + α(�1
1(R))− = α(�1

1(R))+,

which leads to

P(R) − Q2
0

8πR4 + αg∗(R)

8π

(
1

R2 + η′(R)

R

)

= αh∗(R)

8πR2

(
1 + 2MR − 2Q2

(
R2 − 2MR + Q2

)
)

, (17)
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where h∗ describes deformation in the radial metric function
of Riessner-Nordström (RN) spacetime whileM andQ indi-
cate mass and charge in the exterior region. The necessary
and sufficient conditions for the smooth matching of interior
MGD metric with spherically symmetric exterior described
by deformed RN line-element (which can be filled with fields
contained in source �αβ ) are given by Eqs. (16) and (17). If
the exterior geometry is considered as the standard RN met-
ric, Eq. (17) yields

P̄(R) − Q2
0

8πR4 ≡ P(R) − Q2
0

8πR4

+αg∗(R)

8π

(
1

R2 + η′(R)

R

)
= 0. (18)

In the following, we consider a known solution of isotropic
spherical system in the presence of charge to continue our
systematic analysis.

3 Anisotropic solutions

A crucial ingredient in obtaining the anisotropic solutions
using MGD approach is to consider solution of the field equa-
tions for spherically symmetric charged perfect fluid con-
figuration. For this purpose, we consider Krori and Barua’s
solution [24] given as

eη = eBr
2+C , (19)

eχ = λ−1 = eAr
2
, (20)

ρ = e−Ar2

16π

(
5A − B(B − A)r2 − 1

r2

)
+ 1

16πr2 , (21)

P = e−Ar2

16π

(
4B − A + B(B − A)r2 + 1

r2

)
− 1

16πr2 ,

(22)

q2 = e−Ar2

2r4

(
B(B − A)r2 − A − 1

r2

)
+ 1

2r6 , (23)

where A, B and C are constants that can be determined
from matching conditions. The rationale behind the choice
of the above solution lies in a fact that it is singularity-free
and satisfies physical conditions inside the sphere. For RN
spacetime as an exterior geometry, the matching conditions
yield

A = − ln(1 − 2M0
R + Q2

0
R2 )

R2 , (24a)

B = 2M0R − Q2
0

2R2(R2 + Q2
0 − 2M0R)

, (24b)

C = 1

2

{
1 + 2 ln

(
1 − 2M0

R
+ Q2

0

R2

)

− R2

R2 − 2M0R + Q2
0

}
, (25)

with the compactness parameter M0
R < 4

9 . The above equa-
tions ensure continuity of the interior solution (19–23) with
the exterior region at the boundary and will definitely be
changed after adding the source �αβ in the interior of sphere.

Now we move towards anisotropic solutions and turn α on
in the interior. The temporal and radial metric coefficients are
given by Eqs. (19) and (9), respectively, while the deforma-
tion g∗ is related to �αβ through Eqs. (13–15) whose solution
will be determined by specifying an additional constraint. In
order to achieve this goal, we impose some conditions and
find two exact solutions.

3.1 Solution I

Here, we apply a constraint on �1
1 and find solution of the

field equations for g∗ and �αβ . From Eq. (18), we see that RN
exterior solution is compatible with isotropic interior matter

as long as P(R) − Q2
0

8πR4 ∼ α(�1
1(R))−. Thus the simplest

choice is to take

�1
1 = P − q2

8πr4 ⇒ g∗ = λ − 1

1 + rη′ , (26)

where Eqs. (11) and (14) have been used. The above equation
leads to the radial metric function as

e−χ = (1 + α)λ − α

1 + 2r2B
. (27)

The metric functions of interior spacetime in Eqs. (19)
and (27) represent the Krori and Barua solution minimally
deformed by the generic anisotropic source �αβ . It is worth-
while to mention here that α → 0 leads to the standard
isotropic charged spherical solution (19–23).

