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Abstract In this paper, we investigate the effects of non-
linear exponential electrodynamics as well as backreaction
on the properties of one-dimensional s-wave holographic
superconductors. We continue our study both analytically
and numerically. In analytical study, we employ the Sturm–
Liouville method while in numerical approach we perform
the shooting method. We obtain a relation between the critical
temperature and chemical potential analytically. Our results
show a good agreement between analytical and numerical
methods. We observe that the increase in the strength of both
nonlinearity and backreaction parameters causes the forma-
tion of condensation in the black hole background harder
and critical temperature lower. These results are consistent
with those obtained for two dimensional s-wave holographic
superconductors.

1 Introduction

The AdS/CFT duality provides a correspondence between
a strongly coupled conformal field theory (CFT) in d-
dimensions and a weakly coupled gravity theory in (d + 1)-
dimensional anti-de Sitter (AdS) spacetime [1–3]. Since it is
a duality between two theories with different dimensions, it
is commonly called holography. The idea of holography has
been employed in condensed matter physics to study various
phenomena such as superconductors [4–8]. For describing
the properties of low temperature superconductors, the BCS
theory can work very well [9,10]. However, this theory fails
to describe the mechanism of high temperature supercon-
ductor. In latter regime, the holography was suggested to
study the properties of superconductors [11,12]. Hortnol et
al. have represented the first model of holographic super-
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conductors [11,12]. After that, holographic superconductors
have attracted a lot of attention and investigated from differ-
ent point of views [4,13–16].

BTZ black holes play a significant role in many of recent
developments in string theory [17–19]. BTZ-like solutions
are dual of (1 + 1 )-dimensional holographic systems such
as one-dimensional holographic superconductors. Distinc-
tive features of normal and superconducting phases of one-
dimensional systems have been studied studied in [20]. The
latter study was done in probe limit. Considering the effects of
backreaction, the properties of one-dimensional holographic
superconductors have been studied both numerically [21,22]
and analytically [23,24].

It is interesting to investigate the effect of nonlinear elec-
trodynamic models on holographic systems including holo-
graphic superconductors [25–44]. Nonlinear models carry
more information than the usual Maxwell case and also are
considered as a possible way for avoiding the singularity
of the point-like charged particle at the origin [45–49]. The
oldest nonlinear electrodynamic model is Born-Infeld (BI)
model. There are also two BI-like nonlinear electrodynamics
namely logarithmic [33,50,51] and exponential [40,52,53]
electrodynamics. It has been found that the exponential elec-
trodynamics has stronger effect on the condensation than
other models [54].

In the present work, we will study the one-dimensional
holographic superconductors both analytically and numer-
ically in the presence of exponential electrodynamics. To
bring rich physics in holographic model, we consider the
backreaction of the scalar and gauge fields on the metric
background [55–61]. To perform the analytical study, we
employ the Sturm–Liouville eigenvalue problem. We will
study the effects of nonlinear exponential electrodynamics
model as well as backreaction on critical temperature. We
shall also use the numerical shooting method to investigate
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the features of our holographic superconductors and make
comparison between analytical and numerical results.

This paper is organized as follows: In next section, we
introduce the action and basic field equations governing
(1 + 1)-dimensional holographic superconductors in the
presence of exponential electrodynamics. In Sect. 3, we
study the properties of holographic superconductors apply-
ing the analytical method based on Sturm–Liuoville eigen-
value problem. In Sect. 4, we study holographic supercon-
ductors numerically by employing the shooting method. We
also compare our numerical and analytical results. Finally,
in last section we will summarize our results.

2 Holographic set-up

To study a (1 + 1)-dimensional holographic superconductor,
we consider a (2+1)-dimensional bulk action of AdS gravity
coupled to a charged scalar field ψ

S = 1

2κ2

∫
d3x

√−g

(
R + 2

l2

)

+
∫

d3x
√−g

[
L (F) − |∇ψ − iq Aψ |2 − m2|ψ |2

]
,

(1)

where g is the determinant of metric, R is Ricci scalar, l is the
AdS radius, A is electromagnetic potential and F = FμνFμν

in which Fμν = ∇[μAμ]. In action (1), κ2 = 8πG3 where
G3 is the (2 + 1)-dimensional Newtonian constant and m
and q represent the mass and charge of scalar field, respec-
tively. L (F) stands for the Lagrangian of electrodynamics
model. (1 + 1)-dimensional holographic superconductors in
the presence of linear Maxwell electrodynamics presented
by L (F) = −F/4 have been studied in [21,62]. The lin-
ear model is an idealization of reality. In principle, other
powers of F may play role. There are different nonlinear
electrodynamics models which exhibit the electrodynamics
interaction. In this paper, we suppose that electrodynamics
interaction is governed by exponential nonlinear electrody-
namics model [52]

