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Abstract In this work we study classical bouncing solu-
tions in the context of f(R, T) = R + h(T) gravity in a flat
FLRW background using a perfect fluid as the only matter
content. Our investigation is based on introducing an effec-
tive fluid through defining effective energy density and pres-
sure; we call this reformulation as the “effective picture”.
These definitions have been already introduced to study the
energy conditions in f(R, T) gravity. We examine various
models to which different effective equations of state, corre-
sponding to different 4 (T) functions, can be attributed. It is
also discussed that one can link between an assumed f (R, T)
model in the effective picture and the theories with general-
ized equation of state (E0S). We obtain cosmological scenar-
ios exhibiting a nonsingular bounce before and after which
the Universe lives within a de-Sitter phase. We then proceed
to find general solutions for matter bounce and investigate
their properties. We show that the properties of bouncing
solution in the effective picture of f(R,T) gravity are as
follows: for a specific form of the f (R, T) function, these
solutions are without any future singularities. Moreover, sta-
bility analysis of the nonsingular solutions through matter
density perturbations revealed that except two of the models,
the parameters of scalar-type perturbations for the other ones
have a slight transient fluctuation around the bounce point and
damp to zero or a finite value at late times. Hence these bounc-
ing solutions are stable against scalar-type perturbations. It
is possible that all energy conditions be respected by the real
perfect fluid, however, the null and the strong energy condi-
tions can be violated by the effective fluid near the bounce
event. These solutions always correspond to a maximum in
the real matter energy density and a vanishing minimum in
the effective density. The effective pressure varies between
negative values and may show either a minimum or a maxi-
mum.
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1 Introduction

Today, the standard cosmological model (SCM) or the big-
bang cosmology has become the most acceptable model
which encompasses our knowledge of the Universe as a
whole. For this reason it is called also the “concordance
model” [1]. This model which allows one to track the cos-
mological evolution of the Universe very well, has matured
over the last century, consolidating its theoretical foundations
with increasingly accurate observations. We can numerate a
number of the successes of the SCM at the classic level.
For example, it accounts for the expansion of the Universe
(Hubble law), the black body nature of cosmic microwave
background (CMB) within the framework of the SCM can
be understood and the predictions of light-element abun-
dances which were produced during the nucleosynthesis. It
also provides a framework to study the cosmic structure for-
mation [2]. However, though the SCM works very well in
fitting many observations, it includes a number of deficien-
cies and weaknesses. For instance some problems which are
rooted in cosmological relics such as magnetic monopoles
[3,4], gravitons [5-9], moduli [10-13] and baryon asymme-
try [14, 15]. Despite the self-consistency and remarkable suc-
cess of the SCM in describing the evolution of the Universe
back to only one hundredth of a second, a number of unan-
swered questions remain regarding the initial state of the
Universe, such as flatness and horizon problems [16—19].
Moreover, there are some unresolved problems related to the
origin and nature of dark matter (DM) [20-22]. Notwith-
standing the excellent agreement with the observational data
there still exists a number of challenging open problems asso-
ciated with the late time evolution of the Universe, namely
the nature of dark energy (DE) and cosmological constant
problem [23-25]. Though the inflation mechanism has been
introduced to treat some of the mentioned issues such as, the
horizon, flatness and magnetic monopole problems at early
Universe [26-28], the SCM suffers from a more fundamental
issue, i.e., the initial cosmological singularity that the exis-
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tence of which has been predicted by the pioneering works
of Hawking, Penrose and Geroch in 1960s, known as the
singularity theorems [29-37] and their later extensions by
Tipler in 1978 [38,39] and by Borde, Vilenkin and Guth in
the 1990s [40—45] (see also [46] for a comprehensive study).
According to these theorems, a cosmological singularity is
unavoidable if spacetime dynamics is described by General
Relativity (GR) and if matter content of the Universe obeys
certain energy conditions. A singular state is an extreme situ-
ation with infinite values of physical quantities, like tempera-
ture, energy density, and the spacetime curvature from which
the Universe has started its evolution at a finite past. The exis-
tence of such an uncontrollable initial state is irritating, since
“a singularity can be naturally considered as a source of law-
lessness” [47]. A potential solution to the issue of cosmolog-
ical singularity can be provided by “non-singular bouncing
cosmologies” [48,49]. Beside a huge interest in the solu-
tions that do not display singular behavior, there can be more
motivations to seek for non-singular cosmological models.
The first reason for removing the initial singularity is rooted
in the initial value problem since a consistent gravitational
theory requires a well-posed Cauchy problem [50,51]. How-
ever, owing to the fact that the gravitational field diverges at
a spacetime singularity, we could not have a well formulated
Cauchy problem as we cannot set the initial values at a singu-
lar spatial hypersurface given by t = const. Another related
issue is that the existence of a singularity is inconsistent with
the entropy bound S/E = (2w R)/ch, where S, E, R, i and
¢ being entropy, proper energy, the largest linear dimension,
Planck’s constant and the velocity of light, respectively [47].

During the past decades, models which describe bouncing
behavior have been designed and studied as an approach to
resolve the problem of initial singularity. These models sug-
gest that the Universe existed even before the big-bang and
underwent an accelerated contraction phase towards reach-
ing a non-vanishing minimum radius. The transition from a
preceding cosmic contraction regime to the current acceler-
ating expansion phase (as already predicted in SCM) is the so
called “Big Bounce”. From this perspective, the idea that the
expansion phase is preceded by a contraction phase paves a
new way towards modeling the early Universe and thus, may
provide a suitable setting to obviate some of the problems
of the SCM without the need to an inflationary scenario.
Although an acceptable model can be considered as the one
being capable of explaining the issues that have been treated
by inflationary mechanism, e.g., most inflationary scenarios
can give the scale-invariant spectrum of the cosmological
perturbations [52], problems of the SCM may find solutions
in the contracting regime before the bounce occurs. The hori-
zon problem, for example, is immediately resolved if the far
separated regions of the present Universe were in causal con-
nection during the previous contraction phase. Similarly, the
homogeneity, flatness, and isotropy of the Universe may also
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be addressed by having a smoothing mechanism in the con-
traction phase, see e.g., [5S3-55] for more details. Moreover,
though the fine-tuning is required to keep a stable contract-
ing regime, the nonsingular bounce succeeds in sustaining a
nearly scale-invariant power spectrum [56,57].

For several years, great effort has been devoted to the study
of bouncing cosmologies within different frameworks. The
resulted cosmological models could be obtained at a classi-
cal level or by quantum modifications. Most of the efforts
in quantum gravity are devoted to reveal the nature of the
initial singularity of the Universe and to better understand
the origin of matter, non-gravitational fields, and the very
nature of the spacetime. Non-singular bouncing solutions
generically appear in loop quantum cosmology (LQC) [58—
62], where the variables and quantization techniques of loop
quantum gravity are employed to investigate the effects of
quantum gravity in cosmological spacetimes [63—65]. The
recent large amount of works done within the loop quantum
cosmology (LQC) show that when the curvature of space-
time reaches the Planck scale, the big-bang singularity is
replaced by a quantum Big-Bounce with finite density and
spacetime curvature [66]. Another approach, based on the de
Broglie-Bohm quantum theory, utilizes the wave function of
the Universe in order to determine a quantum trajectory of
the Universe through a bounce [67,68]. In the framework of
LQC the semi-classical Friedmann equations receive correc-
tions as [65,69,70]

LA R 1
tac = 3 ° " o) (D

. P
Hiqc = —47G(p + p) <1 -2 ) 2)
Pmax

where, pmax &~ 0.41pp and pp; = ¢* /hG? being the Planck
density [65,71-73]. We note that, the relative magnitude of
p and pmax enables one to distinguish classical and quan-
tum regimes. By a short qualitative inspection of the above
equations the general feature of the bouncing behavior will
be revealed: initially, the Universe were in contracting phase
at which the matter density and curvature are very low com-
pared to the Planck scale. As the Universe contracts more, the
maximum density is reached so that the quantum evolution
follows the classical trajectory at low densities and curvatures
but undergoes a quantum bounce at matter density 0 = Pmax,
where we have H qc = 0 and also H qc = 417G (p + p).
The quantum regime then joins on to the classical trajectory
that was contracting to the future. Therefore, the quantum
gravity effects create a non-singular transition from contrac-
tion to expansion and thus the big-bang singularity is replaced
by a quantum bounce. Furthermore, we see that for all mat-
ter fields which satisfy the weak energy condition (WEC)
we have HLQC > 0. These two results are accounted for
the general conditions for the existence of a bouncing solu-
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tion. Moreover, nonsingular bouncing scenarios have been
also reported in nonlocal gravity model [74] where effective
Friedmann equation with a slight difference to Eq. (1) has
been proposed exhibiting a bouncing-accelerating behavior.
See also [75-80] for probing the issue of singularity avoid-
ance in nonlocal gravitational theories.

Another type of theories are called non-singular “mat-
ter bounce” scenarios which is a cosmological model with
an initial state of matter-dominated contraction and a non-
singular bounce [81]. Such a model provides an alternative
to inflationary cosmology for generating the observed spec-
trum of cosmological fluctuations [53-55,82-85]. In these
theories some matter fields are introduced in such a way that
the WEC is violated in order to make H > 0 at the bounce.
From Eq. (2), it is obvious that putting aside the correction
term leads to negative values for the time derivative of the
Hubble parameter for all fluids which respect WEC. There-
fore, in order to obtain a bouncing cosmology it is necessary
to either go beyond the GR framework, or else to introduce
new forms of matter which violate the key energy condi-
tions, i.e., the null energy condition (NEC) and the WEC.
For a successful bounce, it can be shown that within the con-
text of SCM the NEC and thus the WEC, are violated for a
period of time around the bouncing point. In the context of
matter bounce scenarios, many studies have been performed
using quintom matter [86—88], Lee—Wick matter [89], ghost
condensate field [90], Galileon fields [91,92] and phan-
tom field [93-97]. Cosmological bouncing models have also
been constructed via various approaches to modified grav-
ity such as f(R) gravity [98-102], teleparallel f(T) grav-
ity [103,104], brane world models [105], Einstein—Cartan
theory [106—-113], Horava-Lifshitz gravity [114], nonlocal
gravity [115,116] and others [117]. There are also other cos-
mological models such as Ekpyrotic model [118,119] and
string cosmology [120—124] which are alternatives to both
inflation and matter bounce scenarios.

