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Abstract In this paper we address two important issues
which could affect reaching the exponential and Kas-
ner asymptotes in Einstein–Gauss–Bonnet cosmologies—
spatial curvature and anisotropy in both three- and extra-
dimensional subspaces. In the first part of the paper we con-
sider the cosmological evolution of spaces that are the prod-
uct of two isotropic and spatially curved subspaces. It is
demonstrated that the dynamics in D = 2 (the number of
extra dimensions) and D ≥ 3 is different. It was already
known that for the �-term case there is a regime with “stabi-
lization” of extra dimensions, where the expansion rate of the
three-dimensional subspace as well as the scale factor (the
“size”) associated with extra dimensions reaches a constant
value. This regime is achieved if the curvature of the extra
dimensions is negative. We demonstrate that it takes place
only if the number of extra dimensions is D ≥ 3. In the
second part of the paper we study the influence of the initial
anisotropy. Our study reveals that the transition from Gauss–
Bonnet Kasner regime to anisotropic exponential expansion
(with three expanding and contracting extra dimensions) is
stable with respect to breaking the symmetry within both
three- and extra-dimensional subspaces. However, the details
of the dynamics in D = 2 and D ≥ 3 are different. Combin-
ing the two described effects allows us to construct a scenario
in D ≥ 3, where isotropization of outer and inner subspaces
is reached dynamically from rather general anisotropic initial
conditions.

1 Introduction

Extra-dimensional theories had been known [1] even prior to
General Relativity (GR) [2], but relatively well known they
have become after work by Kaluza and Klein [3–5]. Since
then the extra-dimensional theories evolved a lot but the main
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motivation behind them remains the same—unification of
interactions. Nowadays one of the promising candidate for a
unified theory is M/string theory.

The presence of the curvature-squared corrections in the
Lagrangian of the gravitational counterpart of string the-
ories is one of their distinguishing features. Scherk and
Schwarz [6] demonstrated the need for the R2 and RμνRμν

terms, while later Candelas et al. [7] proved the same for
RμνλρRμνλρ . Later it was demonstrated [8] that the only
combination of quadratic terms that leads to a ghost-free
nontrivial gravitation interaction is the Gauss–Bonnet (GB)
term:

LGB = L2 = RμνλρR
μνλρ − 4RμνR

μν + R2.

This term, first found by Lanczos [9,10] (therefore it is some-
times referred to as the Lanczos term) is an Euler topological
invariant in (3+1)-dimensional space-time, but not in (4+1)
and higher dimensions. Zumino [11] extended Zwiebach’s
result on higher-than-squared curvature terms, supporting the
idea that the low-energy limit of the unified theory might have
a Lagrangian density as a sum of contributions of different
powers of curvature. In this regard Einstein–Gauss–Bonnet
(EGB) gravity could be seen as a subcase of the more general
Lovelock gravity [12], but in the current paper we restrain
ourselves to only quadratic corrections and so to the EGB
case.

While considering extra-dimensional theories, regardless
of the model, we need to explain where the additional dimen-
sions are. Indeed, with our current level of experiments, we
clearly sense three spatial dimensions and sense no presence
of extra dimensions. The common explanation is that they
are “compactified”, meaning that they are so small that we
cannot detect them. Perhaps, the simplest class of such the-
ories are the theories with “spontaneous compactification”.
Exact solutions of this class have been known for a long
time [13], but especially relevant for cosmology are those
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with a dynamical size of the extra dimensions (see [14–17] for
different models). Notable recent studies include [18], where
dynamical compactification of the (5+1) Einstein–Gauss–
Bonnet model was considered; [19,20], where different met-
ric Ansätze for scale factors corresponding to (3+1)- and
extra-dimensional parts were studied, and [21–23], where
we investigated general (e.g., without any Ansatz) scale fac-
tors and curved manifolds. Also, apart from cosmology, the
recent analysis has focused on properties of black holes in
Gauss–Bonnet [24–28] and Lovelock [29–33] gravities, fea-
tures of gravitational collapse in these theories [34–36], gen-
eral features of spherical-symmetric solutions [37], and many
others.

When it comes to exact cosmological solutions, two most
common Ansätze used for the scale factor are exponential
and power law versions. Exponential solutions represent de
Sitter asymptotic stages while power-law solutions represent
Friedmann-like stages. Power-law solutions have been ana-
lyzed in [14,38] and more recently in [39–43] so that by now
there is an almost complete description of the solutions of this
kind (see also [44] for comments regarding physical branches
of the power-law solutions). One of the first considerations
of the extra-dimensional exponential solutions was done by
Ishihara [45]; later considerations included [46], as well as
the models with both variable [47] and constant [48] volume;
the general scheme for constructing solutions in EGB gravity
was developed and generalized for general Lovelock gravity
of any order and in any dimensions [49]. Also, the stability of
the solutions was addressed in [50] (see also [51] for stabil-
ity of general exponential solutions in EGB gravity), and it
was demonstrated that only a handful of the solutions could
be called “stable”, while most of them are either unstable or
have neutral/marginal stability.

