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Abstract Reduced relativistic gas (RRG) is a useful approach
to describe the warm dark matter (WDM) or the warmness
of baryonic matter in the approximation when the interaction
between the particles is irrelevant. The use of Maxwell distri-
bution leads to the complicated equation of state of the Jüttner
model of relativistic ideal gas. The RRG enables one to repro-
duce the same physical situation but in a much simpler form.
For this reason RRG can be a useful tool for the theories
with some sort of a “new Physics”. On the other hand, even
without the qualitatively new physical implementations, the
RRG can be useful to describe the general features of WDM
in a model-independent way. In this sense one can see, in
particular, to which extent the cosmological manifestations
of WDM may be dependent on its Particle Physics back-
ground. In the present work RRG is used as a complemen-
tary approach to derive the main observational features for
the WDM in a model-independent way. The only assumption
concerns a non-negligible velocity v for dark matter particles
which is parameterized by the warmness parameter b. The
relatively high values of b ( b2 � 10−6) erase the radiation
(photons and neutrinos) dominated epoch and cause an early
warm matter domination after inflation. Furthermore, RRG
approach enables one to quantify the lack of power in linear
matter spectrum at small scales and in particular, reproduces
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the relative transfer function commonly used in context of
WDM with accuracy of � 1%. A warmness with b2 � 10−6

(equivalent to v � 300 km/s) does not alter significantly the
CMB power spectrum and is in agreement with the back-
ground observational tests.

1 Introduction

In the last decades cosmological observations provided
numerous evidence for the two dark components nominated
dark matter (DM) and dark energy (DE), which are respon-
sible for ∼ 96% of the content of the universe. In particu-
lar, the confirmation of existence of these two dark compo-
nents come from the measurements of the luminosity redshift
of type Ia supernova [1,2], baryon acoustic oscillations [3],
anisotropies of the cosmic microwave background (CMB)
[4,5] and other observations [6]. The standard interpretation
suggests that DE is necessary to accelerate the expansion of
the universe. On the other hand the DM has non-baryonic
nature and is important, in particular, to describe the forma-
tion of cosmic structure. The standard cosmology, ΛCDM
model, assumes that the DE is a cosmological constant, and
regards DM as a non-relativistic matter with negligible pres-
sure (cold dark matter). ΛCDM provides an excellent agree-
ment with most of the data (see, e.g., [7] for a general review),
however this agreement is not perfect due to the tensions with
part of the observational data (see for example [8,9]). In part
due to these difficulties, some alternative models have been
proposed and studied as possible DE and DM candidates (see
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for example [10–14]). Let us note that some of these alter-
native models aim to describe fluids that replace both DM
and DE (see for example [15–20]) or describe interaction
between DE and DM [21–27].

Some of the mentionedΛCDM difficulties are related with
the choice of the cold dark matter (CDM) paradigm [28]. For
instance, at small scales the issues such as the missing satel-
lites problem [29], core/cusp problem [30], and the Too big
to fail problem [31], can be alleviated by assuming that the
DM is not completely cold. In contrast to the CDM, the Hot
Dark Matter (HDM) scenario implies that the free streaming
due to a thermal motion of particles is important to suppress
structure formation at small scales. Nevertheless this scenario
was ruled out and opened the space for the Warm Darm Mat-
ter (WDM) scenario. The main feature of WDM models is
that thermal velocities of the DM particles are not so high
as in the HDM scenario and, on the other hand, not negligi-
ble like in the CDM scenario. Typically, the WDM models
assume that it is composed by particles of mass about keV
instead of GeV which is “typical” for CDM and eV which
is the standard case for the HDM. The standard approach to
explore the possible warmness of DM and its consequences
for structure formation are based on to solution of the Hier-
archy Bolztmann equation, taking into account the specific
properties of the given WDM candidate [32–37].1 For exam-
ple, relation between mass and warmness for each WDM
candidate comes from the particle physics arguments. This
is in fact very good, because the ultimate knowledge of the
DM nature may be achieved only within the particle physics
and, more concretely, by means of laboratory experiments.