L (F) = 1

4b

(
e−bF − 1

)
, (2)

where b determines the nonlinearity. For small values of b,
Lagrangian ( 2) recovers the linear Maxwell Lagrangian. The
parameter κ in (1) also determines the backreaction. When
κ goes to zero, we are in the probe limit, meaning that the
gravity part of action (1) is stronger than the matter field part.
Physically, this implies that the gauge and matter fields do
not back react on the metric background. In superconduct-
ing language, implies that the Cooper pairs have negligible
interaction with background system. In the presence of back-
reaction, the dual black hole solution may be given by the
ansatz

ds2 = − f (r)e−χ(r)dt2 + dr2

f (r)
+ r2

l2
dx2. (3)

The Hawking temperature of above black hole solution is
given by

T = f ′(r+)e−χ(r+)

4π
, (4)

where r+ is event horizon which could be obtained as the
greatest root of f (r) = 0. Varying the action (1) with respect
to ψ , Aν and gμν , the field equations read, respectively,

0 = (∇μ − iq Aμ

) (∇μ − iq Aμ
)
ψ − m2ψ , (5)

0 = ∇μ
(
4LF Fμν

)
−iq

[−ψ∗(∇ν − iq Aν)ψ + ψ(∇ν + iq Aν)ψ
∗] , (6)

0 = 1

2κ2

[
Rμν − gμν

(
R

2
+ 1

l2

)]
+ 2FacFb

cLF

−gμν

2

[
L (F) − m2|ψ |2 − |∇ψ − iq Aψ |2

]

−1

2

[
(∇μψ − iq Aμψ)(∇νψ

∗ + iq Aνψ
∗) + μ ↔ ν

]
,

(7)

where LF = ∂L/∂F . Adopting the ansatz Aμ = φ(r)δ0
μ and

ψ = ψ(r), field Eq. (5)–(7) lead to

0 = ψ ′′ + ψ ′
[

1

r
+ f ′

f
− χ ′

2

]
+ ψ

[
q2φ2eχ

f 2 − m2

f

]
, (8)

0 = φ′′ + φ′
(

1

r
+ χ ′

2

)

− 2q2ψ2φ

e2bφ′2eχ f
+ 2bφ′2eχ

(
2φ′′ + φ′χ ′), (9)

0 = f ′ + κ2r

2b

[
1 + e2bφ′2eχ

(
4bφ′2eχ − 1

)]

+2 κ2r

[
q2φ2ψ2eχ

f
+ (mψ)2 + ψ ′2 f

]
− 2r

l2
, (10)

0 = χ ′ + 4κ2r

[
q2φ2ψ2eχ

f 2 + ψ ′2
]

. (11)

where the prime denotes the derivative with respect to r .
Obviously, the above equations reduce to the corresponding
equations in Ref. [21] when b → 0 while in the absence
of the backreaction (κ → 0), Eqs. (22) and (23) reduce to
ones in Ref. [54]. By virtue of symmetries of field equations
(22)–(25)

q → q/a, φ → aφ, ψ → aψ,

κ → κ/a, b → b/a2, (12)

l → al, r → ar, q → q/a,

m → m/a, b → a2b, (13)
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one can set q = l = 1. In the following sections, we will
study the superconding phase transition both analytically and
numerically.

3 Analytical study

The behaviors of model functions governed by field equations
(22)–(25) near the boundary r → ∞ are1

χ(r) → 0, f (r) ∼ r2,

φ(r) ∼ ρ + μ ln(r), ψ(r) ∼ ψ−
r�− + ψ+

r�+ , (14)

where μ and ρ are chemical potential and charge density of
dual field theory and �± = 1+√

1 ± m2. The superconduct-
ing phase transition is characterized by growing the expecta-
tion value of order parameter 〈O〉 as temperature decreases.
In normal phase, 〈O〉 vanishes. According to holographic
dictionary, the expectation value of order parameter 〈O〉 is
dual to ψ+ or ψ− while the other one can be considered as
the source. Therefore, near the critical point 〈O±〉 is small
and one can define it as

ε ≡ 〈Oi 〉 , (15)

where i = + or −. Since ε is so small, we can expand the
model functions as [7,55,63,64]2

f = f0 + ε2 f2 + ε4 f4 + · · · , (16)

χ = ε2χ2 + ε4χ4 + · · · , (17)

ψ = εψ1 + ε3ψ3 + ε5ψ5 + · · · , (18)

φ = φ0 + ε2φ2 + ε4φ4 + · · · . (19)

Also we can expand the chemical potential as [7]

μ = μ0 + ε2δμ2 + ..., (20)

where δμ2 > 0. Thus, the order parameter as a function of
chemical potential can be obtained as

ε ≈ (μ − μ0)
1/2

δμ2
. (21)

When μ → μ0, phase transition occurs and the order param-
eter is zero at the critical value μc = μ0. Above equation also
indicates the critical exponent β = 1/2 which is the same
as the universal result from the mean field theory. Hereafter,
we define the dimensionless coordinate z = r+/r instead
of r, since it is easier to work with it. In terms of this new
coordinate, z = 0 and z = 1 correspond to the boundary