If we want to find all possible regimes in EGB cosmol-
ogy, we need to go beyond an exponential or power-law
Ansatz and keep the scale factor generic. We are particu-
larly interested in models that allow for dynamical compact-
ification, so that we consider the spatial part as the warped
product of three-dimensional and extra-dimensional parts.
In that case the three-dimensional part is “our Universe” and
we expect this part to expand, while the extra-dimensional
part should be suppressed in size with respect to the three-
dimensional one. In [21] we demonstrated the existence of
a regime when the curvature of the extra dimensions is neg-
ative and the Einstein–Gauss–Bonnet theory does not admit
a maximally symmetric solution. In this case both the three-
dimensional Hubble parameter and the extra-dimensional
scale factor asymptotically tend to constant values. In [22]
we performed a detailed analysis of the cosmological dynam-
ics in this model with generic couplings. Later in [23] we
studied this model and demonstrated that, with an additional
constraint on the couplings, Friedmann late-time dynamics
in the three-dimensional part could be restored.

Recently, we have performed a full-scale investigation of
the spatially flat cosmological models in EGB gravity with
the spatial part being a warped product of three-dimensional
and extra-dimensional parts [52–54]. In [52] we demon-
strated that the vacuum model has two physically viable
regimes—the first of them is the smooth transition from high-
energy GB Kasner to low-energy GR Kasner. This regime
appears for α > 0 at D = 1, 2 (the number of extra dimen-
sions) and for α < 0 at D ≥ 2 (so that at D = 2 it appears for
both signs of α). The other viable regime is a smooth transi-
tion from high-energy GB Kasner to anisotropic exponential
regime with expanding three-dimensional section (“our Uni-
verse”) and contracting extra dimensions; this regime occurs
only for α > 0 and at D ≥ 2. In [53,54] we considered
the �-term case and it appears that only a realistic regime
is the transition from high-energy GB Kasner to anisotropic
exponential regime; the low-energy GR Kasner is forbidden
in the presence of the �-term so the corresponding transi-
tion does not occur. Also, if we consider joint constraints on
(α,�) from our cosmological analysis and black holes prop-
erties, different aspects of AdS/CFT and related theories in
the presence of the Gauss–Bonnet term (see [26,30,55–63]),
the resulting bounds on (α,�) are (see [54] for details)

α > 0, D ≥ 2,
3D2 − 7D + 6

4D(D − 1)
≡

η0 ≥ α� ≥ η2 ≡ − (D + 2)(D + 3)(D2 + 5D + 12)

8(D2 + 3D + 6)2 ,

(1)

where α is the Gauss–Bonnet coupling and D is the number
of extra dimensions.

The current paper is a natural continuation of our previ-
ous research on the properties of cosmological dynamics in
EGB gravity. After a thorough investigation of spatially flat
cases in [52–54], it is natural to consider spatially non-flat
cases. Indeed, the spatial curvature affects inflation [64,65],
so that it could change asymptotic regimes in other high-
energy stages of the Universe evolution, and we are consid-
ering one of them. We already investigated the cases with
negative curvature of the extra dimensions in [21–23], but to
complete our description it is necessary to consider all pos-
sible cases. We are going to consider all possible curvature
combinations to see their influence on the dynamics—we
know the regime for the case with both subspaces being spa-
tially flat and will see the change in the dynamics with the
curvatures being non-flat. This allows us to find all possible
asymptotic regimes in the spatially non-flat case; together
with the results for the flat case, it will complete this topic.

Another important issue we are going to consider is the
anisotropy within subspaces. Indeed, the analysis in [52–54]
is performed under the conjecture that both three- and extra-
dimensional subspaces are isotropic. The question is if the
results are stable under small (or not very small) deviations
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of the isotropy of these subspaces. Finally, if we consider
both effects, we could build a two-step scheme which allows
us to qualitatively describe the dynamical compactification
of an anisotropic curved space-time.

The structure of the manuscript is as follows: first we write
down the equations of motion for the case under consider-
ation. Next, we study the effects of curvature—we add all
possible curvature combinations to all known existing flat
regimes and describe the changes in the dynamics. After that
we draw conclusions separately for the vacuum and the �-
term regimes and describe their differences and generalities.
After that we investigate the effects of anisotropy and find sta-
bility areas for different cases. Finally, we use both effects
to build a two-step scheme which allow us to describe the
dynamics of a wide class spatially curved models. In the end,
we discuss the results obtained and draw the conclusions.

2 Equations of motion

Lovelock gravity [12] has the following structure: its Lagran-
gian is constructed from the terms

Ln = 1

2n
δ
i1i2...i2n
j1 j2... j2n

R j1 j2
i1i2

. . . R j2n−1 j2n
i2n−1i2n

, (2)

where δ
i1i2...i2n
j1 j2... j2n

is the generalized Kronecker delta of the
order 2n. One can verify that Ln is Euler invariant in D <

2n spatial dimensions and so it would not give a nontrivial
contribution to the equations of motion. Thus, the Lagrangian
density for any given D spatial dimensions is the sum of

all Lovelock invariants (2), up to n =
[
D

2

]
, which give

nontrivial contributions to the equations of motion:

L = √−g
∑
n

cnLn, (3)

where g is the determinant of metric tensor, cn is a coupling
constant of the order of the Planck length in 2n dimensions
and summation over all n in consideration is assumed.

The Ansatz for the metric is

ds2 = − dt2 + a(t)2d	2
(3) + b(t)2d	2

(D) , (4)

where d	2
(3) and d	2

(D) stand for the metric of the two

constant-curvature manifolds 	(3) and 	(D).1 It is worth to
point out that even a negative constant-curvature space can
be compactified by making the quotient of the space by a
freely acting discrete subgroup of O(D, 1) [66].