Until the moment when the DM will be detected in the lab-
oratory experiments, one can always assume that the prop-
erties of DM derived within a particle physics models may
be violated by some the qualitatively new scenarios for the
DM, which can be never ruled out completely [7]. From this
perspective, it is useful to develop also model-independent
approaches to investigate the cosmological features of a
WDM. In the present work we will explore the consequences
and impacts of warmness in the process of structure forma-
tion and CMB anisotropies, but using a model-independent
approach which is based on the RRG approximation. The
RRG is a model of ideal gas of relativistic particles, which
has a very simple equation of state. This nice property is due
to the main assumption – that the particles of the ideal gas
have non-negligible but equal thermal velocities. Regardless
of this simplicity, the model has long history which started
in a glorious way. The RRG equation of state was first intro-
duced by A.D. Sakharov in order to explore the acoustic
features of Cosmic Microwave Background (CMB) in the
early universe [38]. Using this model Sakharov predicted the

1 One has to remember that equations for DM are always coupled to
the Bolztmann equations for other components of the universe.

existence of oscillations in CMB temperature spectra long
before its observational discovery (see [39,40] for the histor-
ical review).

Recently, RRG was reinvented in [41], where the deriva-
tion of its equation of state was first presented explicitly. The
simplicity of the equation of state is due to the assumption
that all particles of relativistic gas have equal kinetic energies,
i.e., equal velocities. Therefore RRG is a reduced version of
well-known Jüttner model of relativistic ideal gas [42,43]. A
comparison between the equations of state of the relativistic
ideal gas and RRG shows that the difference does not exceed
2.5% even in the low-energy region [41] and becomes com-
pletely negligible at higher energies. Further considerations
have shown that RRG model enables one to achieve a simple
and reliable description of the matter warmness in cosmol-
ogy. In Ref. [44] RRG was used to decribe WDM and its
perturbations were compared with the Large Scale Structure
data. Furthermore, the general analytic solutions for the sev-
eral background cosmological models involving RRG were
discussed in Ref. [45].

The RRG was successfully used in [41,44] as an interpo-
lation between radiation and dark matter eras in cosmology.
An upper bound on the warmness coming from RRG [44,46]
is very close to the one obtained from much more compli-
cated analysis based on a complete WDM treatment, based
on the Boltzmann equation. This standard approach requires
specifying the nature of the particle physics candidate for
the WDM contents [32–37], while the approach based on
RRG requires only one parameter, that is the warmness of
DM. In this sense RRG represents a really useful tool for
exploring WDM cosmology without specifying a particu-
lar candidate for the WDM. Such a model may be helpful
for better understanding of the model-dependence or inde-
pendence of the cosmological features of WDM. Practically
speaking , taking RRG as a candidate to be DM, it would
be difficult or impossible to use power spectrum or back-
ground properties to disentangle it from a thermal WDM
model, e.g., the one based on Fermi-Dirac distribution. The
constant speed of the particles in RRG changes with scale
almost exactly as an average speed in any relativistic distri-
bution. The unique (albeit technically relevant) advantage of
RRG is the simplicity of its equation of state, as we shall see
below. The use of the RRG approach enables one to delimit
regions in the space of parameters, for which WDM models
can be viable alternatives without entering into the details of
specific microphysics models.

The main goal of the present work is to take advantage
of the RRG and its analytical solutions for the background
cosmology and apply it to WDM, instead of considering full
set of WDM hierarchical Boltzmann equations. The RRG
enables one to make greater part of considerations analyti-
cally and hence provide better qualitative understanding of
the results. In this way we consider the formation of large-
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scale structure and the problem of CMB anisotropy in a
model-independent manner. Following [44], we shall estab-
lish the bounds for the thermal velocities of the WDM parti-
cles in a general way. With this objective in mind we consider
the model of the spatially flat Friedmann-Roberston-Walker
universe filled by radiation2 and RRG, representing WDM.
Gravity is described by the general relativity, with the cos-
mological constant representing DE. We shall refer to this
model as to ΛWDM. All the perturbative treatments will be
performed at the linear order only, and using the normal-
ization with the scale factor at present a0 = 1. With these
notations, the WDM space of parameters is reduced by using
the most recent data from SNIa, H(z) and BAO.

