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Abstract The incomplete particle identification limits the
experimentally-available phase space region for identified
particle analysis. This problem affects ongoing fluctuation
and correlation studies including the search for the criti-
cal point of strongly interacting matter performed on SPS
and RHIC accelerators. In this paper we provide a procedure
to obtain nth order moments of the multiplicity distribution
using the identity method, generalising previously published
solutions for n = 2 and n = 3. Moreover, we present an
open source software implementation of this computation,
called Idhim, that allows one to obtain the true moments of
identified particle multiplicity distributions from the mea-
sured ones provided the response function of the detector is
known.

1 Introduction

Search for the critical point of strongly interacting matter
remains one of the most important goals of experimental
searches in heavy ion physics [1,2]. Its basic property – the
increase of the correlation length of the considered system
– forces experimenters to shift their interests from inclusive
spectra to higher-order moments and cumulants of the par-
ticle multiplicity distributions. A particular interest is paid
towards net-proton fluctuations being the most sensitive to
the searched phenomenon [3].

One of the most serious experimental issues, which largely
limits the available phase-space coverage, and, possibly,
affects the studied signal, is the incomplete particle iden-
tification caused by finite detector resolution. To overcome
this problem an experimental technique, called the identity
method, was proposed in Ref. [4], and extended in Refs. [5–
7]. So far the identity method was described for the sec-
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ond [5] and third [6] order moments. In Ref. [6] it was also
used to reexamine the first moments of the identified parti-
cle distributions. The impact of particle losses due to detector
inefficiencies on results from the identity method is discussed
in Ref. [7]. The author shows that it remains applicable pro-
vided detection efficiencies can be determined with sufficient
accuracy. With the ongoing development of theoretical stud-
ies concerning higher order moments it seems appropriate to
extend experimental techniques and tools as well.

In the present study the identity method is extended in two
ways. Firstly, a strict procedure to obtain nth order moments
of the multiplicity distribution is shown. Secondly, a pro-
gram, called Idhim, which performs such calculations for
any given number of considered particle types, is presented.
It also allows one to obtain moments up to any order provided
the detector response function is known. The modification of
first moments from Ref. [6], also included in Idhim, may
address possible biases in other popular methods [8] (e.g.
maximal likelihood method [9,10]).

The paper is organized as follows. In Sect. 2, basic quan-
tities of the identity method are presented. The computation
of nth moments of true multiplicity distribution is shown in
Sect. 3. Modifications necessary to apply the general formu-
las in practice are addressed in Sect. 4. Description of the
Idhim program which computes moments of the true multi-
plicity distribution is given in Sect. 5. Section 6 contains tests
of the program with the detector response close to the ones
measured in real experiments. Conclusion in Sect. 7 ends the
paper.

2 Basic quantities

The identity method is developed under the assumption that
particles are identified by measuring quantity x (e.g., a mass)
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of observed particles. Due to the finite detector resolution
one gets a continuous distribution for x , denoted by ρ j (x),
where index j stands for one of k particle types. The density
is expected to sum up to the mean of N j , i.e., the multiplicity
for this type:

∫
dxρ j (x) = 〈N j 〉, (1)

For a given particle observation, its conditional probability
of being of a given type is expressed by a quantity called
identity, defined as:

w j (x) ≡ ρ j (x)∑k
l=1 ρl(x)

. (2)

In the case of complete particle identification w j is reduced
to two extreme values: w j = 0 for particles of types other
than j and w j = 1 for particles of type j .

In the same way, one can define an aggregated quantity
for a given particle type:

Wj ≡
N (ν)∑
i=1

w j (xi ), (3)

where N (ν) is the total multiplicity (including all particle
types) of the νth of considered Nev events. From these events
one obtains the distribution of different types of W with its
moments defined as

〈Wn1
1 ·Wn2

2 · . . . ·Wnk
k 〉 = 1

Nev

Nev∑
i=1

Wn1
1 ·Wn2

2 · . . . ·Wnk
k , (4)

where n j denotes the order of the moment of the distribution
of Wj .