The complete derivation of the equations of motion could
be found in our previous papers, dedicated to the description
of the particular regime which appears in this model [21,22].
It is convenient to use the following notation:

A(1) =
..
a

a
, C =

.
a

.

b

ab
, B(1) =

..

b

b
,

A(2) =
[
γ(3) + ( .

a
)2

]
a2 , B(2) =

[
γ(D) +

( .

b
)2

]

b2 , (5)

and the following rescaling of the coupling constants:

α = (D+3)(D+2)(D+1)
6 c0,

β = (D+1)D(D−1)
6 c1,

γ = (D−1)(D−2)(D−3)
6 c2 .

(6)

Then the equations of motion could be written in the follow-
ing form:

E0 = 0 ⇔ 0 = α + β

(
B(2) + 6

D − 1
C + 6

D (D − 1)
A(2)

)

+ γ

(
B2

(2) + 12A(2)B(2)

(D − 2) (D − 3)
+ 24C2

(D − 2) (D − 3)
+ 12B(2)C

(D − 3)
+ 24A(2)C

(D − 1) (D − 2) (D − 3)

)
, (7)

Ei = 0 ⇔ 0 = α + β

(
B(2) + 4A(1)

D (D − 1)
+ 2B(1)

D − 1
+ 2A(2)

D (D − 1)
+ 4C

(D − 1)

)

+ γ

(
B2

(2) + 16A(1)C

(D − 1) (D − 2) (D − 3)
+ 8B(2)C

D − 3
+ 8A(1)B(2)

(D − 2) (D − 3)

+ 8A(2)B(1)

(D − 1) (D − 2) (D − 3)
+ 16B(1)C

(D − 2) (D − 3)
+ 4B(1)B(2)

(D − 3)
+ 4A(2)B(2)

(D − 2) (D − 3)
+ 8C2

(D − 2) (D − 3)

)
, (8)

while the equation Ea = 0 reads

1 We consider theAnsatz for space-time in the form of a warped product
M4 × b(t)MD , where M4 is a Friedmann–Robertson–Walker manifold
with scale factor a(t), whereas MD is a D-dimensional Euclidean com-
pact and constant-curvature manifold with scale factor b(t).
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Ea = 0 ⇔ 0 = D

(D − 4)
α + (D − 2)

(D − 4)
β

(
B(2) + 6A(1)

(D − 1) (D − 2)
+ 2B(1)

D − 2
+ 6A(2)

(D − 1) (D − 2)
+ 6C

(D − 2)

)

+ γ

(
B2

(2) + 48A(1)C

(D − 2) (D − 3) (D − 4)
+ 12B(2)C

D − 4
+ 24C2

(D − 3) (D − 4)

+ 12A(1)B(2)

(D − 3) (D − 4)
+ 24A(2)B(1)

(D − 2) (D − 3) (D − 4)
+ 24B(1)C

(D − 3) (D − 4)
+ 4B(1)B(2)

(D − 4)

+ + 12A(2)B(2)

(D − 3) (D − 4)
+ 24A(2)C

(D − 2) (D − 3) (D − 4)
+ 24A(1)A(2)

(D − 1) (D − 2) (D − 3) (D − 4)

)
. (9)

3 Influence of curvature

In this section we investigate the impact of the spatial cur-
vature on the cosmological regimes. As a “background”
we use the results obtained in [52–54]—exact regimes for
γ(3) = γ(D) ≡ 0 for both the vacuum and the �-term cases.
As we use them as a “background” solutions, it is worth to
quickly describe them all. All solutions found for both vac-
uum and �-term cases could be split into two groups—those
with “standard” regimes as both past and future asymptotes
and those with nonstandard singularity as one (or both) of
the asymptotes. By the “standard” regimes we mean Kasner
(generalized power-law) and exponential. In our study me
encounter two different Kasner regimes: the “classical” GR
Kasner regime (with

∑
pi = ∑

p2
i = 1 where pi is the

Kasner exponent from the definition of power-law behav-
ior ai (t) = t pi ), which we denote K1 (as

∑
pi = 1) and

it is low-energy regime; and the GB Kasner regime (with∑
pi = 3), which we denote K3 and it is high-energy

regime. For a realistic cosmology we should have a high-
energy regime as past asymptote and a low-energy as future
asymptote, but our investigation demonstrates that poten-
tially both K1 and K3 could play a role as past and future
asymptotes [52]. Also we should note that K1 exists only in
the vacuum regime, while K3 as past asymptote we encounter
in both the vacuum and the �-term regimes (see [53] for
details). The exponential regimes (where the scale factors
depend upon time exponentially, so the Hubble parameters
are constant) could be seen in both the vacuum and the �-
term regimes and there are two of them—the isotropic and the
anisotropic ones. The former of them corresponds to the case
where all the directions are isotropized and, since we work in
the multidimensional case, it does not fit the observations. On
the contrary, the latter of them have different Hubble param-
eters for three- and extra-dimensional subspaces. For realis-
tic compactification we demand expansion of the three- and
contraction of the extra-dimensional spaces. The exponential
solutions are denoted Eiso for the isotropic and E3+D for the
anisotropic case, where D is the number of extra dimensions

(so that, say, in D = 2 the anisotropic exponential solution
is denoted E3+2).

The second large group are the regimes which have a non-
standard singularity as either of the asymptotes or even both
of them. The nonstandard singularity is the situation which
arises in nonlinear theories and in our particular case it corre-
sponds to the point of the evolution where Ḣ (the derivative
of the Hubble parameter) diverges at the final H ; we denote
it as nS. This kind of singularity is “weak” by Tipler’s classi-
fication [67] and is type II in the classification by Kitaura and
Wheeler [68,69]. Our previous research reveals that the non-
standard singularity is a wide-spread phenomenon in EGB
cosmology, for instance, in the (4+1)-dimensional Bianchi-
I vacuum case all the trajectories have nS as either past or
future asymptote [41]. Since a nonstandard singularity means
the beginning or end of the dynamical evolution, either higher
or lower values of H are not reached and so the entire evo-
lution from high to low energies cannot be restored; for this
reason we disregard the trajectories with nS in the present
paper.