In the present work we study the existence of the bounc-
ing solutions in the context of f(R, T) gravity. These type
of theories have been firstly introduced in [125] and later,
their different aspects have been carefully studied and ana-
lyzed in [126-144]. In the current work we use an effec-
tive approach that we have introduced previously in [145].
In this method one defines an “ effective fluid” endowed
with the effective energy density p(effy and effective pres-
sure peff) allowing thus, to reformulate the f (R, T) gravity
field equations. In a class of the minimally coupled form,
i.e., f(R,T) = R+ h(T), one usually presumes x(T) func-
tions and solves the resulted field equations. Instead, using
the effective fluid description we obtain the 4 (T) function
which corresponds to an E0S defined as petfy = V(0(eff))-
We therefore observe that the effective fluid picture may at
least be imagined as a mathematical translation of gravita-
tional interactions between the actual matter fields and the

curvature to an overall behavior attributed to a mysterious
fluid with pefty(T) and peefr) (T). In the current article we
discuss three different classes of models specified by three
different effective EOSs or equivalently three different /(T)
functions. We shall see that in these cases we obtain

pefh(T) = BiT + BT + pefry, 3)
Pty (T) = 0T + 2T + petr), “4)

where, i, Ai, v, Pceff) and p(eff) are some constants. Elim-
inating the trace between the effective density and pressure
leaves us with an E0S as follows

Mp—=p)—B1(p—D) _ [)»2(/0—/5)—/32(17—[5)})/
BoA1 — BiAz B2 — Bakq '

(&)

where the subscript “eff ” has been dropped. In view of rela-
tion (5), we may conclude that in f(R,T) = R + h(T)
gravity, interactions of a perfect fluid with the spacetime cur-
vature can be mapped effectively onto the behavior of an
exotic fluid obeying equation of state (5). It is quiet interest-
ing that a reduced form of (5) has been introduced in [146]
and further studied in [147]. Such a complicated EOS has
been introduced to study the cosmological implication of a
model with a mixture of two different fluids, i.e., effective
quintessence and effective phantom. Additionally, one can
find other related works investigating some “exotic” fluids
which follow various subfamily of (5). These theories may
be called “modified equation of state” (ME0S) models. This
branch of research presumes a mysterious fluid(s) specified
by an unusual EoS with the hope of dealing with some unan-
swered questions in the cosmological realm. For example
some relevant works in the literature can be addressed as fol-
lows; in [148] the author has employed an EOS of the form
p = —p+yp’ in order to obtain power-law and exponential
inflationary solutions. The case with A = 1/2 has been ana-
lyzed in [147,150,151] to focus on the future expansion of
the Universe. Emergent Universe models have been studied
in [149] by taking into account an exotic component with
p = Ap — Bp'/? and in [152] with A = —1. Different cos-
mological aspects of DE with more simple form of E0S, i.e,
ppE = a(ppe — po) have been investigated in [153] and
the study of cosmological bouncing solutions can be found
in [52].

Therefore, recasting the f(R, T) field equations into the
“effective picture” may provide a bridge to the cosmolog-
ical models supported by MEOS. Via this connection the
problem of an exotic fluid turns into the problem of a usual
fluid with exotic gravitational interactions. However, con-
trary to the former, in the latter case we start with a prede-
termined Lagrangian, i.e., f (R, T) gravitational Lagrangian.
The importance of the effective picture becomes more clear
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when one considers the energy conditions in f (R, T) gravity.
As discussed in [154], in f (R, T) gravity the energy condi-
tions would be obtained for effective pressure and effective
energy density. Therefore, it is reasonable to define a fluid as a
source with effective pressure and energy density. As we shall
see, the bouncing solutions in f(R, T) gravity (using only
one perfect fluid in a flat FLRW background) in the frame-
work of our effective fluid approach, exhibit nonsingular
properties such that in a finite value of the bounce time #,,, non
of the cosmological quantities would diverge. More exactly,
as t — tp we observe that the scale factor decreases to a

minimum non-vanishing value, i.e., a — ap, H | =ty 0,

Pl Pos ey, > 0and pef |, — Peefhyp- There-
fore, non of the future singularities would appear. Also, in
all cases we have W| st 00 where WV being the effec-
tive EOS parameter and subscript “b” stands for the value of
quantities at the time at which the bounce occurs. We then
observe that if we want to describe nonsingular bouncing
solutions in f (R, T) = R + h(T) gravity using a minimally
coupled scalar field, a phantom field should be employed.
These solutions show a violation of the NEC in addition to the
strong energy condition SEC. Such a behavior is predicted in
GR for a perfect fluid in FLRW metric withk = —1, 0 [155].

The current research is planned as follows. In Sect. 2 we
briefly present the effective fluid picture. Sect. 3 is devoted
to the bouncing solutions with asymptotic de Sitter behav-
ior before and after the bounce. We first analyze models with
constant effective pressure in Sect. 3.1, they are called models
of type A. We then proceed to investigate the corresponding
bouncing solutions, the energy conditions, the scalar field
representation and finally the stability of these type of solu-
tions. In Sect. 3.2 models which correspond to two different
EoSs assuming peffy = YV (pefr)) Will be discussed. These
models are named as B, C, D and E models. An example
of the matter bounce solution is considered in Sect. 4 which
is labeled as model E. The connection of A-E models with
MEOS theories will be presented through the effective pic-
ture. Section 35, is devoted to study of scalar-type cosmologi-
cal perturbations. In Sect. 6 we give a brief review of singular
models in the context of f(R, T) gravity and obtain a class
of solutions exhibiting singular behavior. Finally, in Sect. 7
we summarize our conclusions.

2 Reformulation of f (R, T) field equations in terms of a
conserved effective fluid

In the present section we review the field equations of
f(R,T) gravity theories and rewrite them in terms of a
conserved effective fluid. This reformulation would allow
us to better understand the properties of bouncing solutions
as well as classifying them. In f(R, T) gravity, one usu-
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ally chooses a mathematically suitable f (R, T) Lagrangian,
then obtains the corresponding field equations, and finally
tries to solve them. In [145], we introduced a novel point of
view to dealing with the field equations of f (R, T) gravity.
This approach is based on reconsidering the field equations
in terms of a conserved effective fluid. One of the benefits
of using this method is to obtain a form of f(R,T) func-
tion for a physically justified condition on the effective fluid.
Therefore, instead of mathematical arbitrariness in selecting
different f(R, T) functions, we have physically meaning-
ful Lagrangian forms. Hence, in this paper we make use of
those f(R, T) functions that we obtained in our previous
work [145]. The action integral in f (R, T) gravity theories
is given by [125]

— —ad* L (m)
s_/ﬂdx[szf(R,T)+L } 6)

where R, T = g"'T,., L™M denote the Ricci scalar, the
trace of energy momentum tensor (EMT) and the Lagrangian
of matter, respectively. The determinant of metric is shown
by g, k2 = 87G is the gravitational coupling constant and
we have set ¢ = 1. We assume that the matter Lagrangian
L™ depends only on the metric components therefore the
following form for the EMT can be defined

2 8[y—gLMm
T = -2 O] ™

v—g sg"

By varying action (6) with respect to the metric components
g*? we obtain the following field equation [125]

1
FR TR = 5 f R Dg + (00— V70 ) FR.T)

= (= FRD) T = FR. DO, ®)
where we have defined
ws 0 Tap
Ou =g ﬁagj = —2Tap + GupL™, )
and
_Af(R,T) _df(R,T)
FR,T) = e and F(R,T) = SR (10)

The differential equations governing the dynamical evolution
of the Universe can be obtained from Eq. (8) by choosing
suitable line element. For cosmological applications one can
use a spatially flat FLRW metric given as

ds? = —di® + az(t)(drz + rdeZ), (11)

where a(¢) is the scale factor of the universe and d? is the
standard line element on a unit two sphere. Applying metric
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(11) to field equation (8) together with using the definition
for ®,,, for a perfect fluid leads to

3H2FR, T) + %(f(R, T)— F(R, T)R) +3ER.TH

= (©+FR.D)p+FR.Tp, (12)
as the modified Friedmann equation, and

2FRTH+ F(R,T)— FR,TH
= (2 +FRD) (o + p), (13)

as the modified Raychaudhuri equation, where H indicates
the Hubble parameter. Note that, we have used L™ = p for
a perfect fluid in the expression (9). Applying the Bianchi
identity to the field equation (8) gives following covariant
equation

1
(k> + F)VFT, + szuT + TWwVEF =V, (pF) =0,
(14)

where we have dropped the argument of F (R, T) for abbre-
viation. Equation (14) tells us that the conservation of EMT
is not generally respected in f (R, T) gravity theories. There
is Only a narrow class of solutions for which the conservation
of energy is still preserved [137]. In this work we consider a
specific class of models for which the Lagrangian is written
as a minimal coupling between the Ricci curvature scalar and
a function of trace of EMT, i.e.,

F(R,T) =R+ akh(T). (15)

Also, we study bouncing solutions when the Universe con-
tains a single perfect fluid with a barotropic E0S given as
p = wp. In the next section, we seek for non-singular cos-
mological solutions in f (R, T) gravity with a baratropic per-
fect fluid. As we shall see, a useful approach for choosing
the functionality of A(T) is to rewriting Egs. (12) and (13)
in terms of an effective fluid that respects the conservation
of EMT. For the Lagrangian, Egs. (15), (12) and (13) are
simplified to