3 Computing the nth moments of multiplicity
distribution

We will now show how one can compute all the nth moments
of the multiplicity distribution 〈Nn1

1 · Nn2
2 · . . . · Nnk

k 〉 with
n1 + n2 + · · · + nk = n using the moments of the measured
identity variables. The procedure will be a generalisation of
those published for n = 2 [5] and n = 3 [6]. First, we
shall demonstrate how the value of a moment of identity
variables 〈Wn1

1 ·Wn2
2 · . . . ·Wnk

k 〉, depends on the multiplicity
distribution. We have the following:

〈Wn1
1 · Wn2

2 · . . . · Wnk
k 〉 =

∞∑
N1=0

∞∑
N2=0

· · ·
∞∑

Nk=0

P(N1, N2, . . . , Nk)

∫
dx1

1 P1(x1
1 ) . . .

∫
dx1

N1
P1(x1

N1
)

∫
dx2

1 P2(x2
1 ) . . .

∫
dx2

N2
P2(x2

N2
) · · ·

∫
dxk1 Pk(x

k
1 ) . . .

∫
dxkNk

Pk(x
k
Nk

)

[
w1(x1

1 ) + · · · + w1(x1
N1

) + w1(x2
1 ) + · · · + w1(x2

N2
)

+ · · · + w1(xk1 ) + · · · + w1(xkNk
)
]n1

×[
w2(x1

1 ) + · · · + w2(x1
N1

) + w2(x2
1 ) + · · · + w2(x2

N2
)

+ · · · + w2(xk1 ) + · · · + w2(xkNk
)
]n2

× · · · × [
wk(x

1
1 ) + . . . + wk(x

1
N1

) + wk(x
2
1 ) + · · · + wk(x

2
N2

)

+ · · · + wk(x
k
1 ) + · · · + wk(x

k
Nk

)
]nk , (5)

where P(N1, N2, . . . , Nk) is the multiplicity distribution, i.e.,
the probability of observing N1 particles of the first time, N2

particles of the second type and so forth, and P j (x) = ρ j (x)
〈N j 〉

is the probability distribution of the j th type.
Let us firstly focus on the innermost part of Eq. 5, denoted

hereafter by ω:

ω ≡
k∏

l=1

⎡
⎣ k∑

j=1

N j∑
i=1

wl

(
x j
i

)⎤
⎦
nl

. (6)

We will now use the multinomial theorem to expand the nl th
power. Let us first define the following notation for brevity:

a∑
a1,a2,...,ak

() ≡
∑

a1+a2+···+ak=a

(
a

a1, a2, . . . , ak

)
. (7)

In this notation the multinomial theorem is represented by

(x1 + x2 + · · · + xk)
a =

a∑
a1,a2,...,ak

() k∏
i=1

xaii , (8)

which allows us to express ω as

ω =
k∏

l=1

nl∑
η1
(l),...,η

k
(l)

() k∏
j=1

⎡
⎣

N j∑
i=1

wl

(
x j
i

)⎤
⎦

η
j
(l)

, (9)

where the first summation is over all possible combinations
of k nonnegative integers η1

(l), . . . , η
k
(l) that sum up to nl .

Let us now use the multinomial theorem again, this time to
expand the η

j
(l)th power:

ω =
k∏

l=1

nl∑
η1
(l),...,η

k
(l)

() k∏
j=1

η
j
(l)∑

η
j
1(l),...,η

j
N j (l)

() N j∏
i=1

[
wl(x

j
i )

]η
j
i(l)

.

(10)

123



Eur. Phys. J. C (2018) 78 :391 Page 3 of 8 391

This formulation could be rearranged to give

ω =
n1∑

η1
(1)

,...,ηk
(1)

() n2∑
η1
(2)

,...,ηk
(2)

()
. . .

nk∑
η1
(k),...,η

k
(k)

()

k∏
j=1

η
j
(1)∑

η
j
1(1)

,...,η
j
N j (1)

() η
j
(2)∑

η
j
1(2)

,...,η
j
N j (2)

()
. . .

η
j
(k)∑

η
j
1(k),...,η

j
N j (k)

()

N j∏
i=1

w1(x
j
i )

η
j
i(1) · w2(x

j
i )

η
j
i(2) · . . . · wk(x

j
i )

η
j
i(k) . (11)

If we now put ω expressed in such way back to Eq. 5, we can
notice that integration over x j

i can be applied to the product

w1(x
j
i )

η
j
i(1) · . . . · wk(x

j
i )

η
j
i(k) to give

〈Wn1
1 · . . . · Wnk

k 〉

=
∞∑

N1=0

. . .