Thus, the viable (or realistic) regimes are limited to K3 →
K1 and K3 → E3+D for the vacuum case and K3 → E3+D

for the �-term; we further investigate these regimes in the
presence of curvature.

3.1 Vacuum K3 → K1 transition with curvature

First we want to investigate the influence of the curva-
ture on the vacuum Kasner transition—the transition from
Gauss–Bonnet Kasner regime K3 to the standard GR Kasner
K1. We add curvature to either and both three- and extra-
dimensional manifolds and see the changes in the regimes.
We label the cases as (γ3, γD) where γ3 is the spatial curva-
ture of the three-dimensional manifold and γD—of the extra-
dimensional. Therefore, for the (0, 0) case—the flat case—
we have K3 → K1, as reported in [52]. Now if we introduce
nonzero curvature, both (1, 0) and (−1, 0) do not change the
regime and there remains K3 → K1. So we can conclude that
γ3 alone does not affect the dynamics. On the contrary, γD
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does—(0, 1) has the transition changes to K3 → nS, while
(0,−1) changes the transition to K3 → KD . This KD is a
new but non-viable regime with p3 → 0 and pD → 1—a
regime with constant-size three dimensions and expanding
as power-law extra dimensions, which makes the behavior in
the expanding subspace Milne-like, caused by the negative
curvature. Therefore, the curvature of the extra dimensions
alone makes future asymptotes non-viable. Let us also note
that for D = 2 the original K3 → K1 regime exists for both
α > 0 and α < 0, while for D ≥ 3 it exists solely for α < 0.
It appears that the α < 0 branch of the D = 2 Kasner transi-
tion does not have K D

3 —instead, it has nS, so that K D
3 exists

only for α > 0 in D = 2 and α < 0 in D ≥ 3. If we include
both curvatures, the situation changes as follows: for (1, 1)

we have K3 → nS; for (1,−1) it is K3 → K D
3 ; for (−1, 1)

it is K3 → nS and finally for (−1,−1) it is K3 → K D
3 .

The described regimes require some explanations. First
of all, as we reported in [52], viable regimes have pa > 0
and pD < 0—indeed, we want expanding three-dimensional
space and contracting extra dimensions to achieve compact-
ification. Then it is clear why γ3 alone does not change
anything—with expanding scale factor, the effect of curva-
ture vanishes. But most interesting is the effect ofγD = −1—
indeed, negative curvature not just stops the contraction of the
extra dimensions but starts their expansion, which changes
the entire dynamics drastically. Now the extra-dimensional
scale factor “dominates” and the three-dimensional one goes
to a constant.

The scheme above has one interesting feature—as we
described, γ(D) < 0 gives rise to regime with p3 → 0 and
pD → 1—but in D = 3 this gives us a“would be” viable
regime—indeed, if both subspaces are three-dimensional, as
long as one is expanding and another is not, we could just
call the expanding one “our Universe” and we have stabilized
“extra dimensions”. So that in D = 3 there exists a regime
with stabilized extra dimensions and a power-law expanding
three-dimensional “our Universe”. However, the viability of
this regime needs more checks, and we leave this question to
further study.

Thus the negative curvature of extra dimensions gives rise
to new and an interesting regime—KD with expanding extra
dimensions and constant-sized three-dimensional subspace.
It is not presented in the spatially flat vacuum case, but it
is also non-viable (except for D = 3), so that it does not
improve the chances for successful compactification. The
only viable case is K3 → K1, which remains unchanged
for γD = 0.

3.2 Vacuum K3 → E3+D transition with curvature

Now let us examine the effect of curvature on another viable
vacuum regime—the transition from GB Kasner K3 to the
anisotropic exponential solution E3+D . Similar to the previ-

ously considered cases, for an anisotropic exponential solu-
tion to be considered as “viable”, we require the expansion
rate of the three-dimensional subspace to be positive and for
the extra dimensions to be negative. Let us see what happens
if we add a nonzero spatial curvature.

Similar to the previous case, the curvature of the three-
dimensional subspace γ3 alone does not change the
dynamics—(1, 0) and (−1, 0) both have the K3 → E3+D

regime. But unlike the previous case, the curvature of the
extra dimensions γD alone makes the future asymptotes
singular—a power-law-type finite-time future singularity in
the case of γD = +1 and nonstandard singularity in the
case of γD = −1. The same situation remains in the cases
that both subspaces have curvature—as long as γD �= 0, the
future asymptote is singular—either power-law or nonstan-
dard, depending on the sign of the curvature.

Therefore, similar to the previous case, the only viable
regime is unchanged, K3 → E3+D , which occurs if γD =
0. But unlike the previous case, this one does not give us
interesting nonsingular regimes.

3.3 �-term K3 → E3+D transition with curvature

Finally, let us describe the effect of curvature on the
only viable �-term regime—the K3 → E3+D transition
described in [53,54]. The condition for viability is the same
as in the described above cases—expansion of the three-
dimensional subspace and contraction of the extra dimen-
sions. Our investigation suggests that the cases with D = 2
and D ≥ 3 are different; let us first describe the D = 2 case.
According to [53,54], there are three domains for the �-term
case where the K3 → E3+D transition take place.