T ah
2_ 2 / _
3H? =« {[1+(1+w)ah]3w_1 2}, (16)
and
. 1
28 = — 2T T, (17)
3w —1

where “7” denotes derivative with respect to the argument.
Also, from Eq. (14) we obtain

(1 + %(3 — W)l +a(l+ w)Th”)T
13H(1 +w)(1 +ah’)T=o. (18)

As a matter of fact, one can directly solve Egs. (16)—(18) to
obtain the scale factor or the Hubble parameter, once the i (T)
function is determined. Alternatively, one can also define
the pressure and energy density profiles of an effective fluid
along with imposing the energy conditions in order to obtain
the functionality of /(T). We then proceed in this way and
rewrite Eq. (16) as

3H? = i peetry (T), (19)
where,
T ah
_ / _
peety(T) = [1 + (1 + wyarh ]3w — - (20)

With this definition the acceleration of expansion of the Uni-
verse can be obtained as follows

2

% =~ (Pt (™M +3peen ™). @1

where, we have defined the effective pressure as

ah
T+ —. 22
3w—1 + 2 (22)

Pt (T) =

Therefore, the original field equations of f(R,T) gravity
can be recast into the usual Friedman form with an effective
fluid. This fluid is characterized by an effective energy den-
sity and effective pressure which in turn are determined in
terms of the EMT trace. Therefore, once a property/relation
for energy density and pressure components is established,
a first order differential equation for the function 4 (T) could
be reached. Solving the differential equation leads to an i (T)
function that conveys the specified property/relation. Hence,
in this way we can obtain a minimal f (R, T) model based
on the conditions on energy density and pressure profiles of
the effective fluid, instead of choosing the functionality of
f (R, T) based on ad hoc mathematical terms. It is straight-
forward to verify that Eq. (18) is turned to the usual conser-
vation equation in terms of p(effy and p(eff), 1.€.,

Pefty + 3H (peefry + Peefry) = 0, (23)
where the arguments are dropped for the sake of simplicity.

Consequently, an effective EOS parameter can be defined for
this effective fluid as

@ Springer
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2(1 +w)(1 +ah)T
2114+ A +wah']T — Bw — Dok
(24)

_ Peefh) _
P(eff)

4%

3 Asymptotic de-Sitter bouncing solutions in f(R, T)
gravity

In this section we study different bouncing cosmological
solutions of f(R,T) gravity. We extract those solutions
which correspond to some properties of the effective fluid.
Such an approach may help us to understand how these solu-
tions can emerge in f (R, T) gravity. Furthermore, there can
be obtained more bouncing solutions, however, to show that
f(R, T) gravity theories are capable of describing a non-
singular pre-Big Bang era, we are restrict ourselves to study
only few examples. We set 2 = 1 in the rest of the work.

3.1 Type A models: solutions which correspond to a
constant effective pressure, pefr)(T) = P

Let us begin with bouncing solutions which are obtained
by assuming an effective fluid with constant pressure. We
show that these type of models lead to a de-Sitter era at late
times [145]. From definition (22) for a constant effective
pressure we obtain

hA(T)=§<P+ o T). (25)

1—3w

Substituting the above function into the modified conserva-
tion equation (18) together with using T = (3w — 1)pa for
a perfect fluid we get

PA = poaf. (26)

where pg is an integration constant. Substituting solutions
(25) and (26) back into the Friedman equation (19) leaves us
with the following differential equation for the scale factor

3(“2‘0))2— w(i=l) 5y 27)
an(®) "~ Gw—Daa®)?

For P = 0, a particular solution to the above equation is
found as aa (t) o« t2/3. Moreover, in case in which the mid-
dle term is absent, the solution represents a de-Sitter phase
for P < 0. From the Friedman equation (27), we observe
that the effective pressure P plays the role of a cosmologi-
cal constant. Other forms for the Friedman equation similar
to Eq. (27) have been found in the literature. For example
in [153] authors have worked on a perfect fluid, dubbed as
DE with a linear E0S, in a flat FLRW background. They
used ppe = a(PDE — P0) = P + pa, Where o and po

@ Springer

being some constants. The DE pressure is then decomposed
to a dynamical part which corresponds to p, as well as a
constant part which corresponds to p,. These assumptions
lead to an equation that will reduce to (27), when only pp is
considered. In the upcoming subsections when we study the
model C, we find that in the context of f(R, T) gravity one
can obtain the same results as those given in [153]. Equation
(27) admits three different general solutions which we will
consider only one of them. A general solution of Eq. (27) is
obtained as

ap(t) = % |:cosh < —?t) — sinh( —?t)]

(w?—1DPpo 1 .
X{% + m [smh( —3Pl)
2/3
+cosh< —3731‘) — 1] }
) 1/3
A= [W (2% _ (=) P I)Pp‘))}
3w—1

1 — w?
B =aiP? — \/a8P3 <a37> + M). (28)

3w—1

Note that once we set the integration constant in Eq. (27)
such that ap(0) = 0, we get ®B = 0 and furthermore,
if we consider the case w = 0, we obtain A = 7),05/ 3.
Thus the solution (28) reduces to the familiar form a(r) =
(—po/P)'/3 sinh?/3 (/=3P /2t). However, the integration
constant in solution (28) is fixed such that we have a(t =
0) = ap. The most important feature of solution (28) is the
appearance of cosine hyperbolic function which allows us
to have a non-singular behavior for P < 0. This solution
describes the de-Sitter expansion of the Universe which is ini-
tially dominated by dust [156]. In Fig. 1 the thick black curve
shows the scale factor solution (28). This solution behaves
exponentially in the far past and far future from the bounce
and reaches a nonzero minimum value at the bounce time,
given by

1o 200 = 3w)®B
A(min)A = 2 1\3/—

(1—w?)Ppy

y 2(3w—1)B2
3w —1

C@-)Pw]”
2Bw—1)B — (w2 — 1) Ppy '

(29)

The Hubble parameter is obtained as

Hp (1)
/7; 201 = 3u)B-+ (w2 1) Ppo (sinh (v=3Pr)+cosh (v=3Pr) + 1)
VT3 | 26w — DB + (w2—1) Ppg (sinh (vV—3Pt)+cosh (V—3P1) - 1) |’
(30)
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3 an
2 Ha
1 PefH)A
0
P(eff)A
-1
— Wha
-2
""""" Pa

-3

Fig. 1 Different cosmological quantities related to the model A which
are characterized by solution (28). The black solid line indicates the
scale factor. The black middle sized dashed line shows the Hubble
parameter, the solid blue curve indicates the effective energy density,
the black dot-dashed curve shows the pressure, The long-dashed blue
curve shows the effective EOS and the black dotted curve shows the
effective energy density. We see that Wa < —1 always, signaling that
the scalar representation of model A should be defined by a phantom
field. We have set w = 0.6, po = 1, P = —2.8 and g9 = 1.12. The
horizontal axis represents the cosmic time

Figure 1 shows that the Hubble parameter tends to constant
values before and after the bounce and vanishes at the bounce.
On the other hand, the Hubble parameter and its time deriva-
tives diverge at an imaginary time ts = imw/+/—3P — tp,
where 1y, is the (real) time at which the bounce occurs. There-
fore, we observe that the Hubble parameter behaves in a
well-defined way (without any future singularity) so that it
respects the bounce conditions. We can also obtain the effec-
tive energy density and the effective EOS parameter. To this
aim, we substitute (25) into Eqs. (20) and (24), respectively.
Thus we obtain

(w? = 1) po
=~ J-_ P, 31
Pefhala) Gu—a] (3D
(1 —3w)Paj

Wa (32)

" Gw-)Pa)— W2—1)p

As can be seen from Fig. 1, the effective density reduces
from a constant value and tends to zero near the bounce. From
Eq. (19) we see that the vanishing of Hubble parameter at
the bounce demands that the effective density becomes zero.
Also for the same reason, the effective EOS diverges at the
bounce. Such behaviors are common for all bouncing models
that we shall present in the framework of minimal f (R, T)
gravity. the matter energy density itself increases from small
values to a maximum value near the bounce. Based on the
exchange of energy between gravitational field and mat-
ter constituents (that the mechanism of which is explained
in [128]) one may explain the process of bouncing behavior;
the interaction of the real fluid with curvature leads to some
transformations of energy from gravitational field to matter
before the bounce where the spacetime curvature is dominant

in comparison to matter energy density. Such a transmuta-
tion, that the start of which is triggered at the time far past
the bounce, gives rise to an increase in the energy density
as the bounce event is approached. At the bounce time the
energy density of matter grows to a maximum value after
which the process of transmutation is reversed until the den-
sity falls back to zero (the post-bounce regime). Note that the
effective energy density remains constant in the de-Sitter era.
However, some physics is needed in order to explain the pro-
cess of matter production from curvature component which
disturbs the stability of de-Sitter era to enter the bounce event.

Informations from Fig. 1 can help us to discuss the energy
conditions. In GR the well-known energy conditions are
the NEC, WEC, SEC and the dominant energy condition
(DEC). In a modified gravity theory with defined effective
energy density and pressure, these conditions can be written
as [154]

WEC < petty > 0, and peefry + Peefiy = 0, (33)
NEC < peeff) + Peeff) > 0, (34)
SEC & pefty + 3peffy = 0 and peeffy + peefy = 0, (35)
DEC & peefry = 0, and peeffy = peefry > 0. (36)

For the model A, we obtain the following results

2
(w — 1) 00
- = 37
P(effy + Peff) Gu 1)a2\ 37
Peefty + 3 = —(w2 ~ D +2P (38)
(eff) P(eff) Guw — 1)a2\ .