The continuity of first fundamental form of matching con-
ditions yields

ln

(
1 − 2M

R
+ Q2

R2

)
= Br2 + C, (28)

1 − 2M
R

+ Q2

R2 = (1 + α)λ − α

1 + 2R2B
, (29)

while the continuity of second fundamental form (P(R) −
Q2

0
8πR4 + α(�1

1(R))− = 0) leads to

P(R) − Q2
0

8πR4 = 0 ⇒ A = ln(2BR2 + 1)

R2 , (30)
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where the constraint in Eq. (26) has been used. Eliminating
2M
R from Eq. (29), we find

2M
R

= 2M0

R
+ Q2 − Q2

0

R2

−α

(
1 − 2M0

R
+ Q2

0

R2

)
+ α

1 + 2R2B
. (31)

Inserting the above equation in (28), we obtain

BR2 + C = ln

(
1 − 2M0

R
+ Q2

0

R2

+ α

(
1 − 2M0

R
+ Q2

0

R2

)
− α

1 + 2R2B

)
, (32)

which yields the constantC in terms of B. Here, the necessary
and sufficient conditions for the smooth matching of interior
and exterior metrics are given by Eqs. (30–32). In this case,
the anisotropic solution, i.e., the expressions of ρ̄, P̄r , P̄t , �̄

and q are obtained as

ρ̄ = 1 + 4B2r4 + 4Br2(1 − α) + 2α

16π
(
r + 2Br3

)2

+ e−Ar2

16πr2

(
Ar2

(
5 + Br2 + 4α

)

− 1 − B2r4 − 2α
)

,

P̄r = e−Ar2 {
1 + 4Br2(1 + α) + B2r4 − A

(
r2 + Br4

) + 2α
} − 1 − 2α

16πr2 ,

P̄t =
e−Ar2

{(
1 + Ar2 − Br2

) (
1 + 2Br2

)2
}

− 1 − 3Br2 + 2B2r4

8πr2
(
1 + 2Br2

)

+ e−Ar2 {
1 + 4Br2(1 + α) + B2r4 − A

(
r2 + Br4

) + 2α
} − 1 − 2α

16πr2 ,

�̄ =
e−Ar2

((
1 + Ar2 − Br2

) (
1 + 2Br2

)2
)

+ (−1 − 3Br2 + 2B2r4
)

8πr2
(
1 + 2Br2

) ,

q = 1√
2

[
e−Ar2

r2
{(

1 + Br2
) (

1 + Br2 + 2α
)

−Ar2
(

3 + Br2 + 2α
)

+ eAr
2
(

1 − 2Ar2
(

2 + Br2
)

(1 + α)
)}]1/2

.

In order to examine physical characteristics of the above
solution, we plot this model. For graphical analysis, we fix
the constant A as given in Eq. (30) while B is a free parameter
and will be taken as mentioned in the isotropic case (Eq. 24b).
The compact stars demand that the behavior of energy density
and radial pressure should be positive, finite and maximum in
the interior of compact stars. The plot of ρ̄ for two values of
Q0 is shown in the left plot (first row of Fig. 1). We observe
that density is maximum in the interior and monotonically
decreases with increasing r . It is found that density attains
larger values for Q0 = 1 while Q0 = 3 yields smaller ρ̄

leading to the fact that increase in charge makes the sphere
less dense. Moreover, we find that ρ̄ remains constant with
increasing α.

The behavior of P̄r is similar to that of density for increas-
ing Q0, r and α (right plot, first row of Fig. 1). The plot of P̄t
(left plot, second row of Fig. 1) shows that tangential pres-
sure decreases with increasing r while corresponding to α, it
increases. It is also found that the generic anisotropy remains
same with increasing coupling constant α while it acquires
smaller values for larger Q0 (right plot, second row of Fig.
1).

In order to check physical viability of the resulting solu-
tions, we investigate the behavior of energy conditions which
are the constraints imposed on the energy-momentum ten-
sor and describe physically realistic matter distribution. For
charged anisotropic fluid configuration, these conditions turn
out to be

ρ̄ + q2

8πr4 ≥ 0, ρ̄ + P̄r ≥ 0,

ρ̄ + P̄t ≥ 0, ρ̄ − P̄r + q2

4πr4 ≥ 0,

ρ̄ − P̄t ≥ 0, ρ̄ + P̄r + 2 P̄t + q2

4πr4 ≥ 0.

These are shown in Fig. 2 which indicate that all the con-
ditions are satisfied confirming the physically viability of
the developed anisotropic solution. The stability is analyzed
through sound speed condition, i.e., 0 < |v2

st − v2
sr | ≤ 1.