We have: i) α > 0, � > 0, α� ≤ ζ0 with ζ0 = 1/2
for D = 2, 3 and ζ0 = (3D2 − 7D + 6)/(4D(D − 1)),
ii) entire α > 0, � < 0 domain and iii) α < 0, � > 0,
α� ≤ −3/2. Formally i) and ii) supplement each other to
form a single domain α > 0, α� ≤ ζ0, but in i) there also
exist isotropic exponential solutions, which, as we will see,
affects the dynamics, so we consider these two domains sep-
arately. So for the domain of i), we have a regime unchanged
if γ(D) = 0, isotropization (K3 → Eiso) if γ(D) < 0 and
a nonstandard singularity nS if γ(D) > 0. In the domain
of ii), we again have unchanged K3 → E3+2 if γ(D) = 0
and nS in all other (i.e. γ(D) �= 0) cases. Already here we
can see the difference between i) and ii) domains. Finally,
the domain of iii) has the same dynamics as ii). Therefore, in
the domain where isotropic and anisotropic exponential solu-
tions coexist, we have slightly richer dynamics, but neither of
the regimes are viable; the only viable regime is unchanged
K3 → E3+2 and it takes place if γ(D) = 0. Now if we
consider the general D ≥ 3 case, the resulting regimes are
as follows: now the of i) and ii) have the same structure—
opposite to the D = 2 case, the structure is as follows: the
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only viable regime is unchanged K3 → E3+D , which exists
if γ(D) = 0; if γ(D) �= 0, we always have nS. The domain of
iii) has the structure: unchanged K3 → E3+D if γ(D) = 0, the
“stabilization” (or “geometric frustration” regime [21,22]) if
γ(D) < 0 and nS if γ(D) > 0. This “stabilization” regime is
the regime which naturally appears in the “geometric frus-
tration” case and is described in [21,22]. In this regime the
Hubble parameter, associated with three-dimensional sub-
space reaches a constant value while the Hubble parame-
ter associated with the extra dimensions reaches zero (and
so the corresponding scale factor—the “size” of the extra
dimensions—reaches a constant value; the size of he extra
dimensions “stabilizes”).

Thus, in this last case—the �-term K3 → E3+D

transition—the “original” regime remains unchanged for
γ(D) = 0. For nonzero curvature of extra dimensions, if it
is positive, the future asymptote is singular, if it is negative,
and D ≥ 3, in the future we could have the regime with sta-
bilization of extra dimensions, otherwise it is also singular.

We remind a reader that the geometric frustration pro-
posal suggests that the dynamical compactification with sta-
bilization of extra dimensions occurs only for those coupling
constants in EGB gravity for which maximally symmetric
solutions are absent. In turn, the absence of the maximally
symmetric solutions means the absence of the isotropic expo-
nential solutions, so that with negative curvature of the extra
dimensions, isotropic and anisotropic exponential solutions
cannot “coexist”, which means that, for any set of couplings
and parameters, only one of them could exist. The validity
of this proposal has been checked numerically in [53,54] for
a larger number of extra dimensions, and now we see that it
is valid also for the D = 3 case.

It is not the same in the flat case—for instance, for α > 0,
� > 0 [53,54] we have both K3 → Eiso and K3 → E3+D

on different branches. If we turn on the negative curvature
γ(D) < 0, the former of them remains, while the latter turns
to K3 → nS, a nonstandard singularity in D = 2, or to
the stabilization regime in D > 2. This way we can see
that D = 2 is somehow pathological—in the presence of
curvature, there are no realistic regimes in D = 2 but they
do exist in D ≥ 3.

Finally, we made the same analysis starting from the expo-
nential regime instead of the GB Kasner regime with the same
number of expanding and contracting dimensions. The final
fate of all trajectories appears to be the same. We will use
this remark later in Sect. 5.

3.4 Summary

All three considered cases have the original regimes
unchanged as long as γ(D) = 0. This means that the cur-
vature of the three-dimensional world alone cannot change
the future asymptote. For nonzero curvature of the extra

dimensions, the situation is different in all three cases: in
the vacuum K3 → E3+D case all trajectories with γ(D) �= 0
are singular; in vacuum K3 → K1 we have a new regime
but it is non-viable; finally, in �-term K3 → E3+D case if
γ(D) > 0 the future asymptote is singular, while for γ(D) < 0
there could be a viable regime with stabilization of the extra
dimensions, but this regime occurs only when an isotropic
exponential solution cannot exist and we have D ≥ 3.

To conclude, it seems that the only important player in
this case is the curvature of extra dimensions. And it is clear
why is it so—from the requirements of viability we demand
that the three-dimensional subspace should expand, while the
extra dimensions should contract. The expansion of the three
dimensions cannot be stopped by γ(3) > 0 nor by γ(3) < 0,
which is why γ(3) does not influence the dynamics. On the
other hand, extra dimensions are contracting, so both signs of
extra-dimensional curvature affect it—a positive sign usually
leads to a singularity (standard or not), while a negative sign
could turn it to expansion (which is what we see in the KD

regime).