1 Near the boundary, χ could be a constant but by using the symmetry
of field equation eχ → a2eχ , φ → φ/a, one can set it to zero there.
2 It is expected that when the sign of ε changes, the sign of scalar filed
which leads to order parameter, changes too. So, the expansion powers
of ψ is considered odd. For other functions, even powers is used because
they should not change when the sign of order parameter changes.

and horizon respectively. The field equations (22)–(25) can
be rewritten in terms of z as

0 = ψ ′′ +
[

1

z
+ f ′

f
− χ ′

2

]
ψ ′ + r2+

z4

[
q2φ2eχ

f 2 − m2

f

]
ψ, (22)

0 = φ′′ +
(

χ ′

2
+ 1

z

[
1 + 4ϒ

1 + 2ϒ

])
φ′ − 2q2r2+ψ2

z4 f

(
e−ϒ

1 + 2ϒ

)
φ,

(23)

0 = f ′ − κ2r+2

2bz3

[
1 + eϒ (2ϒ − 1)

]

−2κ2r2+
z3

[
q2φ2ψ2eχ

f
+ m2ψ2

]
+ 2r2+

z3 , (24)

0 = χ ′ − 4κ2r2+
z3

[
q2φ2ψ2eχ

f 2 + z4ψ ′2

r2+

]
, (25)

where ϒ = 2bz4eχφ′2/r+2. The field equation of φ (Eq.
(23)) at zeroth order with respect to ε reduces to

φ′′(z) + φ′(z)(r2+ + 8bz4φ′2(z))
z(r2+ + 4bz4φ′2(z))

= 0. (26)

The solution of above equation reads

φ(z) =
∫ z

1

r+
√
LW (

4bz2C2
0

r+2 )

2z2
√
b

dz, (27)

whereC0 is an integration constant and LW (x) = Lambert-
W (x) is the Lambert function which satisfies [65]

LW (x)eLW (x) = x, (28)

and can be expanded as

LW (x) = x − x2 + 3

2
x3 − 8

3
x4. (29)

Expanding Eq. (27) for small b and keeping the terms up to
first order of b we find

φ(z) = C1 + C0 ln(z) + C3
0

r2+
(1 − z2)b + O

(
b2

)
. (30)

Comparing the above equation with Eq. (14), we find C0 =
−μ . Also,C1 = 0, since at the horizon φ(r+) = 0. Inserting
C0 into Eq. (30) we have

φ0(z) = λr+
[
− ln(z) + λ2(z2 − 1)b

]
, bλ2 < 1, (31)

where λ = μ/r+. Substituting φ(z) into the field equation
(24), we find the metric function at zeroth order with respect
to ε, f0(z) = r2+g(z) where

g(z) =
(

1

z2 − 1 + κ2λ2 ln(z) + 1

2
κ2λ4b(1 − z2)

)
. (32)

Note that at the horizon f0(1) = 0. The asymptotic behav-
ior of scalar field ψ near the boundary (z = 0) is given
by Eq. (14). In order to match this behavior near the
boundary, we introduce a trial function F(z) as ψ(z) =
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Table 1 Analytical results of
Tc/μ for different values of κ

and b

b κ2 = 0 κ2 = 0.005 κ2 = 0.01 κ2 = 0.015 κ2 = 0.02

0 0.0429 0.0393 0.0379 0.0369 0.0359

0.01 0.0342 0.0321 0.0311 0.0301 0.0288

0.02 0.0274 0.0231 0.0216 0.0208 0.0199

〈Oi 〉 (z/r+)�i F(z) which satisfies the boundary condition
F(0) = 1 and F ′(0) = 0. Inserting the functions obtained
above and the trial function F(z) into Eq. (22), one receives

F ′′(z) + F ′(z)
[

2� + 1

z
+ g′(z)

g(z)

]

+
[
− m2

g(z)z4 + �2

z2 + �g′(z)
zg(z)

]
F(z)+

+ q2λ2F(z)

g(z)2

[
ln(z)2

z4 − 2λ2bln(z)

z2 + 2λ2bln(z)

z4

]
= 0.