The paper is organized as follows. Section 2 describes the
dynamics of the WDM in the framework of RRG, both at
the background and perturbative levels. It is shown that high
level of warmness may erase “standard” radiation era from
the cosmic history. Starting from this point one can estab-
lish an upper bound for the velocity of the RRG particles,
which preserves the “standard” primordial scenario for the
universe. This bound is used as a physical prior in the con-
sideration of Sect. 3, devoted to the statistical analysis using
the background data. In this framework we reduce the space
of parameters for WDM and use this reduced space in the
consequent analysis. At the next stage the CAMB code is
modified and used to quantify the relation between the DM
warmness and the total matter density contrast, linear matter
power spectrum and CMB power spectrum. We show that
the RRG is capable to reproduce the main feature of the
WDM, i.e., the suppression of matter over-densities at small
scales. Furthermore, in Sect. 4 we discuss properties of ther-
mal relics via RRG. Finally, Sect. 5 includes discussions and
conclusions.

2 A description for a warm dark matter fluid

Let us start with the background notions. The reader can
consult [41,44] or recent [47] for further details.

In the RRG approach WDM is treated as an approxima-
tion of a Maxwell-distributed ideal gas formed by massive
particles. All these particles have equal kinetic energies, or
equal velocity β = v/c [41] (c is the light speed). This leads
to the following relation between WDM pressure pw and
WDM energy density ρw,

pw = ρw

3

[
1 −

(
mc2

ε

)2
]

, (1)

2 Of course, WDM has a radiation behavior in early epochs but their
physical processes are different than photons or neutrinos. For this rea-
son we will diferenciate in all paper WDM in early stages from “stan-
dard“ radiation (photons and neutrinos).

wherem is the WDM particle mass, and ε is the kinetic energy
of each particle of the system which is given by,

ε = mc2√
1 − β2

. (2)

Here ρc is introduced as a notation for the rest energy den-
sity, i.e., the energy density for the v = 0 case. Thus,
ρc = ρc0 a−3 = n mc2, where n is the number density
a = a(t) is the scale factor of the metric. Using this rela-
tion, Eq. (1) can be cast into the form

pw = ρw

3

[
1 −

(
ρc

ρw

)2
]

, (3)

which can be regarded as equation of state (EoS) of the WDM
fluid.

Using Eq. (3) in the energy conservation relation, the solu-
tion for ρw has the form

ρw(a) = ρw0 a
−3

√
1 + b2 a−2

1 + b2 , b = β√
1 − β2

. (4)

Thus, b parameter measures velocity and warmness of the
WDM particles at present. In the limit v � c we have b ≈
v/c. Note also that for b = 0 the CDM case is recovered.
Combining Eqs. (3) and (4), one can find a posteriori state
parameter,

w(a) = pw

ρw

= 1

3
− a2

3(a2 + b2)
. (5)

Here we called this term as a state parameter a posteriori
because the “natural” EoS for the RRG description, given
by Eq. (3), implicitly depends on the scale factor and on the
nowadays WDM energy density. However after the integra-
tion of continuity equation it is possible to write the state
parameter that depends only on the scale factor. This form
will prove useful in the perturbative analysis.

In what follows we consider the model with cosmological
constant, which does not agglomerate, WDM described by a
RRG, baryons and radiation. All of them are assumed inter-
acting gravitationally and only photons and baryons inter-
acting via Thomson scattering before recombination. In this
situation Hubble rate takes the form

H2 = H2
0

⎛
⎝ΩΛ0 + Ωw0

a3

√
1 + b2 a−2

1 + b2 + Ωb0

a3 + Ωr0

a4

⎞
⎠ .(6)

In the last equation Ωx0 (with x = Λ,w, b and r ) is the value
of the DE, WDM, baryons and radiation density parameters
at present, while ΩΛ0 = 1 − Ωw0 − Ωb0 − Ωr0 since we
deal with a spatially flat universe. It is easy to see that the
expressions (1), (3), (4) and (5) interpolate between the dust
at b → 0 and radiation at b → ∞ cases. Because of this
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interpolation feature, RRG can be used to investigate the
cosmological consequences of the transition between epochs
of radiation and dust [38–41].