The plots of stability condition for Q0 = 1, 3 are shown in
Fig. 3. It is found that |v2

st − v2
sr | ≤ 1 when Q0 = 1 for

very small values of α while it is violated with increasing α.
As the value of charge parameter is increased, i.e., Q0 = 3,
stability criterion is fulfilled for all values of α leading to the
result that stability of charged anisotropic sphere is enhanced
with increasing charge parameter.

3.2 Solution II

In this case, we consider specific form of �0
0 to obtain second

type of anisotropic solution. The constraint is taken as

�0
0 = ρ.

Making use of Eqs. (13) and (21) in the above equation, it
follows that

g∗′− g∗

r
−8πr

{
e−Ar2

16π

(
5A − B(B − A)r2 − 1

r2

)
+ 1

16πr2

}
= 0,

whose solution is

g∗ = r D + 1

8A3/2

{
2e−Ar2√

A
(
B2r2 + A(2 − 2eAr

2 + Br2)
)

+ (
14A2 + AB − B2) √

πrErf(
√
Ar)

}
, (33)
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Fig. 1 Plots of ρ̄ (left plot, first row), P̄r (right plot, first row), P̄t (left plot, second row) and �̄ (right plot, second row) versus r and α with Q0 = 1
(rust), Q0 = 3 (multicolors), M0 = 1M� and R = 0.3M� for solution I

where “Erf” indicates the error function and D is an inte-
gration constant. By following the same procedure as for
solution I, we find the matching conditions as

1 − e−Ar2
(1 + 2BR2) − α(1 + 2BR2)

(
RD + G

8A3/2

)
= 0,

(34)

2M0

R
+ Q2 − Q2

0

R2 − αRD − αe−AR2
G

8A3/2 = 2M
R

, (35)

1 − 2M0

R
+ Q2

0

R2 − eBR2+C + αRD + αe−AR2
G

8A3/2 = 0,

(36)

where

G = 2e−AR2√
A

(
B2R2 + A(2 − 2eAR

2 + BR2)
)

+
(

14A2 + AB − B2
)

× √
πRErf(

√
AR).

In this case, the anisotropic solution is obtained as

ρ̄ =
e−Ar2

(
eAr

2 − 1 − B2r4 + Ar2
(
5 + Br2

))
(1 − α)

16πr2 ,

P̄r = 1

16π

{
1

r2 + e−Ar2

r2

(
A − 4B − 1 + B(A − B)r2)

−2α
(
2Br2 + 1

)

r2

×
(
e−Ar2

4A

(
B2r2 + A

(
2 − Br2 − eAr

2
(2 − 4r D)

))

+
(
14A2 + AB − B2

)

8A3/2

√
πrErf

(√
Ar

))}
,

P̄t = e−Ar2

128A3/2πr2

[
2
√
A

{
B2r2 (

3 + 3Br2 − 2B2r4) α

−2A2r2 (
1 + Br2)

× (
2 + (

5 + Br2) α
) − A

(
B2r4(5α − 4)

−(8 + 4B3r6)α − Br2(16 + 5α)

−4 + 4eAr
2 (

1 + α
(
2 − 3r D + Br2(2 − 3r D)

−B2r4(1 − 2r D)
)))}

+ (
14A2 + AB − B2) eAr2√

πr
(
3 + 3Br2 − 2B2r4)

αErf
(√

Ar
)]

,

�̄ = −e−Ar2 (
1 + Br2

)
α

128A3/2πr2

[
2
√
A
{

2A2r2 (
5 + Br2)

−B2r2 (
1 − 2Br2)

−A
(
4 − 5Br2 + 4B2r4

−eAr
2 (

4 − 4r D − 4Br2(1 − 2r D)
))}
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Fig. 2 Plots of energy conditions versus r and α with Q0 = 1 (rust), Q0 = 3 (multicolors), M0 = 1M� and R = 0.3M� for solution I

Fig. 3 Plot of |v2
st − v2

sr | versus r and α with Q0 = 1 (rust), Q0 = 3
(multicolors), M0 = 1M� and R = 0.3M� for solution I

+ (
14A2 + AB − B2) eAr2√

πr
(−1 + 2Br2)

Erf
(√

Ar
)]

,

q = 1

2
√

2

[
−e−Ar2

r2

A3/2

(
2
√
A

(
2A2r2 (

3 + Br2

+ 2eAr
2 (

2 + Br2)) + B2r2α

+ A
(
eAr

2
(−2 + α(4r D − 2)) − 2B2r4 − 2(1 − α)

))

−Br2(4 + α)

+ (
14A2 + AB − B2) eAr2√

πrαErf
(√

Ar
)) ]1/2

.