It is obvious that the fulfillment of NEC and thus WEC
requires (w2 —1)/Bw — 1) > 0 which gives —1 < w < %
From (31) we see that the effective energy density tends to
—'P at late times and vanishes at the time of bounce. There-
fore, we obtain 3P < petr) + 3petry < 2P, (remember that
P < 0). Thus, since only negative values are valid for the
effective pressure P, the SEC is always violated. However,
the validity of NEC depends upon the value of w. We plot
the diagrams for w = 0.6 in Fig. 1. This figure shows that
the NEC and SEC are violated in this case. Our studies
show that the bouncing behavior is achieved from solution
(28) for w > 1/3. Note that, as we have mentioned before,
solution (28) is only one of the three possible solutions of
Eq. (27). Investigating other solutions may validate the cases
with w < 1/3 from energy conditions point of view.

One may be tempted to reinterpret the source of matter
as that of a scalar field. Such a representation is also used
in similar works [52,148,152,157]. In the case of constant
effective pressure, the particular solution (28) (which is valid
for 1/3 < w < 1) corresponds to WWa < —1 which can be
realized from relation (32), see also the long-dashed blue
curve in Fig. 1. Therefore, if we want to translate mutual
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interactions of perfect fluid and curvature as the behavior of
an effective scalar field, we should employ a phantom scalar
field. Therefore, we can define

1 .

Len = =5 ¢t Peth™ — V(). 39)
1.

Pretty = =5 Pietny + V (et
1.

Peeth = =5 Pery — V (Deeft)- (40)

where, the subscript Ph denotes the phantom field and “;”
indicates covariant differentiation. We then get

2
; (1—w?)po
= —(peefty + Peefty) = - 4
PeihA (Peeth) + Peef)) Bw — l)az b
1 (w2 — 1) £0
; 1 - I Gty VP S
(Pefnn) ) (oeeth = petn) 23w — Da, )

A straightforward calculation reveals that

2 [ =3wyw = DY
DefhA = 479 3¢
BBw—1) (tanh (,/%”t) - 1>+(w2—1)73, 00

X arctan
V= + DHPpo€
(43)
where we have defined
¢ = (w— 1)[2(1 —3w)B + (w2 - 1) Ppo]. (44)

We can also obtain ¢effa in terms of the scale factor by
solving solution (28) for time ¢, which gives

C(w+1)Ppg

203 A3(1-3w)? | 1—-
ap A (1=3w) uiQﬁ(l—}w)z

-H) +w+ DHPpoC

(w2 — 1) P22

(45)

We have plotted ¢ef)a and Vietpa in Fig. 2 for the same
parameters of Fig. 1.

Another important issue that needs to be treated is to inves-
tigate the stability properties of solution of Eq. (27). Substi-
tuting solution (31) in (19) and also (26) in (17) and taking
H and p as dynamical variables, we arrive at the following
dynamical system

iy

H=7=p, (46)

j=—3Hp. (47)
3H> = —pp— P, (48)
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Fig. 2 The phantom scalar field representation of model A. Solid curve
shows the effective potential and the dashed one indicates the phantom
scalar field

where B = (1 — w?)/2(3w — 1) and we have dropped sub-
scripted A . Note that the validity of solution (28) requires
that 8 > 0. The system (46)—(48) has two critical points far
from the bounce; P®) = (+./=P/3, 0) which corresponds
to the eigenvalues A®) = (F/=P/3,0). We see that the
stability properties of solutions are independent of w. Due to
the appearance of the zero eigenvalues, one may not decide
about the stability properties of these fixed points, however,
by inspecting Eqgs. (46) and (47) it is possible to figure out
the nature of the fixed points. For fixed point P(™) Eq. (47)
becomes

P = V=3Pp . (49)

Therefore, in the vicinity of P(™) within the phase space, by
indicating the values of p and H on vertical and horizontal
axises, respectively, we have H > 0 & p > 0 for all points
withp > Oand H < 0& p < O for points with p < 0. These
show that when p — p + 6p for t — ¢ + §t, the solution at
P will not stay stationary and hence it is a repulsive fixed
point. On the other hand, for P we have

pH = —/=3Pp™. (50)

Therefore, in this case we have H>0& p < 0for all points
withp > 0and H < 0& p > 0 for points with p < 0 in the
vicinity of P(t). Hence it is a stable fixed point. The bounce
corresponds to the point P® = (0, —P/B) for which we
have H = —P/2 > 0. Therefore, at this point the tangent
vectors on the phase space trajectories are directed toward
the right side. We plot a typical trajectory in the phase space
in Fig. 3.

3.2 Solutions which correspond to a general effective E0S,
Pty = V(p(eff)

These class of models can be constructed by imposing a par-
ticular condition on the effective profiles. This approach can



Eur. Phys. J. C (2018) 78:397

Page 9 of 24 397

Fig. 3 A typical phase trajectory in the phase space plane (H, p) corre-
sponding to model A. This plot shows that the evolution of the Universe
has started from an unstable state and terminates in a stable phase. The
bounce event is an unstable (of saddle type) fixed red point

be viewed as a sort of classification of f (R, T) gravity models
based on the properties of the effective quantities. Generally,
one can obtain a class of 4(T) functions for a determined
property which is specified by an effective E0S. In the fol-
lowing sections we consider two subclasses based on con-
ditions on the effective densities. We find that each class of
h(T) solutions that exhibit bouncing behavior correspond to
an effective EOS which is already introduced or obtained for
an exotic fluid in the literature [52,152,153,157,158].

3.2.1 Type B models: solutions which follow the relation
dpetry/dT = [n/(1 + w)T(pef + Pefr))

Applying this condition together with using the definitions
for the effective energy density and pressure, we arrive at
a differential equation for 4 (T) which can be solved as fol-
lows [137]

20n — 1)

_ 2lg(w+ 1) TSl
a(2n+w —3)

= 2(w+1) —
2n + 3w — 1

hg(T) T+ Ag,

(S

where, 'g and Ap are integration constants and » is an arbi-
trary constant. Substituting the relation dpeg/d T = [n/(1 +
w)T1(peff + Peff) into Eq. (18) gives

_ 3w+D

pB = poa n . (52)

Next we proceed to find a non-singular bouncing solution by
solving the modified Friedmann equation (16) for solutions
(51) and (52). We first try to obtain solutions of the form
ag(t) = R(cosh[(t — 19)/R] — &) where R and § are con-
stants. This type of solution has been discussed in [52] under
assumption of an MEOS and has the following form of the
Friedmann equation

0. (53)

3<a,’3(z)>2_3(52—1)_ 6s 3 _
ag(t) ap(t)? Rap(t) R?

Applying (51) and (52) in Eq. (16) gives the Friedmann
equation for arbitrary constants w and n. We can check
that, there are only two cases which correspond to Eq.
(53) and thus to the scale factor ag as the solution; when
w=—1/5n=12/5and w = —1/5,n = 6/5. However,
the latter leads to similar physics to the former. The phys-
ical quantities constructed out of the bouncing solution for

w = —1/5, n = 12/5 are given as follows
1
H=R h{—=)—-S/{,
ag(t) |:cos (R) ]
6
R=[——,
oA
S = 3 R0 54)
T PY,
sinh (4
Hg (1) = (%) (55)

R[cosh (%) — S] ’
3(ap + RS = 1)) (ag + RS + 1)

PefhB = , (56)
a%Rz
R[R - S4ag + SR)| — 3a3
PefB = AR : (57)
1 ag ag
Weg = —- 1.
B="3 [aB+R(5—1) T IRS+D }
(58)

The behavior of the above quantities are depicted in Fig. 4.
In order that the ansatz ag(t) satisfies Eq. (53) we must have

e — 1 27 +50a (59)
B= 3202 \ Ap pg '

Solution (54) shows that the Universe shrinks from an infinite
size to a minimum radius which is equal to R(1 — S). The
size of Universe at the time of bounce is controlled by the
constant Ag as well as the coupling constant «. As can be
seen, in Eq. (53) and the subsequent solutions, these two
constants appear as a multiplied form. This means that if
either of these constants become zero, the bouncing solution
would disappear. Also, expression (15) together with solution
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(51) indicate that the bouncing solution disappears in model
B when a = 0.

The expressions for effective energy density and pressure,
i.e. (56) and (57), can be rewritten as a sum of three densities
and pressures given by

1 — &2 4S8 3
P(efDB—?—aB—R—§=PI+PZ+P37 (60)
S2-1 68 3
peme ===t gt g =mtrntn O

From these expressions, we could suppose that our effective
fluid consists of a combination of three perfect fluids with
EoSs w; = p;/pi. In this view, there is a DE component
which corresponds to a cosmological constant with w; =
—1, aquintessence with w, = —2/3 and a fluid which drives
an expanding Universe with zero acceleration, with wy =
—1/3. Such a description has been presented in [52]. In the
framework of f(R,T) gravity this decomposition may be
translated as follows; the effects of unusual interactions of
matter (here a perfect fluid with w = —1/5) with curvature,
could produce the same behavior as the case of GR with three
different fluids. Eliminating the scale factor from solutions
(56) and (57) leads to an effective EOS of the form
P(efh)B 28

3 3R (82—-1)

PeffB = —

x [3722 (52 - 1) PeinB + 9]% + (62)

R2(S2—1)
In the cosmological applications, a general type of E0S
p = Bp + yf(p) is ascribed to some exotic or dark fluid
which can determine the evolution of the Universe. Different
choices for function f(p) are studied in the literature. Such
an equation has been already discussed in [158] where the
authors considered cosmological consequences of an EOS of
the form p = —p — p9 + 1.

Substituting expressions (56) and (57) in the NEC and
SEC conditions (34) and (35) leads to the following condi-
tions

2(82-1 28
NEC ettg = ( 3 ) + = >0, (63)
aB apg
SEC(itp = —6 (= + -5 ) > 0. (64)
(eff)B Rz aBR

However, expressions (63) and (64) are never satisfied; far
from the bounce where a — o0, the second term of (63)
which always has negative sign dominates and in the limit
a —> ap = R(1 — 8) the expression for NEC becomes
—2/R?(1 — S) which is also negative because S < 0. The
same line of reasons can be used to prove the violation of
SEC. Thus, in model B the NEC and SEC are never satisfied.