∞∑
Nk=0

P(N1, . . . , Nk)

n1∑
η1
(1)

,...,ηk
(1)

() n2∑
η1
(2)

,...,ηk
(2)

()
. . .

nk∑
η1
(k),...,η

k
(k)

()

k∏
j=1

η
j
(1)∑

η
j
1(1)

,...,η
j
N j (1)

() η
j
(2)∑

η
j
1(2)

,...,η
j
N j (2)

() · · ·
η
j
(k)∑

η
j
1(k),...,η

j
N j (k)

()

N j∏
i=1

u j (η
j
i(1), η

j
i(2), . . . , η

j
i(k)), (12)

where function u j is defined as

u j (η
j
i(1), η

j
i(2), . . . , η

j
i(k)) ≡ 1

〈N j 〉
∫

w1(x)
η
j
i(1) · w2(x)

η
j
i(2)

· . . . · wk(x)
η
j
i(k)ρ j (x)dx . (13)

Let us now focus on the part of Eq. 12 depending on j , which
will be denoted by λ j ,

λ j ≡
η
j
(1)∑

η
j
1(1)

,...,η
j
N j (1)

() η
j
(2)∑

η
j
1(2)

,...,η
j
N j (2)

() · · ·
η
j
(k)∑

η
j
1(k),...,η

j
N j (k)

()

N j∏
i=1

u j (η
j
i(1), η

j
i(2), . . . , η

j
i(k)). (14)

Since each u j depends on a tuple of values of length k, it is
convenient to introduce a notation for such tuples:

η
j
i ≡ (η

j
i(1), η

j
i(2), . . . , η

j
i(k))

η j ≡ (η
j
(1), η

j
(2), . . . , η

j
(k))

η
j
p + η

j
q ≡ (η

j
p(1) + η

j
q(1), η

j
p(2) + η

j
q(2), . . . , η

j
p(k)

+η
j
q(k)). (15)

This allows us to express λ j as

λi =
∑

η
j
1+···+η

j
N j

=η j

⎡
⎣ k∏
l=1

(
η
j
(l)

η
j
1(l), . . . , η

j
N j (l)

)
·
N j∏
i=1

u j (η
j
i )

⎤
⎦ , (16)

where the first summation is over all possible combina-
tions of N j tuples η

j
1, . . . , η

j
N j

(each containing k nonneg-

ative integers) that sum up to η j . We can notice that zero
tuples, i.e., η

j
i = (0, 0, . . . , 0), do not contribute to λ j

since u j (0, 0, . . . , 0) = 1. Let us then express the sequence

η
j
1, η

j
2, . . . , η

j
N j

as a combination of several non-zero tuples.

Let Γ j denote a set of all such combinations possible for
η j , so that each γ ∈ Γ j consists of |γ | different non-zero
tuples: μ

γ
1 ,μ

γ
2 , . . . ,μ

γ
|γ |, each occurring mγ

1 ,mγ
2 , . . . ,mγ

|γ |
times, respectively. There are also N j − ∑|γ |

p=1 m
γ
p tuples

equal to zero in the original sequence η
j
1, η

j
2, . . . , η

j
N j

. We
therefore have

∀γ∈Γ j

|γ |∑
p=1

mγ
p · μ

γ
p = η j . (17)

If we use this to compute λ j , we get

λ j =
∑

γ∈Γ j

(
N j

mγ
1 ,mγ

2 , . . . ,mγ
|γ |, N j − ∑|γ |

p=1 m
γ
p

)

×
[ k∏
l=1

(
η
j
(l)

mγ
1 ∗ μ

γ

1(l),m
γ
2 ∗ μ

γ

2(l), . . . ,m
γ
|γ | ∗ μ

γ

|γ |(l)

)

×
|γ |∏
p=1

[u j (μ
j
p)]m

γ
p

]
+ 1[η j = 0], (18)

where a ∗ b means that the value b appears a times in the
multinomial symbol. The indicator variable is necessary so
that in the case of η j = 0, we have λ j = 1, as in Eq. 16.

If we now focus on the multinomial symbol involving N j ,
it can be expanded as
(

N j

mγ
1 , . . . ,mγ

|γ |, N j − ∑|γ |
p=1 m

γ
p

)

= N j !
mγ

1 ! · mγ
2 ! · . . . · mγ

|γ |! ·
(
N j − ∑|γ |

p=1 m
γ
p

)
!

=
N j · (N j − 1) · . . . ·

(
N j −

(∑|γ |
p=1 m

γ
p − 1

))

mγ
1 ! · mγ

2 ! · . . . · mγ
|γ |!