One can note that the WDM with EoS (3) has a remarkable
consequence at early times, when RRG becomes very close
to radiation. This feature could cause an early warm mat-
ter domination and erase the “standard” radiation dominated
epoch. In order to ensure the existence of a “standard” radi-
ation dominated era we must impose that in the very early
universe the radiation energy density is bigger than WDM
energy density.3 This requirement leads to an upper bound
on the warmness b-parameter,

lim
a→0

Ωr (a)

Ωw (a)
> 1 ⇒ b2 <

Ω2
r0

Ω2
w0 − Ω2

r0

. (7)

Note that in early times, radiation dominates over baryons
which decay as a−3. For this reason we do not take them
into account in Eq. (7). Since the present-day values are
Ωr0 ∼ 10−4 and Ωw0 ∼ 10−1, we expect that b2 � 10−6,
which corresponds to a DM particle velocity approximately
equal to 300 km/s. Mathematically WDM dominating over
“standard” radiation means the absence of a real value for
zeq , that is the redshift at the point of radiation and matter
equilibrium. One can evaluate zeq from the relation

Ωr (zeq) = Ωw(zeq) + Ωb(zeq). (8)

with the following solution,

1 + zeq =
⎛
⎝ Ωb0Ωr0

Ω2
b0 − Ω2

w0

−
√

(1 + b2)Ω2
w0Ω2

r0 + b2Ω2
w0[(1 + b2)Ω2

b0 − Ω2
w0]

(1 + b2)Ω2
b0 − Ω2

w0

⎞
⎠

−1

.(9)

The early domination of WDM is shown in Fig. 1. The
left panel of the Fig. 1 shows the densities of radiation and
WDM for different values of parameter b. We can see that
for b2-values higher than ∼ 10−6 there is no radiation-
dominated era. After inflation the universe is always dom-
inated by WDM. Moreover, for any value of b2-parameter
smaller than ∼ 10−6, the equality between WDM and radia-
tion happens earlier compared to the CDM case. In the right

3 We must emphasize that even though in a primordial universe RRG
behaves like radiation at background, this is not true at perturbative
level. On the other hand, processes involving WDM radiation limit
will be, in general, different that those involving the standard radiation
(photons and neutrinos). The case where WDM dominates even in early
times deserves a more carefully study of earlier processes like nucle-
osynthesis, reionization, reheating, etc and is beyond the scope of this
paper.

panel of the Fig. 1 one can see the plot for the scale fac-
tor dependence of fractional abundances (i.e. Ωi (a)/ΩT (a))
for radiation, baryons and WDM (here ΩT (a) is the total
density parameter). The plot in the top panel corresponds to
the case b2 = 10−5 and clearly shows that WDM always
dominates, while in the bottom panel, for b2 = 10−6, we
still have an epoch dominated by standard radiation. In both
cases the baryons contribution is subdominant. Consider now
the structure formation process, which is strongly dependent
on the behavior of WDM both at the background and per-
turbative level. The dynamics of WDM perturbations has
been described in [44], so we can just write down the main
result for the dynamics of WDM perturbations. The energy
and momentum balance equation, in Fourier space for each
k-mode in flat universe lead to following equations:

δ̇w + (1 + w)

(
θw + ḣ

2

)
+ 3H

(
c2
s − w

)
δw

+ 9H2
(
c2
s − w

)
(1 + w)

θw

k2 + 3Hẇ
θw

k2 = 0 , (10)

θ̇w + H(1 − 3c2
s )θw − k2c2

s

1 + w
δw = 0. (11)

For the sake of convenience we used synchronous gauge
and hence h is the trace of the scalar metric perturbations,
δw ≡ δρw/ρw is the WDM density contrast and θw is the
velocity. We have followed conventions for metric signature
and Fourier transform of [37], and the dot represents deriva-
tive with respect to conformal time η andH = ȧ/a. Note that
for w = 0, CDM case is reproduced in the above equations.
The equations are written in the frame which is co-moving to
the WDM fluid and hence here was considered the rest-frame
sound speed c2

s [48,49]. We shall consider WDM as adiabatic
fluid. Actually, as far as we are dealing with thermal systems,
it is possible that some intrinsic non-adiabaticity traces could
be present. However, as a first approximation, we suppose
that they are negligible. Then one can use the relation