@ Springer

Note that, the NEC is violated only near the bounce, because
expression (63) tends to zero as the scale factor gets large
values.

By considering the above discussion for energy condi-
tions, we find that again, a phantom scalar field can be used
for modeling the behavior of bouncing solution. In the case
of model B we have

2(agS+(S*-1)R)

¢(2 ff)B = 7 , (65)
© agR
2(8*—=1) 58 3
V = —. 66
(efhB ) + R + 53 (66)

Our studies show that the behavior of the above solutions are
similar to those of model A which in Fig. 2 a typical exam-
ple is demonstrated. By choosing Hg and pg as dynamical
variables one can rewrite the Friedmann equation as follows

o 1=-8, 3
H="rp’ 4 gp (©7)
0
p=—Hp, (68)
1 — &2 3 1
H2=p—§p2—§,0+ﬁ, (69)

where we have dropped the subscript B. This system admits
two critical points Péi) = (£+/1/R, 0) far from the bounce.
In these situations we have p — 0, hence, the dynamics
of Eq. (67) is determined by the second term. Also, near
the point of the bounce as specified by H, = 0,pp =
3,08 JI0R(R + 1), we always have H > 0. Therefore, the
stability properties of the system is similar to the model A.

The Friedmann equation (16) for general function (51)
takes the form

AH? — 2an(w + 1)I'g Tgﬁ“‘%
GBw—-1)2n+3w—1)
- DT A
n n(w ) aAp (70)

Gw—-HQ2n+w-3) 2

Seeking for a general solution demands that one substi-
tutes the solution (52) into (70) (using the fact that T =
(Bw — 1)p) and solves for the resulting differential equa-
tion to find the scale factor. However, the resulting equation
cannot be solved analytically for arbitrary values of w and
n. Nevertheless, for particular values of these parameters a
non-singular solution can be obtained as given in expres-
sions (54)—(58). But, we are still able to find more general
solutions.

As the third type of solutions named as C, we work on a
bouncing solution for which the governing differential equa-
tion is given by
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Fig. 4 Cosmological parameters of the bouncing solution for the
model B. We have set « = 20, Ag = —0.3 and pp = 1

n+l

a~()\> alcnp, > S3w+h oA
3= - 0 How =% =0 1
(ac(t)> Y ac(t) + > (71)

where we have set w = 1. Choosing a relation between I'c
and po, ag, n and Ac as the following

_ —n—1
(n+1)Ac ( 2poay 3/n>

Fe = MGES))

) (72)

Equation (71) leads to the following solution for the scale
factor

ac(t)

2n_
3alAc (n + l)t:I: cosh~ ')\ [
2 2n 2 '

(73)

=a |:(Q + 1) cosh (

where Q is an arbitrary constant and for the Hubble parameter
we have

Hc (1)

= —@tanh |:i <\/6aTC(n jz— 1)1‘:|: 2cosh_1(Q)>] .
(74)

By substituting (52) for w = 1 within the definitions (20),
(22) and (24) along with using relation (72) we get the effec-
tive quantities as follows'

! We note that as we are concerned with the solutions that respect the
conservation equation (18), expression (52) is used for these class of
solutions.

Fig. 5 The cosmological quantities related to the bouncing solution of
the model C for,n =3,ap =13 p9 =2, Ac=3,a =1and Q =0.5

_ 34D
a n
(@ = ahc | ~ () (75)
_ 3(n+1)
a n
(@) = —aA (& + 1 (76)
a) = —« — + -,
P(effHiC C I’l(Q T 1) 2
3(n+1)
24n@+1 (%)

Wela) = (77)

e
nP—@+n%)”}

We have plotted the cosmological parameters (73)—(77) in
Fig. 5.

Unlike the solution B, here, we see that matter creation
in the time of bounce leads to a decrease in the effective
pressure. Eliminating the scale factor between expressions
(75) and (76) gives the effective EOS which can be viewed
as the characteristic equation for the model C. We therefore
get

1

aAg
PefhC = | PefC — T(l +n)). (78)

Some of the cosmological properties of model C have been
investigated in [153]. The authors have considered a model
of DE for which an EoS of the form ppg = ¥ (ppg — 6)>
is assumed for a perfect fluid. We therefore observe that if
we apply pceffy — 3pope within Eq. (19), we obtain the same
Friedman equation as the one given in [153]. Also, by redefin-
ing the parameters asn — 1/y and o(1 +n)Ag/2 — 6 in
(73) we will obtain the corresponding solution for the scale
factor. These considerations show that the problem of dark

2 In the original paper they used « and py instead of y and 6, respec-
tively. We changed this character in the present work to prevent ambi-
guity.

@ Springer



397 Page 12 of 24

Eur. Phys. J. C (2018) 78:397

fluid with an unusual EOS (which may not clearly correspond
to a definite Lagrangian) can be explained in the framework
of f(R,T) gravity.

3.2.2 Type D models: solutions which are consistent with
the relation dpefr) /dT = m

Applying this condition on the definition of effective energy
density, i.e., definition (20), leads to a second order differen-
tial equation for /4 (T) function; the solution then reads

ho(T) = 2I'p(w + 1)T2<w+}> n 2[m(1 — 3w) + l]T
3w—1 a(w —3)
+Ap, (79)

where, m is an arbitrary constant and I'p, Ap are integration
constants. Substituting (79) into the conservation equation
(18), we obtain a first order differential equation for the matter
energy density in terms of the scale factor. However, since
the mentioned equation cannot be solved for an exact general
solution for arbitrary values of w and m, we proceed with
particular cases. Note that, further investigations may give
other exact solutions or even numerical simulations can be
utilized to study other solutions. At the present, we work on
a particular case w = 1. The conservation equation (18) then
yields

({ — aFDa%)Z

. (80)

a) =
pp(a) 8am

where we have again used T = (3w — 1)p. In the limit
a — oo one obtains F%az /8m? from solution (80). As can be
seen, in the model D the matter energy density evolves from
a non-vanishing initial value far from the bounce event. This
property cannot be seen in the previous models. To obtain
the solution for the scale factor, we substitute (79) in the
Friedmann equation (19) for w = 1, which gives

1/3
an(t) = [FDf By h(\/ft) ¥ sinh (/fj‘:z)} @81)
w

where

¢ =alp+2m\/2py, =alp*>—2mAp, (82)
T = \/“0 + £ (é‘ —20ailp),

A=Tp¢ — wag. (33)

From solution (81), we can obtain the time at which the
bounce occurs as well as the radius of the Universe at the
moment of bounce, as

() _ (30w —1/21 A — oY &)
= — (0] — = >
D m g A+ oY

@ Springer

and
1/3
r AT = W2
o = |2 ¢ (85)
w

Differentiating solution (81) with respect to time gives the
Hubble parameter as follows

. 3aw 3aw
0 Y cosh ( T ) + A sinh <,/ t)
12m A cosh (,/ 3aw, ) + @Y sinh ( i‘f;"r) —I'p¢

(86)

and from definitions of the effective quantities we find

2
(é‘ — aFDa%) alAp
= — , 87
P(eff)D dma > (87)
1 ({ — aFDa%)2
DPeff)D = 4 2al'p 248
ap
2
—alpa?
(8= eToap) 2aAD} , (88)
map

o (2Apm — aT'3) al + ¢2
Wh = ( : - D) D = (89)
(g“ — ab(xFD) — 2maApap

By inspection of expressions (87) and (88), we observe that
model D corresponds to the following E0S

P(efhyD = P(efyD — J_ P(eff)D 4220 aAp. (90

In view of what we discussed in the paragraph right after Eq.
(62), model D corresponds to a generalized E0S with 8 =
1. This may be interesting since the most bouncing models
have been obtained for 8 = —1. Note that, the behavior
of obtained cosmological quantities for two values of ¢ as
given in (82), are similar to those of model C. By choosing
the model parameters so that the term including sink in (81)
disappears, we arrive at a different model. In this case, the
behavior of cosmological quantities is the same as the case
for which T # 0. However, the evolution of matter energy
density and the effective pressure are different. We typically
plot these quantities for both situations in Fig. 6. The thick
curves belong to the solution (81) and the thin ones show the
solution with Y = 0. The energy condition considerations
show that models of type D lead to the violation of NEC near
the bounce event. Also the phase space and the scalar field
representation of this model are the same as model A.
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Fig. 6 Mutual behaviors of matter energy density and effective pres-
sure related to the bounce solution in model D. The thin curves corre-
spond to solution (8§1) when T = 0. Wehavesetae = —2.7,'p = —0.1,
m = —0.8, po =2, a9 = 1.2, Ap = 1.2 for thick curves and @ = —3,
m = 0.2, po = 0.1, a0 = 1.1, Ap = —0.2 for dashed curves

4 Matter bounce solutions in f(R, T) gravity

In this section, we deal with the well-known matter bounce
scenario which can be established through the models that
obey (51) and (52). We specify these class of solutions as type
E models. A branch of the matter bounce scenarios have been
discussed with the characteristic scale factor

a0 = (Q2+2)" | o1

where Q, Z and M are positive constants. Note that Q =
UPmax, With u = 2/3, 3/4, 4/3, Z = 1 and M =
1/3 [100,101,103,104] and M = 1/4 [159] has been used
in the literature. The scale factor (91) gives the following
expression for the Hubble parameter

MQ¢

He®) =Gop1 7

92)

Note that in model E the Hubble parameter and its time
derivatives never diverge since all of them are proportional to
negative powers of Qr2 + Z. By eliminating the time param-
eter between (91) and (92), we get the Hubble parameter in
terms of the scale factor and thus the Friedmann equation can
be obtained as

1 2

3HZ(a) = 12QM? [ag M Zag M} . (93)

From another side, substituting (51) into (16) together with
using (52), the Friedmann equation in terms of the scale factor
reads

1243 n=2 1
2a0Te(w + Dnpy™' 2 Gw — 1) wil +3 a73(1722;;—3w)
2n +3w —1
(w—Dnpy _3wtn
2n+w — 3a b