4 Influence of anisotropy

In this section we address the problem of the anisotropy of
each subspaces. In this case the equations of motion are dif-
ferent from (7)–(9); the metric Ansatz has the form

gμν = diag{−1, a2
1(t), a2

2(t), . . . , a2
n(t)}; (10)

substituting it into the Lagrangian and following the deriva-
tion described in Sect. 2 gives us the equations of motion:

2

⎡
⎣∑

j �=i

(Ḣ j + H2
j ) +

∑
{k>l}�=i

Hk Hl

⎤
⎦ + 8α

⎡
⎣∑

j �=i

(Ḣ j + H2
j )

∑
{k>l}�={i, j}

HkHl + 3
∑

{k>l>m>n}�=i

Hk Hl HmHn

⎤
⎦ − � = 0

(11)

as the i th dynamical equation. The first Lovelock term—the
Einstein–Hilbert contribution—is in the first set of brack-
ets and the second term—Gauss–Bonnet—is in the sec-
ond set; α is the coupling constant for the Gauss–Bonnet
contribution and we put the corresponding constant for the
Einstein–Hilbert contribution to unity. Also, since in this sec-
tion we consider spatially flat cosmological models, scale
factors are not important in the physical sense and the
equations are rewritten in terms of the Hubble parameters
Hi = ȧi (t)/ai (t). Apart from the dynamical equations, we
write down the constraint equation,

2
∑
i> j

Hi Hj + 24α
∑

i> j>k>l
Hi Hj HkHl = �. (12)
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The relationship between (c0, c1, c2) and (α,�) is

c0 = − 6�

(D + 3)(D + 2)(D + 1)
; c1 = 6

D + 1
; c2 = 6Dα.

(13)

First, let us consider D = 2 case—it was demonstrated
in [52–54] that the D = 2 case has all regimes which
higher-dimensional cases possess and does not have any extra
regimes, so that the D = 2 case is the simplest representa-
tive case. We seek an answer to the question—if the sub-
spaces are not exactly isotropic (we consider the spatial part
to be a product of three- and two-dimensional isotropic sub-
spaces), how does it affect the dynamics? Is the asymptote
still reached or not? Indeed, totally anisotropic (Bianchi-I-
type) cosmologies are more generic, and if they still could
lead to the asymptotes under consideration, this would widen
the parameters and initial conditions spaces which could lead
to viable compactification. Thorough investigation of D = 1
case revealed [41] that only nS is available as a future asymp-
tote in the vacuum case (compare with [52] for regimes in
[3 + 1] spatial splitting), so that the problem of “losing” the
regimes in the case of broken symmetry exists.

To investigate this effect, we solve the general equations
(i.e., without H1 = H2 = H3 = H and H5 = · · · =
HD−3 = h Ansatz implied) in the vicinity of the exact expo-
nential and power-law solutions to see if the exact solution
is reached in the course of the evolution, or if it is replaced
with some other asymptote.

We start with vacuum regimes; according to [52], in the
vacuum D = 2 case at high enough H0 (initial value for the
Hubble parameter, associated with three-dimensional sub-
space), there are four combinations (two of them, h1 and h2)
and α ≶ 0. The first of the cases, α > 0 and h1, gives
the K3 → K1 transition. If we break the symmetries in
both spaces, the stability of the regime is broken as well—in
Fig. 1a we present the analysis of this case. There we present
the regime depending on the initial conditions—we seek the
regime change around the exact solution H1 = H2 = H3 =
2.0, and H4 = H5 = h0 is being found from the constraint
equation (7); we fix H3 = 2.0 and H4 = h0 and change H1

and H2 and find H5 from the constraint equation. The exact
solution in question (H1 = H2 = H3 = 2.0, H4 = H5 = h0)
is depicted as a circle. The shaded area corresponds to the
K3 → K1 regime, while the area which surrounds it corre-
sponds to K3 → nS. One can see that the stability region
is quite small and any substantial deviation from the exact
solution causes a nonstandard singularity. The second case,
α > 0 and h2, has the K3 → E3+2 regime. With broken sym-
metry the regime is conserved much better than the previous
one—in Fig. 1b we present the analysis of this case. One can
see that not just the area of the regime stability covers very
large initial conditions, but this area is also unbounded. The

typical evolution of such a transition is illustrated in Fig. 2a.
The next case, α < 0 and h1, has the K3 → K1 transition,
just like the first one, and their stability is similar. Finally, the
last case, α < 0 and h2, governs the K3 → Eiso transition.
If we break the symmetry for this case, the resulting stability
area is quite similar to that of K3 → K1.

To summarize the results for the vacuum case, only K3 →
E3+2—the transition from GB Kasner to anisotropic expo-
nential solution—is stable. All other regimes—transitions to
isotropic exponential solution and to GR Kasner—have much
smaller stability areas and could be called “metastable”. For-
mally, the basin of attraction of K1 and isotropic expansion
is nonzero and they are stable within it, but on the other hand
its area is much smaller than that of E3+2; so that compar-
ing the two we decided to call K3 → E3+2 “stable”, while
K3 → K1 and K3 → Eiso are called “metastable”.

Now let us consider the �-term case. According to [53],
in the presence of the �-term the variety of the regimes is
a bit different from the vacuum case. Again, there are two
branches (h1 and h2) and now in addition to variation in α

there is variation in � and in their product α�.
The first case is α > 0, � > 0. There on the h1 branch we

have K3 → E3+2 if α� ≤ 1/2 and K3 → nS if α� > 1/2.
Another (h2) branch has K3 → Eiso regardless of α�. All
these three branches are stable—breaking the symmetry of
both subspaces keeps the regimes as they are within wide
vicinity of the exact solution, like in Fig. 1b. A stable solution
K3 → Eiso as a future attractor for broken symmetry in both
subspaces is illustrated in Fig. 2b. The next case to consider
is α > 0, � < 0; there the h1 branch has K3 → E3+2,
while h2 has K3 → nS and the former of them is proved to
be stable (the latter is not viable, so its stability is of little
importance). Now let us turn to the α < 0 cases and the first
one comes with � > 0. At α� ≥ −5/6 both branches have
the K3 → Eiso regime and both of them are metastable—
only the initial conditions which are very close to the exact
solution lead to Eiso, those beyond it lead to nS. On the
contrary, at α� < −5/6 on the h1 branch we have K3 →
E3+2, while on the h2 branch K3 → nS and again E3+2 is
stable. Finally, α < 0, � < 0 has K3 → Eiso on h1 and
K3 → nS on h2 and in this case Eiso is stable.