. (19)
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We can see it is a polynomial of N j of degree
∑|γ |

p=1 m
γ
p ,

which is at least 1 and at most η
j
Σ ≡ ∑k

l=1 η
j
(l).

Since λ j is a weighted sum of such polynomials (and indi-
cator variable), it is a polynomial of N j of at most the same
degree and can therefore be expressed as

λ j = λ
j
0 + λ

j
1N j + λ

j
2N

2
j + · · · + λ

j

η
j
Σ

N
η
j
Σ

j . (20)

Further coefficients, i.e., λ
j
p for p > η

j
Σ , equal zero.

Let us put this formulation of λ j back to Eq. 12. This gives
us

〈Wn1
1 · . . . · Wnk

k 〉

=
∞∑

N1=0

· · ·
∞∑

Nk=0

P(N1, . . . , Nk)

n1∑
η1
(1)

,...,ηk
(1)

() n2∑
η1
(2)

,...,ηk
(2)

() · · ·
nk∑

η1
(k),...,η

k
(k)

()

k∏
j=1

λ
j
0 + λ

j
1N j + λ

j
2N

2
j + · · · + λ

j

η
j
Σ

N
η
j
Σ

j . (21)

We can rearrange it as

〈Wn1
1 · . . . · Wnk

k 〉

=
∞∑

N1=0

· · ·
∞∑

Nk=0

P(N1, . . . , Nk)

n1∑
η1
(1)

,...,ηk
(1)

() · · ·
nk∑

η1
(k),...,η

k
(k)

() η1
Σ∑

q1=0

η2
Σ∑

q2=0

· · ·
ηkΣ∑
qk=0

λ1
q1

λ2
q2

. . . λkqk × Nq1
1 Nq2

2 . . . Nqk
k , (22)

which finally gives us

〈Wn1
1 · . . . · Wnk

k 〉 =
n1∑

η1
(1)

,...,ηk
(1)

() · · ·
nk∑

η1
(k),...,η

k
(k)

()

η1
Σ∑

q1=0

η2
Σ∑

q2=0

· · ·
ηkΣ∑
qk=0

λ1
q1

λ2
q2

. . . λkqk 〈Nq1
1 · Nq2

2 · . . . · Nqk
k 〉.

(23)

Since
∑k

j=1 η
j
Σ = n1 + n2 + · · · + nk = n, the order

of the moments at the right hand side is at most equal n.
We have therefore just shown how to express any moment
of W distributions with order n as a sum of moments of N
distributions with order ≤ n. Since this dependency is linear,
we can define the whole problem as a set of linear equations.

It will have the coefficients

aq1,q2,...,qk
n1,n2,...,nk ≡

n1∑
η1
(1)

,...,ηk
(1)

() · · ·
nk∑

η1
(k),...,η

k
(k)

()
λ1
q1

λ2
q2

. . . λkqk ,

(24)

where n1 + n2 + · · · + nk = n and q1 + q2 + · · · + qk = n.
We also need to define elements which will take into account
the contribution of moments of N with orders lower than n:

bn1,n2,...,nk ≡ 〈Wn1
1 · . . . · Wnk

k 〉

−
n1∑

η1
(1)

,...,ηk
(1)

() · · ·
nk∑

η1
(k),...,η

k
(k)

()

η1
Σ∑

q1=0

η2
Σ∑

q2=0

· · ·
ηkΣ∑
qk=0

1[q1 + q2 + · · · + qk < n]

λ1
q1

λ2
q2

. . . λkqk 〈Nq1
1 · Nq2

2 · . . . · Nqk
k 〉. (25)

To arrange the moments in a linear order, let us now
choose any one-to-one function f from sequences of length
k summing up to n to numbers 1, 2, . . . ,

(n+k−1
k−1

)
. We can

use it to construct a matrix A having elements Aξ,ζ =
aq1,q2,...,qk
n1,n2,...,nk and vector B with elements Bξ = bn1,n2,...,nk

for ξ = f (n1, n2, . . . , nk) and ζ = f (q1, q2, . . . , qk). We
can also arrange unknown moments in a vector N such that
Nζ = 〈Nq1

1 ·Nq2
2 ·. . .·Nqk

k 〉. This allows us to express equation
23 as

∑
ζ

Aξ,ζ Nζ = Bξ , (26)

or in matrix notation:

AN = B. (27)

If detA 
= 0, the moment we are looking for can be computed
as

N = A−1B. (28)