3H*(a) =

(94)

where we have used subscript E for integration constant I'g
and we have set Ag = 0. Comparing Eqs. (94) and (93) we
find two different type of solutions which only one of them
can be accepted. A consistent solution is valid for

12M 4

n= , w= -1, 95)
6M — 1 6M — 1
_ 16I'eapo(2 — 3M) _3(1=2M)po 96)
T I2MGM —2) +3° T 4AM(GM — 1)
Eliminating pg between Z and Q leads to
9(2M — 1)?
( ) ©7)

~ 64alg M(3M — 2)

Valid solutions for which {Q, Z, M} > 0 holds, are given by

1 2 1
3 <M< 3 which corresponds to 3 <w < 1 for
al'g <0, (98)
2 ) 1
M > 3 which correspondsto — 1 < w < = for
oal'g > 0. (99)

As can be seen, in the context of f (R, T) gravity, there can be
found a matter bounce solution for every values of w (except
for w = 1/3,1). The value w = —1 can be accessed for
large values of M (see relations (95)). From (52) and (95) we
see that for models of type E we have pg = poag M The
effective quantities are then obtained as

2
2P, (af-1) -

12M2Q?1?
P(efhE = a a =5
= \F Z(Q> +1)

5. (100)

7

_4MQa7%
7 E

4AMQ (3M — Q2 + 1

1
P(efhE = ((SM — 1)a,§4 —3M + 2)

= (101)
Z Q2 +1)°
TR
573 M(l —am) M
1 1
=—1+3—M<1—@). (102)

Model E corresponds to an effective E0S as

+ 2 2Q [\, Z
Pt =\ 3pp — 1) PeethE £ -~ /M= — 30 ME

_2MQ

7 (103)
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Fig. 7 The behavior of scale factor, Hubble parameter, acceleration of
the Universe and effective energy density in matter bounce scenario.
Right panel: The behavior of effective pressure, effective EOS and mat-
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ter energy density for model E. The model parameters have been set as,
M=0.6,al'g =—-0.01llandZ =1
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Fig. 8 The behavior of the NEC and SEC for the model E, left panel for M = 0.7 and right panel for M = 0.3. We see that These conditions are
violated near the bounce and it is possible to be respected far away from the bounce (see Eqs. (104) and (105) and the subsequent discussion)

Estimating effective pressure (101) in the limiting times
t — 0and t — o0, indicates that the effective E0S fol-
lows the expression p(_eff)E far from the bounce and obeys
péff)E near the bounce. In + — 0 pressure (101) gives
Pethe = —4MQ/Z which is consistent with PefhE and in
t — £00 we have p(eff)e = 0 which can be explained only
with p:reff)E. Figure 7 shows the behavior of different quan-
tities. As is seen in the left panel, the scale factor decreases
till reaching a minimum non-zero value at t = #, where the
Hubble parameter vanishes. The Universe experiences four
phases during its evolution from pre-bounce to post bounce.
Before the bounce occurs, the Universe has been within an
accelerated contracting regime till the first inflection point
(f1inf < tp) is reached at which the accelerations vanishes.
At this point the Hubble parameter maximizes in negative
direction and correspondingly the effective energy density
gains a peak value. The Universe then enters a decelerating
contracting regime so that its velocity decreases in negative
direction. The collapse of Universe halts at the bounce time
after which the Universe goes into an accelerating expand-
ing phase where both dg > 0 and Hg > 0. Once the second
inflection point (foinf > 1) is reached, the Universe enters a
decelerating expanding regime so that the speed of expansion
decreases at later times.

@ Springer

Let us now check the behavior of NEC ety and SEC ()
which for model E take the following form as

NEC eff)E = P(eff)E + P(effE

4M 21
_MQ(Q - 1) 2) (104)
Z(Q2+1)
SEC eft)E = P(efhE + 30(efhE
12MQ [(1 — 2M)Q#2 — 1
_ Q¢ )Qt ] (105)

Z(Q2 +1)°

It is obvious that in the expression (104), the sign of
Qr? — 1 determines the validity of NEC. We therefore find
that near the bounce, NEC is violated within the range
—-1/4/Q < t < 1/4/Q, and out of this range it is pre-
served. The SEC is violated within a larger time inter-
val, ie., in —1//Q(I =2M) < t < 1//Q(1 —2M) for
0 <M < 1/2 and is always violated for M > 1/2. In Fig. 8
we have plotted the expression of NEC and SEC for two dif-
ferent values of M, i.e., for M = 0.3 and M = 0.7. We see
again that, in the background of f (R, T) gravity a bouncing
behavior corresponds to violating the NEC.

We then may conclude that scalar representation type E
models can be constructed by a phantom field within the time
interval where NEC is violated (notice that from solution
(102) we see that for the same intervals in which the NEC
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Fig. 9 The effective phantom scalar field and the corresponding poten-
tial for the model E. As before, the horizontal axis shows the time values.
In the model E, the NEC is violated only near the bounce (within the
period —1/4/Q < t < 1/4/Q) in contrast to the other discussed mod-
els. A phantom scalar field representation can be used to equivalently
describe the model which can be valid when the NEC is violated

is violated, we have Wg < —1). In this cases, the kinetic
energy of scalar field is negative. Thus, for a phantom scalar
field in model E we obtain

8 'M
PefhE = —5\/; |:arcsin (\FQt)

2Q¢
—+/2 arctan ( 1——Qf2)i| )

2MQ[(6M — Q% + 1]
z(Q2+1)7°

(106)

ViethE = 107

In Fig. 9 we have presented typical diagrams for the effective
phantom field and its corresponding potential.

To see the stability properties of model E, we rewrite the
field equations as follows

2Hg = (1= (108)
; H (109)
IOE - M,Oa

) M — 1 P
3H2 = —9M o(1=L). (110)
6M — 1 2%

The analysis of these equations is similar to those of the previ-
ous models. Firstly, note that only for 1 /6 < M < 1/2,equa-
tion of (110) leads to the standard Friedmann equation when
the correction term is absent. The system (108) and (109)
have two fixed points with coordinates P(Ei) = (£0, 0) which
correspond to the limit o — 0. The bounce event occurs at
pE = po at which we have He = —32M —1)/6M —1 > 0.
The stability of the system can be analyzed similar to the
way used in the previous sections. A simple study shows the
stability properties are analogous to the other models; the
evolution of the Universe begins from an unstable state, then

passing through an unstable bounce phase and finally reaches
a stable state.

5 Stability of the bouncing models

In this section we verify the wholesomeness of the bounc-
ing models which has been introduced in the previous sec-
tions through considering the possibility of occurring serious
instabilities. We therefore examine the evolution of scalar-
type perturbations in the discussed models within the metric
formalism. Since f (R, T) gravity introduces unusual cou-
pling of matter to curvature part of its action, the evolution
of matter density perturbations (specially, as the effect of
bounce event on the evolution of matter perturbations is not
obvious) can be problematic. In order to study such type of
perturbations we consider the matter density perturbations in
f(R,T) = R+ ak?h(T) models for a fat FLRW metric in
the longitudinal gauge

ds? = —(1 +2®)dr*> + a()*(1 —2W)8;;dx"dx?,  (111)
where the metric scalar perturbations ® and W are functions
of four coordinates (, x, y, z), generally. In the current work
we shall obtain necessary equations for models including a
barotropic perfect fluid with equation of state p = wp and
a general /1 (T) function. In this respect, the authors of [126]
have already considered the matter perturbations in a narrow
class of f(R, T) models® for a pressure-less perfect fluid.
The perturbations of EMT in the longitudinal gauge are given
by [160]

8T = —8pm. (112)
o1

8Ty = — (1 +w)pv,, (113)

8T, = —a(l + w)pv,;, (114)

85T, = wé;;dp, (115)

where, v is a covariant velocity perturbation [161]. Using
the background Egs. (16) and (17) we obtain the following
equations for the scalar perturbations in Fourier space

k2 1

2V 4+ 6HHD + W) :82’[+§]—'8T, (116)
a

as the ADM energy constraint (G, component of the field
equation, if we rewrite (8) as G 1;; = E‘L),

. 1 .
Hd 4+ WU = —5/82’idx’, (117)

3 Paper [126] has considered models in which the conservation of EMT
is respected. These modes accept h(T) = JT [137].
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as the ADM momentum constraint (G component). More-
over, we have

d— V=0, (118)

as the ADM propagation equation (g{ —1 /38{ Qll compo-
nent),
6 [w F2HY + HO +2(H? + H)cb]

k2

—2a—2q> =48%! — 8% + FoT, (119)

as the perturbed version of Raychaudhuri equation (Qii -Gl
component),

SR = — (8% + 2FsT), (120)

as the trace equation (G, = X)),

. k2 .