In addition to the described above D = 2 case, we also
considered D = 3. The methodology is the same and the
results for the vacuum K3 → K1 are the same. But the results
for both the vacuum and the �-term K3 → E3+3 transition
are different. They are presented in Fig. 1c, where the initial
conditions leading to E3+3 are shaded with [3 + 3] added
on them. One can see that the stability area is unbounded,
as it was in the D = 2 case, but there are differences as
well. First, the upper part seems shrinked in comparison with
D = 2, so that starting from a vicinity of the exact solu-
tion, it is less probable to end up on E3+3. Instead, we have
K3 → E4+2—the exponential solution with four expand-
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Fig. 1 Typical stability areas for vacuum K3 → K1 regime on a; vacuum and �-term K3 → E3+2 regime on b; vacuum and �-term K3 → E3+3
(and possibly higher number of extra dimensions as well) regime on c (see the text for more details)

(b)(a)

Fig. 2 Typical evolution curve for stable anisotropic a and isotropic b exponential solutions with broken symmetry in both subspaces in the D = 2
case (see the text for more details)

ing and two contracting dimensions, which is, obviously,
non-viable. In Fig. 3 we present K3 → E3+3 in panel (a)
and K3 → E4+2 in panel (b), with the latter originating
from some vast vicinity of the former. We also have some
initial conditions starting from the negative values to lead
to the exponential solution (which could “compensate” the
loss in the upper part)—something we have never seen in
D = 2—but this is the effect of the number of dimensions—
in D = 2, due to the smaller number of dimensions, the
constraint is tighter, while in D ≥ 3 it is more relaxed. The
presence of the E4+2 is also the effect of the higher number
of extra dimensions—indeed, as we demonstrated in [47], in
five spatial dimensions there is only one stable anisotropic
exponential solution: E3+2 (see [50,51] for stability issues),
while in six and higher there are more [49] and there is a
chance to end up on another exponential solution. As the
number of exact solutions grow with the number of dimen-

sions, in higher dimensions it is probable to end up on another
exponential solution, rather than E3+D .

The black circle in Fig. 1c corresponds to the exact E3+3

solution and one can see that the initial conditions are aligned
along H (0)

i ∼ H (0)
j . The same could be seen from the D = 2

case as well (see Fig. 1b). The reason for it is quite clear—
indeed, with appropriate H (0)

i = H (0)
j the exact E3+D solu-

tion is achieved explicitly, so that it is natural for the initial
conditions to tend to this relation.

To conclude, we see that all K3 → E3+D regimes in the
�-term case are stable with respect to breaking the symmetry
of both subspaces. On the other hand, another nonsingular
regime, K3 → Eiso, is stable only for (α > 0, � > 0) and
(α < 0, � < 0). Finally, K3 → K1 in vacuum is also stable,
but its basin of attraction is quite small and any substantial
deviation from the exact solution destroys it.
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(a) (b)

Fig. 3 Typical evolution curve for stable anisotropic [3 + 3] a and [4 + 2] b exponential solutions with broken symmetry in both subspaces in the
D = 3 case (see the text for more details)

5 Two-step scheme for general spatially curved case

The results of the two previous sections allow us to construct
a scenario of compactification which satisfies two important
requirements:

• the evolution starts from a rather general anisotropic ini-
tial conditions,

• the evolution ends in a state with three isotropic big
expanding dimensions and stabilized isotropic extra
dimensions.

The first part of the scenario in question uses the results
of Sect. 4. We have seen there that on starting from a state
in the dashed zone of Fig. 1b, c the flat anisotropic Universe
tends to the exponential solution with three equal expand-
ing dimensions. The initial conditions for such a behavior
are not so restricted. From Fig. 1b we can see that the initial
state should already have three expanding and two shrinking
dimensions, however, since all Gauss–Bonnet Kasner solu-
tions (as well as the usual GR Kasner solutions) should have
at least one shrinking dimension, this requirement does not
constrain possible initial states very seriously—in any cases
we should expect that contracting dimensions are present in
the initial conditions. Within this situation the dashed zone
occupies a rather big part of the initial condition space of
Fig. 1b, and any solution from this zone ends up in an expo-
nential solution of the desired type.

In higher dimensions the situation is worsening, on the
one hand—as it is seen from Fig. 1c, in D ≥ 3, there is more
than one stable anisotropic exponential solution, so that start-
ing from the vicinity of exact E3+3 solution we could end

up in E4+2 solution, which does not have realistic compact-
ification. However, on the other hand, initial conditions with
two expanding and four contracting dimensions can end up
in E3+3.

Suppose also that a negative spatial curvature is small
enough at the beginning and starts to be important only after
this transition to an exponential solution (which is established
in the present paper only for a flat Universe) had already
occurred. This condition allows us to glue the second part of
the scenario, which requires negative spatial curvature of the
inner space. We have seen in Sect. 3 that the exponential solu-
tion turns to the solution with stabilized extra dimensions in
this case. As a result of these two stages a Universe starting
from an initially anisotropic state with both outer expanding
three-dimensional space and contracting inner space evolves
naturally to the final stage with isotropic three big dimensions
and isotropic and stabilized inner dimensions. The only addi-
tional condition for this scenario to be realized (in addition
to starting from the appropriate zone in the initial conditions
space) is that spatial curvature should become dynamically
important only after the transition to an exponential solution
occurs. As we mentioned in Sect. 3, this part (and so the
entire scheme as well) works only for D ≥ 3.