(33)

It is a matter of calculations to show that the above equation
satisfies the following second order Sturm–Liouville equa-
tion [66]
[
T (z)F ′(z)

]′ − Q(z)F(z) + λ2P(z)F(z) = 0, (34)

where

T (z) = g(z)z2�+1, (35)

P(z) = q2T (z)

g2(z)

[
ln(z)2

z4 − 2λ2bln(z)

z2 + 2λ2bln(z)

z4

]
,

(36)

Q(z) = −T (z)

[
− m2

g(z)z4 + �2

z2 + �g′(z)
zg(z)

]
. (37)

Considering the trial function as F(z) = 1 − αz2 and using
the Sturm–Liouville eigenvalues problem, the eigenvalues of
Eq. (34) can be obtained by minimizing

λ2 =
∫ 1

0 dzT (z)
[
F ′2(z) + Q(z)F2(z)

]
∫ 1

0 dz.T (z)P(z)F2(z)
, (38)

with respect to α [67]. Here, we use a perturbative expansion
bλ2 up to the first order of b

bλ2 = b(λ2|b=0) + O(b2). (39)

For backreaction parameter, we use iteration method and take

κn = n�κ, n = 0, 1, 2, 3, . . . , (40)

where �κ = κn+1 −κn . Here we chose �κ = 0.005. So, the
effect of the nonlinear corrections on the backreaction term
can be obtained as

κ2λ2 = κn
2λ2 = κn

2(λ2|κn−1) + O[(�κ)4]. (41)

By taking κ−1 = 0 and λ2|κ−1 = 0, the minimum eigen-
value of Eq. (38) can be calculated. To calculate the critical
temperature, we obtain the latter value by variation of Eq.
(38) with respect to α where the other parameters such as
b, κ,m, q, . . . are fixed. Using the definition of T (Eq. (4)),
the critical temperature is given by Tc = f ′(r+)/4π where 3

f ′(r+) = 2r+ − κ2r+
2b

[
1 + e2bφ′2

0 (r+)
(

4bφ′2
0 (r+) − 1

)]
,

(42)

and r+ = μ/λ so we have

Tc = 1

4π

μ

λ

[
2 − κn

2(λ2|κn−1) + 3bκn
2(λ4|κn−1,b=0)

]
. (43)

As an example, for b = 0.01 and κ = 0 the Eq. (38) reduce
to

λ2 = 0.667α2 − 1.333α + 1

0.0276 − 0.0165α + 0.0035α2 , (44)

which has a minimum λmin = 21.6337, with respect to α,
at α = 0.8258 and thus according to Eq. (43) we achieve
Tc = 0.03421μ. We employ the iteration method to obtain
the critical temperature for different values of κ and b.

In Table 1, we present our results. This table shows that by
increasing nonlinear parameter (b), the value of Tc decreases.
As it can be understood from this table, for a fixed value of
b, with increasing the backreaction parameter κ , the value
of the critical temperature decreases. We also reproduce the
results of the linear Maxwell case without backreaction (i.e.
b → 0 and κ → 0) presented in [23].

Table 2 Numerical results of Tc/μ for different values of κ and b

b κ2 = 0 κ2 = 0.05 κ2 = 0.1 κ2 = 0.15 κ2 = 0.2

0 0.046 0.0368 0.0295 0.0236 0.0189

0.01 0.0415 0.033 0.0262 0.0209 0.0166

0.04 0.0325 0.0252 0.0197 0.0154 0.0121

0.09 0.0236 0.0176 0.0133 0.0107 0.0078

3 Note that at zeroth order with respect to ε, χ is zero. So, eχ in
temperature formula disappears.
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(a) (b)

Fig. 1 The behavior of order parameter versus temperature for m2 = 0

(b)(a)

Fig. 2 The behavior of order parameter versus temperature for m2 = 0

4 Numerical study

In this section, we employ the shooting method [4] to
numerically investigate the superconducting phase transition.
Besides setting q and l to unity, we also set r+ = 1 in the
numerical calculation which may be justified by virtue of the
field equation symmetry [21]

r → ar, f → a2 f, φ → aφ,

First, we expand Eqs. (22)–(25) near black hole horizon (z =
1)

ψ ≈ ψ(1) + ψ ′(1)(1 − z) + ψ ′′

2
(1 − z)2 + · · · , (45)

φ ≈ φ′(1)(1 − z) + φ′′

2
(1 − z)2 + · · · , (46)

f ≈ f ′(1)(1 − z) + f ′′

2
(1 − z)2 + · · · , (47)

χ ≈ χ(1) + χ ′(1)(1 − z) + χ ′′

2
(1 − z)2 + · · · . (48)

In above equations, we have imposed f (1) = φ(1) = 0.4

In our numerical process, we will find ψ(1), φ′(1) and χ(1)

4 φ should vanish at horizon so that the norm of gauge potential is
regular there.

such that the desired values for boundary parameters in Eq.
(14) are attained. At boundary, one can set either ψ− or ψ+
to zero as source and find the value of the other one as the
expectation value of order parameter 〈O〉. We will focus on
m2 = 0 case for our numerical calculations. For this case,
the behavior of ψ near boundary is (see Eq. (14))

ψ(z) ≈ ψ− + ψ+z2. (49)

We consider ψ+ as holographic dual to the order parameter
〈O+〉 at the boundary field theory.