5+nH8+§<—2v—3\If)=O, (121)
a

as the time component of perturbed EMT conservation and
finally

V+3Hov—®+ A5 =0, (122)

as the spatial component of perturbed EMT conservation.*
Note that Eqs. (116)—(122) are the most general equations
describing scalar perturbations in minimal f(R,T) grav-
ity for condition F = 1 when a barotropic perfect fluid is
included. These equations are not independent, so that it is
possible to obtain one equation from another one; for exam-
ple (120) follows from multiplying (116) by 2 then adding
it to (119) and using (127). In the above equations and rela-
tions we have used the following definitions for the source
terms, which appear in the right hand sides of field equation
(8), its trace and in Eq. (14) when is written as V,gT'i =Yg,
respectively

5 = (€ + F) T — wpFel, (123)
T = <K2 n ]-") T — 4wpF, (124)
1 1
Yy=— |wv, — —FV T —VaFTE |.
K2+}_[w (pF) 2]-" ﬁﬂa]
(125)

The gauge-invariant density contrast in the longitudinal
gauge is defined as

Sp
§="L 43Hv (126)
0

4 For more details and also the utilized terminology, see [162].
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and the perturbed Ricci scalar for the FRLW metric can be
obtained as

SR = —2[3\'1'1 + 12HV +3H® + 6HD

kZ
+12H?*® — = (® — 2\11)] (127)

Also, using definitions in (123)-(125), the coefficients in
(121) and (122) can be obtained as follows

g

3(1+w)(3 1)N’7H 3N
= - w)Bw —1)—Hp, o=3—,
n D, 0 D,

(128)

LG F+(1 + w)Guw—1)pF |
§ = (1+w)[ o= :
(129)
1Tl F

where

Ny = —(1+w)FF + (1 +w)@Gw — 1)pF?
2
—%H)f’ — (14 w)Bw — (&2 + P)pF’,
2
D, = |:K2 + %(3 —w)F+1+wCw-— l)pf/j| ,

(131)

and
1
No = (1= w)F —wk? + F) + Gw? 4+ 2w — 2)pF’
1
Dy =k’ + FG=wF + (1 +w)Gw - DpF',  (132)

and prime denotes derivative with respect to the trace. Note
that wherever is needed we have used 6 which can be obtained
from the EMT conservation equation (14). Now, using equa-
tions (121) and (122) we arrive at the evolutionary equation
for the matter perturbation, as follows,

.. ) .. . k2
§+Di6+Drs+& [—3@ —3@o +2)HD + —2<I>} =0.
a
(133)

From Egs. (120) and (127) we obtain a dynamical equation
for the perturbed potential ®, as

. . ) k2
2 [3@ +15H® + (6H + 12H* + —2)43} +65=0,
a

(134)
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Fig. 10 Evolution of § and W

for models A, B and C. The 1.0
behavior of these quantities are 08!
similar for the first three model. ’
The black curves are plotted for 0.6}
initial values §(0) = 0,
8'(0) =1, ®(0) = 0 and o 04;
@’(0) = 1 and the gray ones are 2» 0.2
drawn for §(0) = 1, §(0) = 0, s
®(0) =1and ®'(0) =0 0.0
-0.2}
-0.4;
-10 -5

where we have used solution (118) and defined the following
coefficients

Dy = (2+30)H+n—§] (135)

. "
D, = (ﬁ—§n+3anH—/\§‘a—2+2nH>, (136)

0=|x2+@—5wF—(1+wGw— 1)f’p]p. (137)

Hence, we have two differential equations (133) and (134)
along with relation (116) to be solved for 6 and W. Obvi-
ously, the coefficients of these equations are some compli-
cated functions of model properties, H, a, p, T, F, F', F",
and thus it may not be possible to obtain exact solutions.
However, one can resort to numerical methods or even in the
case of stiff equations, obtain approximated solutions. We
have plotted the evolution of § and @ in Fig. 10 for models
A, B and C. Numerical simulations show that the behavior of
perturbations are typically similar in A, B and C models for
the same initial values. We have sketched two set of plots in
Fig. 10. These models show a zero value for the fluctuations
when the initial values §(0) = 0, §(0) = 1, ®(0) = 0 and
®’(0) = 1 are assumed. In this case, the fluctuations tend
to zero (left panel) and constant values (right panel) in the
regime of large times, see the black curves in Fig. 10. As
another case, the fluctuations increase from zero to a max-
imum finite value in the period of bounce if the initial data
are set as §(0) = 1,8'(0) = 0, ®(0) = 1 and ®'(0) = O,
see the gray curves. As can be seen from the evolution of
scalar perturbations across the bounce, though small tempo-
rary fluctuations, no instability occurs during the bounce, nor
does it happen in the limit of large times for these models.
Unfortunately, the system of differential equations (133)
and (134) become stiff for models D and E so as it is not
possible to plot reasonable diagrams for § and @. In this case,
we proceed to obtain approximate solutions. For models E
and D (in case in which Y = 0), Egs. (133) and (134) at

3
2,
1,
e A
@ 0 WA\
tg v}
_17
—20 \ 1
‘ ‘ 4l | | | |
5 10 21 -5 0 5 10
t

times near the bounce will take the following forms

.1 k?
5+ (21)8 + g°9°> 542 (3H/0 + —2> £00 =0,
2 a0
(138)

< o0, (2K 0\ g
6% +6% + (=5 + 120" | =0, (139)

a

for which the solutions up to second order can be found as
1
5 =08+t + [_Z (2@3 +g°90) 5

_ <3H/0 + k2 )soq)il t2
)]
a

1
O = + Dt + [—Eeoa,- —H ®; —

(140)

i o' |12
649> ’

(141)

where the superscript “0” denotes the values of quantities in
the limit #+ — 0 and the subscript i shows the initial values
required for integrations. As we see, the solutions are stable
in the period of bounce. Note that other coefficients except
those which are shown in Eqgs. (138) and (139) vanish in the
limit ¢ — 0. In the limit of large times, we have numeri-
cally plotted the evolution of the matter contrast § and the
potential ® in Fig. 11. As can be seen, from (140) and (141),
it is obvious that there happens no instability at the period
of bounce in models D and E, however, far away from the
bounce point, both § and ® increase dramatically in model
D, see Fig. 11.
For model E, in the limit of large times, t — 0o, we get

§—3%d =0,

P =0,

(142)
(143)
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Fig. 11 The evolution of § and 1.0~ 1.5~
W for model D. The Left panels
are plotted for initial values 1.0f
5(0)=0,80)=1,00) =0 05!
and ®'(0) = 0. The right panels 0.5/
are drawn for §(0) =1, '
8'(0) = 0, d(0) = 1 and o 00 o 0.0
@’ (0) = 0. The black curves are < ' «< )
the solutions of equations
approximated for large times -05
and the brown ones are solutions -0.5;
in the limit of small times -1.0
approximated around the
i -1.0 . : : : -1.54 : : :
bounce time =10 -05 00 05 1.0 2 -1 0 1 2
t t
1.0r 1.5r
0.5¢
1.0r 1
o [a)
< 00 <
0.5¢ 1
-0.5¢
~1.0b ‘ ‘ ‘ 0.0*‘ ‘ ‘ ‘ ‘ ‘ 1
-2 -1 0 1 2 -3 -2 -1 0 1 2 3
t t
with the solutions where Qq and Qo are some constants. In [137] the authors
have analytically shown that for the case of pressure-less
erfect fluid, i.e., for w = 0, one finds
8=26+0t, (144) P v
O =; + Dit. (145) 2/3

Therefore, depending on the initial values, the perturbations
in model E can grow before and after the bounce. There-
fore we conclude that, though the scalar-type perturbations
in models D and E behave regularly at the bounce point, these
solutions are unstable asymptotically.

6 Singular solutions

In this section we seek for possible solutions that exhibit
singular behavior, specially the big-bang singularity. Some
singular solutions have been already studied in the literature
which we suffice to give a short discussion for them. Presum-
ing the EMT conservation (i.e., supposing T = Toa3(0+w)),
Eq. (18) can be solved to give the following solution

+1

w 3 1
h T =2 T§7w+l s
Q) Ql3w+1 +Q

(146)
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3 \13
a'sm(t):(ﬁ) [ QP Hyt (8«/——3,&)} :
(147)

which shows a singular behavior. This singular solution is
the only one which respects the EMT conservation. Relax-
ing such a constraining condition, one can obtain other kind
of solutions. Note that function (146) is the only form that
respects the EMT conservation, that is, to obtain another solu-
tion one should assume some suitable form for 4 (T). For
example, in [137] for f(R, T) = R+ a«’T the authors have
obtained

6(a—1)
p(a) = poa 273« , (148)
2—3a 2—3a
3\ 60 [3(1 — a)y/ShHot 1300
al () = <-> [ o a49)
2 V2 =3a

for a pressure-less matter. In this case singular solution can
be found for some valid range of values of the model constant
«. Also, the following solution has been obtained for models
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of form f(R, T) = R+ ax?T~1/2

2003/2 2/3
ola) =223 (M _ ot> (150)

972

27\ 2/9
a's','m(f)=<ﬁ) [a+2(3H§Qo)3/2] 3. 151

As a new class of (big-bang) singular models, we examine
the models which admit the following solution

t 14
I\
agn(t) = ao (5) )

where £ being a real positive number and o being the time
at which the scale factor gets the present value ag. Any solu-
tion has to satisfy two of the three equations (16)—(18), for
a presumed scale factor function. In this case, two unknown
functions T(a) and i (T) should be obtained via solving the
resulted equations. To proceed further we make use of the
following anzats

(152)

h(T) =C4T#* 4 CaT, (153)

where constants C;’s and p should be fixed according to
the following considerations. Substituting (152) and (153) in
(18) and solving for T(a) we get

T(a)
1
T—n
aCqu(w —3)Ty

__6(u—=Dw+1)
[aC1/4(w73)T(’;+(w - 1)T0] (%) ZutwrD=3wFT 4 70 (1— )

(154)

where an integration constant has been set so that T(a =
ag) = To. To ensure that three functions (152), (153) and
(154) provide an analytic solution, they must satisfy at least
one of the equations (16) and (17). Substituting these func-
tions in (16) shows that we have a solution only for the case
of stiff fluid, i.e., for w = 1. Therefore, a singular solution
can be obtained provided that

1
2036 =T

Cr=- 0
! tgouc?
1
Co=——,
o
L1, 2
= T < < —,
H=3"33 3
w=1. (155)

Thus, for conditions (155) we obtain

=
rem(s)
ao

1
T\ 23
fR,T) =R —«?T +2¢(3¢ — 2)t,? (T—)
0

(156)

(157)

Therefore, besides the non-singular solutions obtained in the
present paper, one can still find a set of singular solutions.
In this brief section in addition to addressing some previous
results we obtained a new singular model, though a coherent
study can be performed in order to deal with possible condi-
tions for which big-bang singularity would occur; however
working on this issue is beyond the scope of the present paper
and comprehensive studies on this subject will be reported
elsewhere. It is worthwhile to mention that some studies have
been already made to consider other forms of singular solu-
tions, e.g., [163]. Beside the above results, Bianchi type I cos-
mological model with magnetized strange quark matter in the
framework of f(R, T) gravity have been investigated and it
is found that the model begins with big-bang and ends with
big rip [164]. Using Lie point symmetry analysis method,
the authors of [165] have shown that for a Bianchi type I
spacetime, both singular (big-bang) and nonsingular solu-
tions could exist subject to the type of specified symmetry.