4 Modifications

In the previous section we have shown the procedure to com-
pute the nth moments of the multiplicity distribution as a
generalisation of the computations for n = 2 and n = 3, but
to apply it in practice we needed to make three modifications.
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Firstly, to compute the first moments as proposed in Ref.
[6], we need to replace Eq. 1 with the following:

∫
dxρ j (x) = 〈A j 〉. (29)

Now the distribution of a measured x for a given particle type
j is normalised to arbitrary value A j , which does not have
to equal N j . As a result, we also need modify Eq. 13, which
now becomes

u j (η
j
i(1), η

j
i(2), . . . , η

j
i(k)) ≡ 1

〈A j 〉
×

∫
w1(x)

η
j
i(1) · w2(x)

η
j
i(2) · . . . · wk(x)

η
j
i(k)ρ j (x)dx .

(30)

The rest of the procedure holds, and corrected 〈N j 〉 could be
computed by applying it for n = 1.

Secondly, the measured x is traditionally associated with
the particle mass, but it can be any measured quantity, not
necessarily a single scalar value. In general, it could be a
multi-dimensional vector x, e.g. mean energy loss and time-
of-flight, as long as integration in function u is performed
accordingly.

Thirdly, measurement of x could be performed in several
phase space bins, corresponding to different detector config-
urations. In such cases Eq. 1 takes form

∑
θ∈Θ

∫
dxρ j (x, θ) = 〈N j 〉, (31)

where θ denotes a configuration from a configuration space
Θ . Analogously, the definition of w (Eq. 2) has to take into
account θ as well:

w j (x, θ) ≡ ρ j (x, θ)∑k
l=1 ρl(x, θ)

, (32)

where w j (x, θ) denotes value of the j th identity variable for
a measurement x registered in configuration θ . Finally, the
computation of u (Eq. 13) has to take into account measure-
ments in all configurations, so

u j (η
j
i(1), η

j
i(2), . . . , η

j
i(k)) ≡ 1

〈N j 〉
∑
θ∈Θ∫

w1(x, θ)
η
j
i(1) · . . . · wk(x, θ)

η
j
i(k)ρ j (x, θ)dx, (33)

All three modifications have been described here sepa-
rately for simplicity, but could be combined if necessary.

5 Implementation

The Idhim program was designed to provide an easy way
to obtain moments of the true multiplicity distribution of
identified particles provided the detector resolution is know.

The implementation in Java, using EJML1 library for lin-
ear algebra operations, is available as open source.2 The
required input to the program includes:

(i) a list of particle types in a text file, with each line provid-
ing a particle type name,

(ii) 〈Wn1
1 · . . . · Wnk

k 〉 moments in a tsv (i.e., tab-separated
values) file, with each line describing one moment as a
list if n1, . . . , nk indices, followed by the moment value,

(iii) a list of phase space bins, where a detector response is
known, as a tsv file (if there is more than one kinematic
variables which define such bins, multiple tab-separated
indices may be provided),

(iv) a directory containing files with a detector response func-
tions in each bin.

An exemplary set of all needed files is provided with the
program.

The input format allows for applicability to a wide range
of different experiments. Firstly, a number of considered par-
ticle types is arbitrary. In a typical case of particle identifi-
cation it depends on a collision energy and available statis-
tics, e.g., at low interaction energies one does not need to
consider deuterons and/or Helium-3, whereas at high ener-
gies or with large available statistics they must be taken into
account. Secondly, only 〈Wn1

1 · . . . · Wnk
k 〉 moments, not the

full distributions, need to be provided. Finally, in a typical
experiment, a particle identification is performed by a set of
detectors with an overlapping momentum coverage. Thus, a
full momentum coverage of an experiment consists of regions
with ρ being 1D function, e.g., when particles are identified
only by dE/dx or time-of-flight (ToF), or 2D function, e.g.,
when particles are identified by combined measurements of
dE/dx and ToF. An example of such a non-uniform detec-
tor acceptance is shown in Fig. 1. Bins with any number of
dimensions, which reflect changing detector configuration or
particle yields, can be defined as long as density function for
all particle types is given in the same points of the space.

The next section includes example demonstrating the use-
fulness of the program features described above.