In Table 2, our numerical results for critical temperature
with different values of backreaction parameter κ and nonlin-
ear parameter b are presented. In the Maxwell limit (b → 0),
our numerical results reproduce the ones of [21]. It can be
seen that in the absence of nonlinearity effect, the critical
temperature decreases as κ increases [21]. In the presence
of nonlinearity parameter i.e. for any nonvanishing value of
b, it can be found that as κ enhances, the critical tempera-
ture Tc decreases. Similar behavior can be found for differ-
ent values of b when κ is fixed. As the nonlinear parameter
b becomes larger, the critical temperature decreases i.e. the
condensation process becomes harder. This behavior have
been reported previously in [68] for (2 + 1)-dimensional
holographic superconductors too. Figures 1 and 2 confirm
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Table 3 Analytical and numerical results of Tc/μ for different values of κ and b

b κ2 = 0 κ2 = 0.005 κ2 = 0.01 κ2 = 0.015 κ2 = 0.02

Tc (An) Tc (Nu) Tc (An) Tc (Nu) Tc (An) Tc (Nu) Tc (An) Tc (Nu) Tc (An) Tc (Nu)

0 0.0429 0.046 0.0393 0.0449 0.0379 0.0439 0.0369 0.0430 0.0359 0.0409

0.01 0.0342 0.0415 0.0321 0.0406 0.0311 0.0396 0.0301 0.0387 0.0288 0.0378

0.02 0.0274 0.0380 0.0231 0.0371 0.0216 0.0362 0.0208 0.0353 0.0199 0.0345

above results. As it can be seen from Fig. 1, the scalar hair
forms harder as κ increases i.e. the gap in graph of 〈O+〉
becomes larger. The latter means that the condensation of
the operator 〈O+〉 starts at larger values for stronger values
of backreaction parameter. It shows that the scalar hair can
be formed more difficult when the backreaction is stronger.
Figure 2 shows the same effect for nonlinearity parameter b.
We compare the analytical and numerical results in Table 3.
Table 3 shows that there is a good agreement between ana-
lytical and numerical results for small values of κ and b. For
larger values of these parameters, analytical and numerical
results separate more from each other.

5 Conclusion

In this work, we have studied the properties of one-
dimensional holographic superconductor in the presence of
nonlinear exponential electrodynamics. We have also con-
sidered the backreaction effect of scalar and gauge fields
on the background metric. We have performed both analyt-
ical and numerical methods for studying our superconduc-
tors. To investigate the problem analytically, we have used
the Sturm–Lioville while our numerical study was based on
shooting method. It was shown that the enhancement in both
nonlinearity of electrodynamics model as well as the back-
reaction causes the superconducting phase more difficult to
be appeared. This result is reflected in two ways from our
data. From one side, we observed that the increasement in
the effects of nonlinearity and backreaction makes the criti-
cal temperature of superconductor lower. From another side,
for larger values of nonlinear and backreaction parameters,
the gap in condensation parameter is larger which in turn
exhibits that the condensation is formed harder. We have also
observed that, for small values of backreaction parameter κ

and nonlinear parameter b, the analytic results are in a good
agreement with numerical ones whereas for larger values
they separate more from each other.

Finally, we would like to stress that in this work, we have
only studied the basic properties of one-dimensional backre-
acting holographic s-wave superconductors in the presence
of exponential nonlinear electrodynamics. It is also inter-
esting to investigate other characteristics of these systems

such as the behaviour of real and imaginary parts of con-
ductivity or optical features. One may also consider (1 + 1)-
dimensional p-wave and d-wave holographic superconduc-
tors in the background of BTZ black holes and disclose the
effects of nonlinearity as well as backreaction on the the
phase transition and conductivity of these models. These
issue are now under investigations and the result will be
appeared soon.

Acknowledgements MKZ would like to thank Shahid Chamran Uni-
versity of Ahvaz, Iran for supporting this work. AS thanks the research
council of Shiraz University. The work of MKZ has been supported
financially by Research Institute for Astronomy and Astrophysics of
Maragha (RIAAM) under research Project no. 1/5237-55.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. J.M. Maldacena, The large-N limit of superconformal field the-
ories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998).
arXiv:hep-th/9711200

2. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correla-
tors from non-critical string theory. Phys. Lett. B 428, 105 (1998).
arXiv:hep-th/9802109

3. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math.
Phys. 2, 253 (1998). arXiv:hep-th/9802150

4. S.A. Hartnoll, Lectures on holographic methods for con-
densed matter physics. Class. Quant. Grav. 26, 224002 (2009).
arXiv:0903.3246

5. C.P. Herzog, Lectures on holographic superfluidity and supercon-
ductivity. J. Phys. A 42, 343001 (2009). arXiv:0904.1975

6. J. McGreevy, Holographic duality with a view toward many-
body physics. Adv. High Energy Phys. 2010, 723105 (2010).
arXiv:0909.0518

7. C.P. Herzog, Analytic holographic superconductor. Phys. Rev. D
81, 126009 (2010). arXiv:1003.3278

8. S.S. Gubser, Breaking an Abelian gauge symmetry near a black
hole horizon. Phys. Rev. D 78, 065034 (2008). arXiv:0801.2977

9. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Microscopic Theory of
Superconductivity. Phys. Rev. 106, 162 (1957)

10. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconduc-
tivity. Phys. Rev. 108, 1175 (1957)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://arxiv.org/abs/0903.3246
http://arxiv.org/abs/0904.1975
http://arxiv.org/abs/0909.0518
http://arxiv.org/abs/1003.3278
http://arxiv.org/abs/0801.2977


Eur. Phys. J. C (2018) 78 :381 Page 7 of 8 381

11. S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Building a holo-
graphic superconductor. Phys. Rev. Lett. 101, 031601 (2008).
arXiv:0803.3295

12. S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Holographic supercon-
ductors. JHEP 12, 015 (2008). arXiv:0810.1563

13. G.T. Horowitz, M.M. Roberts, Holographic superconductors
with various condensates. Phys. Rev. D 78, 126008 (2008).
arXiv:0810.1077

14. S. Franco, A. Garcia-Garcia, D. Rodriguez-Gomez, A general
class of holographic superconductors. JHEP 04, 092 (2010).
arXiv:0906.1214

15. Q.Y. Pan, B. Wang, General holographic superconductor models
with Gauss–Bonnet corrections. Phys. Lett. B 693, 159 (2010).
arXiv:1005.4743

16. X.H. Ge, B. Wang, S.F. Wu, G.H. Yang, Analytical study on holo-
graphic superconductors in external magnetic field. JHEP 08, 108
(2010). arXiv:1002.4901

17. K. Skenderis, Black holes and branes in string theory. Lect. Notes
Phys. 541, 325 (2000). arXiv:hep-th/9901050

18. S. Hyun, U-duality between three and higher dimensional black
holes. J. Kor. Phys. Soc. 33, S532 (1998). arXiv:hep-th/9704005

19. A. Strominger, Black hole entropy from near horizon microstates.
JHEP 9802, 009 (1998). arXiv:hep-th/9712251

20. J. Ren, One-dimensional holographic superconductor from
AdS3/CFT2 correspondence. JHEP 1011, 055 (2010).
arXiv:1008.3904

21. Y. Liu, Q. Pan, B. Wang, Holographic superconductor developed
in BTZ black hole background with backreactions. Phys. Lett. B
702, 94 (2011). arXiv:1106.4353

22. M. Kord Zangeneh, Y.C. Ong, B. Wang, Entanglement entropy
and complexity for one-dimensional holographic superconductors.
Phys. Lett. B 771, 235 (2017). arXiv:1704.00557

23. R. Li, Note on analytical studies of one dimensional holographic
superconductors. Mod. Phys. Lett. A 27, 1250001 (2012)

24. D. Momeni, M. Raza, M.R. Setare, R. Myrzakulov, Analytical
holographic superconductor with backreaction using AdS3/CFT2.
Int. J. Theor. Phys. 52, 2773 (2013). arXiv:1305.5163

25. Y. Liu, Y. Peng, B., Wang: Gauss-Bonnet holographic super-
conductors in Born-Infeld electrodynamics with backreactions.
arXiv:1202.3586

26. Y. Liu, Y. Gong, B. Wang, Non-equilibrium condensation process
in holographic superconductor with nonlinear electrodynamics.
JHEP 02, 116 (2016). arXiv:1505.03603

27. D. Roychowdhury, Effect of external magnetic field on holographic
superconductors in presence of non-linear corrections. Phys. Rev.
D 86, 106009 (2012). arXiv:1211.0904

28. J. Jing, S. Chen, Holographic superconductors in the Born-Infeld
electrodynamics. Phys. Lett. B 686, 68 (2010). arXiv:1001.4227

29. R. Banerjee, S. Gangopadhyay, D. Roychowdhury, A. Lala, Holo-
graphic s-wave condensate with nonlinear electrodynamics: a non-
trivial boundary value problem. Phys. Rev. D 87, 104001 (2013).
arXiv:1208.5902

30. J. Jing, Q. Pan, S. Chen, Holographic superconductors with Power–
Maxwell field. JHEP 11, 045 (2011). arXiv:1106.5181

31. Y. Liu, B. Wang, Perturbations around the AdS Born-Infeld black
holes. Phys. Rev. D 85, 046011 (2012). arXiv:1111.6729

32. A. Sheykhi, H.R. Salahi, A. Montakhab, Analytical and numerical
study of Gauss–Bonnet holographic superconductors with Power–
Maxwell field. JHEP 04, 058 (2016). arXiv:1603.00075

33. J. Jing, Q. Pan, S. Chen, Holographic superconductor/insulator
transition with logarithmic electromagnetic field in Gausse Bonnet
gravity. Phys. Lett. B 716, 385 (2012). arXiv:1209.0893