Recently, the authors of [166], have considered some cos-
mological features of f(7) gravity (where here 7 denotes
torsion scalar) using the dynamical system approach both
generally and for some specific forms of f(7) functions.
The core of their studies is taking the advantage of this fact
that the torsion scalar can be used interchangeably with the
Hubble parameter (i.e., 7 = —6H 2). Thus, the field equa-
tions reduce to a single equation (in the case of pressure-less
matter) in the form of H=F (H), since the matter density
can also be rewritten as a function of the Hubble parameter.
Briefly, they have shown that in f(7") gravity a single equa-
tion (which can be interpreted as a simple one dimensional
dynamical system) can govern the dynamics of field equa-
tions. Benefiting this useful result they investigated phase
space portraits of various cosmological evolutions such as,
singular and non-singular solutions. Likewise, one may be
motivated to utilize such an approach in order to investigate
the cosmological solutions of f (R, T) gravity (especially,
in the case of present work, i.e., the function given in (15))
through phase portrait diagrams. However, looking at Egs.
(17) and (18) one finds that it is impossible to obtain an
equation like H = F(H) so that it reflects full information
of the field equations. In this case for an assumed function
h(T), we have a two dimensional dynamical system without
any further reduction. Thus, the procedure proposed in [166]
would be generally failed in f (R, T) gravity.
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Table 1 Different bouncing solutions and their main properties*

Models  a(t) Peff) h(T) p w
% |:cosh ( —@t) — sinh (J—?t)]
A o : 23 P = cons. % (P + %T) poa=> >1/3
X {% + ("{(;ul,)j)po [sinh (v/=3Pt) 4 cosh (v=3P1) — 1]}
L4 28,/3R2(S2—1)p+9 2
-3+t —3rrso - IT 7 -1
B R [cosh (&) — S] T IR}(S*-1) -—L£T+A poa -1/5
RI(S2-1)
B 2n/3(n+1) ntl
c ag |:(Q + 1) cosh (‘/MTAL;”; + o0 (Q))} Lo-ea+m] A —2+A poa=o/" 1
re A 3 3 1 r A @m-1T (s—ara®)’
1 2 m— -
D [j—acosh <1/%t>—Tsmh< ﬁt)} —‘\)‘/7 o+ %5 +aA ry/T— @Dl A St 1
2 n=2 3
M (zr—-1n 2 (w+D) THE+3
E (Q;Z + Z) 0 7 MO 2n+32u()711 poa3wHD/n g
2Q _Z,_2MQ -1
= z M 3Q P z - a(2n:—w—3) T+A

*The subscripts A,..,E and “eff” are dropped for abbreviation

7 Concluding remarks

In the present work we studied classical bouncing behavior of
the Universe in the framework of (R, T) = R+ h(T) grav-
ity theories. We assumed a single perfect fluid in a spatially
flat, homogeneous and isotropic FLRW background. Having
obtained the resulted field equations, we employed the con-
cept of effective fluid (which is firstly introduced in [145])
via defining an effective energy density and pressure and also
reformulating the field equations in terms of these fluid com-
ponents. In this picture, one could recast the field equations of
f (R, T) gravity for areal perfect fluid into GR field equations
for an effective fluid. Itis also shown that in a modified gravity
model the energy conditions are usually obtained by using the
effective EMT, not the one for real fluids. In f (R, T) gravity,
the definitions for effective energy density and pressure have
already been used to obtain the energy conditions [154]. The
effective fluid has an EOS of the form, pefy = V(poeff),
which corresponds to an i(T) function. In this method one
firstly specifies an effective EOS or a condition on the effec-
tive components and then obtains the corresponding /(T)
function and other cosmological quantities.

It is also possible to make a link between f (R, T) grav-
ity in effective picture and models which use some exotic
or dark component with unusual E0S. These models which
have been widely discussed in the literature (to deal with
some cosmological issues) are also called theories with “gen-
eralized E0S”. The mathematical representation of effective
components provides a setting within which unusual inter-
actions of a real perfect fluid with gravitational field can be
translated as the presence of an exotic fluid which admits the
EoS of the form peety = V(pcefr))- In this paper we have
shown that it is possible to recover generalized EOS mod-
els which have been previously studied in the literature ( see
e.g., [52,152,153,157,158)), in the framework of f(R,T)
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gravity. Therefore, the problem of exotic fluid in the con-
text of generalized EOS models which are mostly without
a determined Lagrangian may be discussed in a Lagrangian
based theory of gravity like f (R, T) gravity.

In the current research, we discussed four different bounc-
ing models in f(R, T) gravity. We labeled them as the mod-
els A, B, C, D and E and briefly mentioned their main
properties in Table 1. Each model can be specified either
by an A(T) function or by an effective E0S. Models A-D
mimic an asymptotic de Sitter expansion in the far past and
future of the bounce. The model A corresponds to a con-
stant effective pressure, p(efy = P; for the model B we have

PefB = —pPefhB/3 + /PBO(efB + dB + e, the model C
is specified by p(efyc = Jjcpoeftc + ec, the model D cor-

responds to pefyD = P(ef)D + /bDP(etD + dp + ep and
finally the model E obeys the E0S, petie = aep(eine +

VDEP(eftE + dE + eg, where the constants b, d, e and j are
written in terms of model parameters. In all models the mat-
ter density grows to a maximum value at the bounce which
corresponds to a minimum for the scale factor. The effective
density varies from zero at the bounce to a positive value in
the far past and future of the bounce. The effective pressure
varies between negative values; in model A, it is a constant,
in the model B it increases at the bounce, in the models C and
E it decreases and the model D admits both behaviors. The
effective EOS has the property —oo < W < —1 when the
bounce point is approached. The Hubble parameter satisfies
H(t) = 0 and dH/dt > 0 at the event of bounce and also
all its time derivatives have regular behavior for all models.
Therefore, these bouncing solutions do not exhibit future sin-
gularities which are classified in the literature of cosmologi-
cal solutions. We can consider the inherent exoticism hidden
behind f (R, T) gravity in another way. As already we men-
tioned, this issue can be described as an unusual interaction
between gravitational field and normal matter or introducing
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an effective fluid. From the point of view of the energy condi-
tions, in all discussed models the SEC and NEC are violated
(note that for a normal fluid NEC is not violated [47]) near
the bounce and the effective density gets minimized to zero.
Such a result has been previously predicted in GR [155].
As discussed in [47], the exoticness can be understood as a
minimization in the effective pressure. In the other words,
a minimum in the effective energy density corresponds to
a minimum in the scale factor. Such a behavior is permitted
provided that VW < —1. Note that, for a normal matter, a min-
imum (maximum) compression leads to a minimum (maxi-
mum) energy density. Thus, in f(R, T) gravity an abnormal
or effective fluid which leads to an uncommon balance in
the density and pressure can be responsible for the bouncing
behavior. An interesting feature of the bouncing solution in
f (R, T) gravity is that one can construct solutions in which
the SEC is respected by the real perfect fluid. Such solu-
tions cannot be found in GR [155]. Also note that the real
perfect fluid with w > —1 never violates the NEC. There-
fore, we have solutions without the future singularities and all
energy conditions can be respected by a real perfect fluid. By
this discussion, one may use the definition of an (effective)
phantom scalar field if one asks for the matter source to be
reinterpreted as that of a scalar matter field. We obtained the
equivalent scalar field ¢ eff) (f) and its corresponding poten-
tial Viesy(¢) in each case. Moreover, we have studied the
dynamical system representation of these models. We found
that the evolution of the Universe can be displayed by tra-
jectories which initially start from an unstable state, passing
through an unstable fixed point (the bounce event) and finally
are absorbed by a stable point. The initial and final states
are de-Sitter era in models A, B, C and D and the decel-
erated expanding Universe in model E. Another important
issue discussed in this work is related to the study of stabil-
ity of bouncing solutions through scalar-type cosmological
matter perturbations in the bouncing universe. Our numeri-
cal analysis of density perturbations for models A, B and C
revealed that, though a slight jump (depending on the ini-
tial conditions) at the bounce point, the amplitude of matter
density perturbation (6) and perturbed potential ($) behave
regularly throughout the bounce phase. Therefore, since the
time interval during which the fluctuations that occur within
density contrast and perturbed field is short, the instabilities
do not have enough time to grow to a significant magnitude.
However, this case does not happen for the two remaining
models.

As the final remarks we should emphasize that our mod-
els were obtained by indicating different conditions on the
effective density and pressure which led to different i (T)
functions. This means that the models A, B, C, D and E are
not the only possible models for the bouncing behavior. It is
obvious that one can still choose other /(T) functions or con-
sider other assumptions on the effective density and pressure

to obtain new bouncing solutions (with even new features).
Our aim was to show the existence of varieties of bounc-
ing solutions in f(R, T) gravity and study their properties.
Especially, our study was confined to the Lagrangians of type
f (R, T) = R+ Ah(T) though other forms of Lagrangians can
be investigated. The other issue is that our study was per-
formed in the effective picture. In case such an approach is
not taken seriously, one can think of it as only an alternative
mathematical method. One can still investigate a nonsingu-
lar cosmological scenario without employing the equations
which are written in terms of the effective quantities. In this
case it is enough to assume a Lagrangian and solve the field
equations to inspect for a bouncing solution. However, cos-
mological solutions for the f (R, T) gravity model presented
here are not singularity free and as we observed under certain
conditions, a class singular solutions could be obtained.
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