1 http://ejml.org.
2 https://github.com/piotrmp/idhim.
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Fig. 1 NA61/SHINE detector acceptance (solid area) with indicated
region where particles are identified via their energy loss (magenta
stripes) and their time-of-flight (yellow stripes) in p+p interactions at√
sNN = 17.3 GeV
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Fig. 2 Generated dE/dx distribution in a single bin. For details see
text

6 Test on simulated data

The computation of all moments of multiplicity distributions
up to the fourth order was tested on two models. The first one
is a Monte Carlo model (so-called fast generator), where the
number of particles of a given type produced in a single event
was generated from Poisson distributions with a different free
parameter λ for each considered particle type. Test included
four most popular particle types, namely electrons, pions,
kaons and protons, with their respective λ as 1, 10, 2, 4. The
number of events is set to 1,000,000.

Particles are generated according to the Poisson distribu-
tion and are uncorrelated (except the detector response), so
the true values of generated moments are

〈N j 〉 = λ, (34)

〈N 2
j 〉 = λ(1 + λ), (35)

〈N 3
j 〉 = λ(1 + 3λ + λ2), (36)

〈N 4
j 〉 = λ(1 + 7λ + 6λ2 + λ3). (37)

The generated cross-moments are defined as the multiplica-
tion of the pure ones.

A simulated detector response consists of mean energy
loss measurements in the Time Projection Chamber. For each
particle, its mean energy loss was generated from a Gaus-
sian distribution with parameters based on experimental data
from Refs. [9,11] in two bins simulating the momentum
dependence of the detector response. Testing several different
momentum dependencies showed that particle distribution
between bins does not affect the final results. An exemplary
simulated dE/dx distribution in a single bin is shown in Fig. 2.
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Fig. 4 Generated dE/dx and m2 distribution in p + p interactions at
158 GeV/c beam momentum in EPOS

The Idhim program is used to obtain reconstructed
moments of the considered particle types up to the fourth
order. The statistical uncertainty of the reconstructed
moments results from uncertainty of the fitted distributions
ρ j (x) as well as from the 〈Wn1

1 · . . . · Wnk
k 〉 moment values.

Both sources are correlated, so the standard error propaga-
tion is complicated and inconvenient. Instead, the statistical
uncertainty is obtained using the bootstrap method [12].

Reconstructed and generated moments as well as their
ratio are shown in Fig. 3. The ratio is 1 within the statistical
uncertainty for all considered values.

Another test was performed using 3 million p+p interac-
tions at

√
sNN = 17.3 GeV generated using the EPOS [13,

14] model with the detector acceptance containing two types
of acceptance regions — dE/dx only and combined ToF and
dE/dx . An example of such a two dimensional distribution
is shown in Fig. 4. The shape of the 2D distribution and its
parameters were based on a real data analysis in Ref. [15].

Again, in order to mimic the momentum dependence of the
detector response, it was divided into several bins.

Reconstructed and generated moments as well as their
ratio are shown in Fig. 5. Again, the ratio is 1 within the
statistical uncertainty for all considered values.

Both the procedure and its implementation are functioning
as expected. The difference between generated and recon-
structed first moments of N and W is negligible but in case
of the higher orders, the differences can reach 70%. In order
to accommodate for different possible shapes of the ρ func-
tions, they are delivered in a binned form. Thus, a proper
binning is important to describe the functions’ shapes. The
identity method does not address other detector biases or its
efficiency. Other possible biases should be addressed by the
appropriate experimental tools (for examples and details see
Refs. [16–18]).

7 Conclusion

In this paper we extend the identity method in two ways.
Firstly, a new strict procedure to obtain nth order moments
of multiplicity distribution of an arbitrary number of parti-
cles is discussed. Secondly, a software implementation of
this procedure is presented. Provided a detector response is
known, it computes any moments, including the first ones.
It is equally precise both for low and high mean multiplici-
ties. Two tests were performed in order to validate the pro-
gram. The first test, based on simple fast generator check,
showed that program works well in case of lack of correla-
tions between particles. The difference between the recon-
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structed and generated moments is at the level of statistical
uncertainty or below. The second test was performed on p+p
interactions simulated in the EPOS model. The second test
confirmed that correlations between particles do not affect
the program’s efficiency. It also showed that Idhim can be
easily used in the case of a non-uniform detector acceptance
which contains different detector types.

As a last comment we would like to stress that the suc-
cessful analysis of moments of identified particle distribu-
tions depends on an understanding of a detector response.
Possible flaws in description of the ρ functions will propa-
gate to the identity method and the final results. Moreover,
the identity method does not compensate for a limited detec-
tor efficiency. Thus, ρ distributions and mean 〈W 〉’s have to
be corrected for a limited and often momentum-dependent
detector efficiency by other known methods.
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