34. C. Lai, Q. Pan, J. Jing, Y. Wang, On analytical study of holographic
superconductors with Born-Infeld electrodynamics. Phys. Lett. B
749, 437 (2015). arXiv:1508.05926

35. A. Sheykhi, F. Shaker, Analytical study of holographic supercon-
ductor in Born-Infeld electrodynamics with backreaction. Phys.
Lett. B 754, 281 (2016). arXiv:1601.04035

36. S. Gangopadhyay, Holographic superconductors in Born–Infeld
electrodynamics and external magnetic field. Mod. Phys. Lett. A
29, 1450088 (2014). arXiv:1311.4416

37. A. Sheykhi, A. Ghazanfari, A. Dehyadegari, Holographic conduc-
tivity of holographic superconductors with higher order correc-
tions. Eur. Phys. J. C 78, 159 (2018). arXiv:1712.04331

38. A. Sheykhi, D. Hashemi Asl, A. Dehyadegari, Conductivity of
higher dimensional holographic superconductors with nonlinear
electrodynamics. Phys. Lett. B 781, 139 (2018). arXiv:1803.05724

39. M. Kord Zangeneh, S. S. Hashemi, A. Dehyadegari, A. Sheykhi,
B. Wang, Optical properties of Born–Infeld-dilaton-Lifshitz holo-
graphic superconductors. arXiv:1710.10162

40. Z. Sherkatghanad, B. Mirza, F. Lalehgani Dezaki, Exponential non-
linear electrodynamics and backreaction effects on holographic
superconductor in the lifshitz black hole background. Int. J. Mod.
Phys. D 27, 1750175 (2017). arXiv:1708.04289

41. A. Dehyadegari, M. Kord Zangeneh, A. Sheykhi, Holographic con-
ductivity in the massive gravity with power-law Maxwell field.
Phys. Lett. B 773, 344 (2017). arXiv:1703.00975

42. A. Dehyadegari, A. Sheykhi, M. Kord Zangeneh, Holographic con-
ductivity for logarithmic charged Dilaton–Lifshitz solutions. Phys.
Lett. B 758, 226 (2016). arXiv:1602.08476

43. M. Kord Zangeneh, A. Dehyadegari, A. Sheykhi, M.H. Dehghani,
Thermodynamics and gauge/gravity duality for Lifshitz black holes
in the presence of exponential electrodynamics. JHEP 1603, 037
(2016). arXiv:1601.04732

44. A. Sheykhi, F. Shamsi, S. Davatolhagh, The upper critical mag-
netic field of holographic superconductor with conformally invari-
ant Power–Maxwell electrodynamics. Can. J. Phys. 95, 450 (2017).
arXiv:1609.05040

45. M. Born, L. Infeld, Foundations of the new field theory. Proc. R.
Soc. A 144, 425 (1934)

46. B. Hoffmann, Gravitational and electromagnetic mass in the Born–
Infeld electrodynamics. Phys. Rev. 47, 877 (1935)

47. W. Heisenberg, H.Z. Euler, Consequences of Dirac theory of
the positron. Physics 98, 714 (1936). arXiv:physics/0605038
[physics.hist-ph]

48. H.P. de Oliveira, Non-linear charged black holes. Class. Quant.
Grav. 11, 1469 (1994)

49. G.W. Gibbons, D.A. Rasheed, Electric-magnetic duality rotations
in non-linear electrodynamics. Nucl. Phys. B 454, 185 (1995).
arXiv:hep-th/9506035

50. H.H. Soleng, Charged black points in general relativity coupled to
the logarithmic U(1) gauge theory. Phys. Rev. D 52, 6176 (1995).
arXiv:hep-th/9509033

51. A. Sheykhi, M.H. Dehghani, M. Kord Zangeneh, Thermodynamics
of charged rotating dilaton black branes coupled to logarithmic
nonlinear electrodynamics. Adv. High Energy Phys.2016, 3265968
(2016). arXiv:1604.05300

52. S.H. Hendi, Asymptotic charged BTZ black hole solutions. JHEP
1203, 065 (2012). arXiv:1405.4941

53. S.H. Hendi, A. Sheykhi, Charged rotating black string in gravitating
nonlinear electromagnetic fields. Phys. Rev. D 88, 044044 (2013).
arXiv:1405.6998

54. Z. Zhao, Q. Pan, S. Chen, J. Jing, Notes on holographic super-
conductor models with the nonlinear electrodynamics. Nucl. Phys.
871, 98 (2013). arXiv:1212.6693

55. Q. Pan, J. Jing, B. Wang, S. Chen, Analytical study on holo-
graphic superconductors with backreactions. JHEP 06, 087 (2012).
arXiv:1205.3543

56. S.S. Gubser, A. Nellore, Low-temperature behavior of the Abelian
Higgs model in anti-de Sitter space. JHEP 04, 008 (2009).
arXiv:0810.4554