δpw = c2
s δρw, (12)

where c2
s = ṗw/ρ̇w. Equations (10) and (11) require ana-

lytical expression for the rest-frame sound speed and the
derivative of the state parameter with respect to the conformal
time. Using the background quantities it is straightforward
to obtain,

ẇ = −H
3

a2

(a2 + b2)
and c2

s = w − ẇ

3H(1 + w)
. (13)

In order to solve the system it is necessary to fix initial condi-
tions. The WDM initial conditions can be implemented in the
super-horizon regime and deep into the radiation-dominated
epoch, i.e., a ∝ η. In the fluid description, for the early
radiation era, WDM case can be described by the following
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Fig. 1 Left panel: Comparison between radiation density and WDM
density for several values of b2. For the values b2 � 10−6 there is
no radiation dominated era and WDM always dominates after infla-

tion. Right panel: Fractional abundances as functions of scale factor
for baryons, radiation and WDM for b2 = 10−5 (top) and b2 = 10−6

(bottom)

equations:

δ̇w + 4

3
θw + 2

3
ḣ = 0 and θ̇w − k2

4
δw = 0. (14)

By solving equation for h in the super-horizon limit and in the
radiation era we arrive to the well-known solution h ∝ (kη)2.
With the last solution we found, for the relevant limits, that
δw = − 2

3C(kη)2 and θw = − 1
18Ck(kη)3 are appropriate

initial conditions. Of course, Eqs. (10) and (11) are coupled
with DE via background solutions and with baryons and radi-
ation both at the background and perturbative level. One has
to solve the complete system in order to analyze the conse-
quences of DM warmness for the observables such as, e.g.,
CMB power spectrum, linear matter power spectrum and the
transfer function.

3 Consequences of DM warmness via RRG

In addition to Eqs. (10) and (11) we need also the equa-
tions describing perturbations for baryons and radiation.
These equations can be found for example in [37] and we
will not repeat them here. To integrate the system includ-
ing baryons, radiation, WDM and cosmological constant, we
modify the Boltzmann CAMB code [50]. The initial value
Ωb0 = 0.0223h−2 is chosen to provide the agreement with
Big Bang nucleosynthesis [51], while Ωr0 is taken to agree
with CMB measurements [5]. The free parameters related
to WDM are H0, Ωw0 and b, and in principle they have as
priors 0 < h < 1 (H0 = 100 h km/s/Mpc), 0 < Ωw0 < 1
and 0 < b2 � 10−6 to ensure a radiation dominated era.
In this way we consider a reduction of this WDM space of

parameters by using background observational tests. Thus,
in what follows we limit our analysis to the values of WDM
parameters such that they are in 1σ CL (confidence level)
region of the joint analysis based on SNIa, BAO and H0

data. This shall help us to get more realistic and measurable
warmness effects that do not contradict observations, at least
at the background level.

3.1 Background tests

The background tests related to SNIa, BAO and H0 are based
on the likelihood computed using the χ2 function,

χ2(θ) = Δy(θ)T C−1Δy(θ), (15)

where θ = (h,Ωm0, b) and Δy(θ) = yi − y(xi ; θ). Here
y(xi ; θ) represents the theoretical predictions for a given set
of parameters, yi the data and C is the covariance matrix.
Note that, for convenience, the total matter density parameter
Ωm0 = Ωw0 +Ωb0 was used here as a free parameter instead
of Ωw0.

In order to perform the background statistical analysis it
was used the numerical code CLASS [52] combined with the
statistical code MontePython [53]. For the data set we have
used the complete SNeIa data and correlation matrix from
the JLA sample [54], H0 is considered from [55], and for
BAO test we have used data from 6dFGS [56], SDSS [57],
BOSS CMASS [58] and WiggleZ survey [59]. The 6dFGS,
SDSS and BOSS CMASS data are mutually uncorrelated and
also they are not correlated with WiggleZ data, however we
must take into account correlation beetween WiggleZ data
points given in [59]. The set of free parameters θ can be
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Table 1 Result of the statistical analysis for the joint analysis using
SNIa (JLA), H0(z) and BAO data sets. The best-fit result was obtained
when χ2

min = 685.3. Here, the nuisance parameters from JLA data α,
β, M and ΔM are also presented