In order to plot the developed solution, we fix the constant
B by solving Eqs. (34 and 36) (which is not mentioned here
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Fig. 4 Plots of ρ̄ (left plot, first row), P̄r (right plot, first row), P̄t (left plot, second row) and �̄ (right plot, second row) versus r and α with Q0 = 1
(rust), Q0 = 6 (multicolors), M0 = 1M� and R = 0.01M� for solution II

due to lengthy expression) while A is a free parameter which
will be taken as given in Eq. (24a) and D = 1. The behavior of
density and radial/tangential pressure (Fig. 4) corresponding
to the variation in r is similar to that obtained in solution I.
However, the behavior of ρ̄ and P̄r is different with respect
to α, i.e., it is an increasing function as the parameter α is
increased while the behavior of P̄t is consistent with solution
I. This shows that �αβ increases the compactness of spherical
matter configuration. Moreover, we find that the change in
charge parameter does not yield much difference between the
values of all physical parameters. We find that the generated
anisotropy is greater for the larger values of α (last plot,
Fig. 4) and decreases towards surface which is opposite to
the anisotropic behavior in the absence of electromagnetic
field.

The plots of all energy conditions are shown in Fig. 5.
It is found that the resulting solution meets all the energy
bounds except ρ̄ − P̄t . This shows that the solution II is not
physically viable for both values of Q0. Furthermore, we plot
the stability condition 0 < |v2

st −v2
sr | ≤ 1 (Fig. 6) and obtain

that it is violated throughout the system.

4 Final remarks

The search for interior solutions describing self-gravitating
systems has captivated the attention of many researchers.
Recently, the minimal gravitational decoupling technique has
widely been used to find exact solutions for interior constitu-
tion of stellar objects. In this paper, we have explored exact
solutions of the charged anisotropic field equations from
known isotropic model using MGD approach. For this pur-
pose, a new source is added to the charged isotropic energy-
momentum tensor which leads to the effective field equa-
tions with anisotropic matter distribution. Then, we have
introduced a geometric deformation for the radial metric
function of the line-element (used in the known solution).
This deformation leads to two sets of the field equations:
the first set is similar to the standard Einstein equations for
charged isotropic source while the second one corresponds
to the additional source and the deformed metric coefficient.
We have also formulated junction conditions for the smooth
matching of the interior region with the exterior one described
by the deformed Riessner-Nordström spacetime.

In order to seek anisotropic solutions, we have firstly con-
sidered the known isotropic solution with electromagnetic
field and then incorporated the effects of source added to
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Fig. 5 Plots of energy conditions versus r and α with Q0 = 1 (rust), Q0 = 6 (multicolors), M0 = 1M� and R = 0.01M� for solution II

Fig. 6 Plot of |v2
st − v2

sr | versus r and α with Q0 = 1 (rust), Q0 = 6
(multicolors), M0 = 1M� and R = 0.01M� for solution II

charged perfect fluid. For this purpose, we have imposed two
constraints depending upon pressure and density leading to
solutions I and II, respectively. We have analyzed physical
characteristics of constructed models and found that den-
sity and radial/tangential pressure exhibit viable behavior.
The physical acceptability has also been investigated through
energy conditions. It is found that the first solution fulfils
these conditions while one of them is violated for the solu-
tion II. We have examined the stability through sound speed
criterion and concluded that the first model is stable whereas
the second does not meet the stability condition. Moreover,
we have found that the increase in charge parameter increases
the stability of the first model. It is interesting to mention here
that the solution I is physically acceptable as it satisfies all
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the conditions required for stellar objects. We would like to
point out here that such conditions are not checked for the
uncharged solutions [7].
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