123

http://arxiv.org/abs/0803.3295
http://arxiv.org/abs/0810.1563
http://arxiv.org/abs/0810.1077
http://arxiv.org/abs/0906.1214
http://arxiv.org/abs/1005.4743
http://arxiv.org/abs/1002.4901
http://arxiv.org/abs/hep-th/9901050
http://arxiv.org/abs/hep-th/9704005
http://arxiv.org/abs/hep-th/9712251
http://arxiv.org/abs/1008.3904
http://arxiv.org/abs/1106.4353
http://arxiv.org/abs/1704.00557
http://arxiv.org/abs/1305.5163
http://arxiv.org/abs/1202.3586
http://arxiv.org/abs/1505.03603
http://arxiv.org/abs/1211.0904
http://arxiv.org/abs/1001.4227
http://arxiv.org/abs/1208.5902
http://arxiv.org/abs/1106.5181
http://arxiv.org/abs/1111.6729
http://arxiv.org/abs/1603.00075
http://arxiv.org/abs/1209.0893
http://arxiv.org/abs/1508.05926
http://arxiv.org/abs/1601.04035
http://arxiv.org/abs/1311.4416
http://arxiv.org/abs/1712.04331
http://arxiv.org/abs/1803.05724
http://arxiv.org/abs/1710.10162
http://arxiv.org/abs/1708.04289
http://arxiv.org/abs/1703.00975
http://arxiv.org/abs/1602.08476
http://arxiv.org/abs/1601.04732
http://arxiv.org/abs/1609.05040
http://arxiv.org/abs/physics/0605038
http://arxiv.org/abs/hep-th/9506035
http://arxiv.org/abs/hep-th/9509033
http://arxiv.org/abs/1604.05300
http://arxiv.org/abs/1405.4941
http://arxiv.org/abs/1405.6998
http://arxiv.org/abs/1212.6693
http://arxiv.org/abs/1205.3543
http://arxiv.org/abs/0810.4554


381 Page 8 of 8 Eur. Phys. J. C (2018) 78 :381

57. Y. Brihaye, B. Hartmann, Holographic superconductors in 3+1
dimensions away from the probe limit. Phys. Rev. D 81, 126008
(2010). arXiv:1003.5130

58. G.T. Horowitz, B. Way, Complete phase diagrams for a holo-
graphic superconductor/insulator system. JHEP 11, 011 (2010).
arXiv:1007.3714

59. A. Akhavan, M. Alishahiha, P-wave holographic insula-
tor/superconductor phase transition. Phys. Rev. D 83, 086003
(2011). arXiv:1011.6158

60. S. Gangopadhyay, Analytic study of properties of holographic
superconductors away from the probe limit. Phys. Lett. B 724,
176 (2013). arXiv:1302.1288

61. T. Konstandin, G. Nardini, M. Quiros, Gravitational Backreaction
effects on the holographic phase transition. Phys. Rev. D82, 083513
(2010). arXiv:1007.1468

62. J. Ren, One-dimensional holographic superconductor from
AdS3/CFT2 correspondence. JHEP 1011, 055 (2010).
arXiv:1008.3904

63. S. Kanno, A note on Gauss–Bonnet holographic superconductors.
Class. Quant. Grav. 28, 127001 (2011). arXiv:1103.5022

64. G.E. Xian-Hui, L.E.N.G. Hong-Qiang, Analytical calculation on
critical magnetic field in holographic superconductors with back-
reaction. Prog. Theor. Phys. 128, 1211 (2012). arXiv:1105.4333

65. M. Abramowitz, I.A. Stegun, Handbook of mathematical functions
(Dover, New York, 1972)

66. S. Gangopadhyay, D. Roychowdhury, Analytic study of properties
of holographic superconductors in Born-Infeld electrodynamics.
JHEP 05, 002 (2012). arXiv:1201.6520

67. G. Siopsis, J. Therrien, Analytical calculation of proper-
ties of holographic superconductors. JHEP 1005, 013 (2010).
arXiv:1003.4275

68. A. Sheykhi, F. Shaker, Effects of backreaction and exponential non-
linear electrodynamics on the holographic superconductors. Int. J.
M. Phys. D 26, 1750050 (2017). arXiv:1606.04364 [gr-qc]

123

http://arxiv.org/abs/1003.5130
http://arxiv.org/abs/1007.3714
http://arxiv.org/abs/1011.6158
http://arxiv.org/abs/1302.1288
http://arxiv.org/abs/1007.1468
http://arxiv.org/abs/1008.3904
http://arxiv.org/abs/1103.5022
http://arxiv.org/abs/1105.4333
http://arxiv.org/abs/1201.6520
http://arxiv.org/abs/1003.4275
http://arxiv.org/abs/1606.04364

	One-dimensional backreacting holographic superconductors  with exponential nonlinear electrodynamics
	Abstract 
	1 Introduction
	2 Holographic set-up
	3 Analytical study
	4 Numerical study
	5 Conclusion
	Acknowledgements
	References