6 Discussions and conclusions

Prior to this paper, we completed a study of the most simple
(but the most important as well) cases. The spatial part of
these cases is the product of three- and extra-dimensional
subspaces which are spatially flat and isotropic [52–54].
Thus, the obvious next step is consideration of these sub-
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spaces being non-flat and anisotropic, and that is what we
have done in the present paper. Non-flatness is addressed
by assuming that both subspaces have constant curvature,
while anisotropy is addressed by breaking the symmetry
between the spatial directions. The results of the curvature
study suggest that the only viable regimes are those from
the flat case with the requirement γ(D) = 0. Additionally, in
the �-term case there is a “geometric frustration” regime,
described in [21,22] and further investigated in [23] with the
requirement γ(D) < 0.

Our study reveals that there is a difference between the
cases with γ(D) = 0 and γ(D) < 0: the former of them have
only exponential solutions and the isotropic and anisotropic
solutions coexist; the latter have the regime with stabiliza-
tion of the extra dimensions (instead of a “pure” anisotropic
exponential regime) and isotropic exponential regimes can-
not coexist with regimes of stabilization—this difference was
not noted before. The curvature effects also differ in cases
with different D—in D = 2 there is no stabilization of the
extra dimensions, while in D ≥ 3 there is.

In D = 3 and γ(D) < 0 there is also an interesting regime
in the vacuum case—the regime with stabilization of one
and power-law expansion of the other three-dimensional sub-
spaces; the viability of this regime for some compactification
scenario needs further investigations.

The results of the anisotropy study reveal that the K3 →
E3+D regime is always stable with respect to breaking the
isotropy in both subspaces, meaning that within some vicin-
ity of the exact K3 → E3+D transition, all initial conditions
still lead to this regime (see Fig. 2a). Although the area of
the basin of attraction for this regime depends on the num-
ber of extra dimensions D, in D = 2 it is quite vast (see
Fig. 1b) and there are no other anisotropic exponential solu-
tions, in D = 3 (and higher number of extra dimensions) it
seems smaller2 and there are initial conditions in the vicinity
of E3+D which leads to other exponential solutions. In our
particular example, D = 3, presented in Fig. 1c, some of the
initial conditions from the vicinity of E3+3 end up in E4+2

instead. We expect that in a higher number of extra dimen-
sions the situation for E3+D would be more complicated and
requires a special analysis.

Another viable regime, K3 → K1 from the vacuum
case, as well as other non-viable regimes, are “metastable”—
formally they are stable, but their basin of attraction is much
smaller compared to that of E3+D (see Fig. 1a).

Our study clearly demonstrates that the dynamics of the
non-flat cosmologies could be different from flat cases and
even some new regimes could emerge. In this paper we

2 To quantitatively address this question we need to introduce an appro-
priate measure and since the area is unbounded, this is not an easy task.
Also, the answer will depends on the chosen measure, so we skip the
quantitative analysis.

covered only the simplest case with constant-curvature sub-
spaces leaving the most complicated cases aside—we are
going to investigate some of them deeper in the papers to
follow.

Now with both effects—the spatial curvature and anisotropy
within both subspaces—being described, let us combine
them. In the totally anisotropic case, as we demonstrated, a
wide area of the initial conditions leads to anisotropic expo-
nential solution (for the values of couplings and parameters
when isotropic exponential solutions do not exist). There-
fore, if we start from some vicinity of the exact exponen-
tial solution, and if the initial scale factors are large enough
for the curvature effects to be small, we shall reach the
anisotropic exponential solution with expanding three and
contracting extra dimensions. After that the curvature effects
in the expanding subspace are nullified, while in the con-
tracting dimensions they are not. If it is the vacuum case, as
we have shown earlier, as long as γ(D) �= 0 we encountered
a nonstandard singularity, so that the vacuum case is patho-
logical in this scenario. In the �-term case, as we reported
earlier, for γ(D) = 0 we recover the same exponential regime,
for γ(D) > 0 the behavior is singular and only for γ(D) < 0
we obtain the “geometric frustration” scenario [21,22] with
stabilization of the extra dimensions.

We can see that the proposed two-step scheme works only
for the �-term case and only if γ(D) < 0—in all other cases it
either provides trivial regimes, or it leads to singular behav-
ior. Also, there is a minor problem with the number of extra
dimensions—as we noted, the first stage of this scheme—
reaching the exponential asymptote from initial anisotropy—
is best achieved in D = 2 and the probability of reach-
ing E3+D could decrease with the growth of D. On the
other hand, the second stage—when the negative curvature
changes the contracting exponential solution for the extra
dimensions into stabilization—is not present in D = 2 and
only manifest itself in D ≥ 3. Thus, the described two-stage
scheme works only in D ≥ 3 and in this case the initial con-
ditions for the first stage are already not so wide, though a
fine-tuning of the initial conditions is not needed.

This finalize our paper: the analysis presented sug-
gests that more in-depth investigations of both curvature
and anisotropy effects are required—we have investigated
and described the most simple but still very important
cases—constant-curvature and flat anisotropic (Bianchi-I-
type) geometries; in the papers to follow we are going to
consider more complicated topologies.
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