Parameter Mean 95% Lower 95% Upper

H0 71.33 69.10 73.78

Ωw0 0.2468 0.2187 0.2782

b 1.785 × 10−7 0∗ 1.657 × 10−6

α 0.1413 0.1278 0.1548

β 3.097 2.939 3.271

M −19.01 −19.08 −18.92

ΔM −0.06953 −0.1182 −0.02350

Ωm0 0.2968 0.2687 0.3282

Fig. 2 1σ and 2σ C.L. curves for the joint analysis using SNIa (JLA),
H0 and BAO data sets

divided in two parts: the cosmological free parameters Ωm0,
h and b; and the nuissance parameters α, β, M and ΔM ,
related to SNe Ia data. The results of the complete statistical
analysis is presented in Table 1 and the contour curves for
the cosmological parameters are presented in Fig. 2. These
results are in agreement with the previous results [44,46] but
here we have updated the results and error was reduced due
to the improved quality of observational data in recent years.

3.2 Perturbative analysis

The reduced space of parameters found in previous section is
which we will use to study consequences of the DM warm-
ness in the two relevant observables, namely the structure
formation and CMB anisotropies. Before starting the corre-

sponding consideration, let us illustrate the consequences of
the free-streaming of WDM in the matter perturbations.

Concerning the structure formation, a relevant quantity is
the total matter density contrast,

δm ≡ δρm

ρm
= δρw + δρb

ρw + ρb
. (16)

By recalling that for each component δρx = ρx δx , one can
write an expression for the total matter density contrast in the
RRG-based model,

δm = Ω̃w(a) δw + Ωb0 δb

Ω̃w(a) + Ωb0
, Ω̃w0(a) = Ωw0

√
1 + b2 a−2

1 + b2 .

(17)

Let us note that in this case, different from ΛCDM, the
total matter density contrast depends on the scale factor. Fur-
thermore, after decoupling, the contribution of warm mat-
ter to total matter density varies from ∼ 100% for a � 1
(δm ≈ δw) to ∼ 87% when a = 1 (i.e δm ≈ 0.87δw +0.13δb)
while in ΛCDM the contribution is always constant and of
the order ∼ 85% (i.e δm ≈ 0.85δw + 0.15δb).

The left panel of the Fig. 3 shows the total matter density
contrast for different scales and for b2 = 10−14. In the top
panel it is shown δm for scale k = 2hMpc−1 and in the
bottom panel it is shown δm for scale k = 5hMpc−1. In the
first case the difference with CDM case is minimal and ∼ 5%
at maximum. However, in the second case, this difference
goes to ∼ 20%. These results indicate a strong suppression
of the growth of matter perturbations at the small scales, in
contrast with the CDM case.

One should expect that the suppression in the total matter
density contrast caused by DM warmness also appears in
the linear matter power spectrum and in its transfer function.
The linear matter power spectrum is computed as P(k) ∝
kns T (k)2, where ns is the scalar spectral index and T (k) is
the transfer function. The transfer function is defined as

T (k) ≡ δm(k, z = 0) δm(0, z = 0)

δm(k, z → ∞) δm(0, z → ∞)
. (18)

At the next stage we use our modified CAMB code to
compute the linear matter power spectrum and transfer func-
tion. The results for b2 = 10−13, 10−14 and 10−15 are shown
in the right panel of the Fig. 3. The top right panel shows the
linear matter power spectrum while bottom right panel shows
the transfer function for these cases. From these plots one can
conclude that at large scales there is no much deviation from
the ΛCDM result, while at the small scales there is consider-
ably lack of power proportional to the value of warmness b
in relation to the ΛCDM. This situation by itself is not new at
all, it is regarded as one of the main features of WDM models.
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Fig. 3 Top left panel: total matter overdensity for b = 10−14 at scale
k = 2hMpc−1. Maximum difference between WDM and CDM case is
∼ 5%), bottom left panel represents the case for k = 5hMpc−1, where
difference to the CDM case is ∼ 20%. Top right panel: linear matter

power spectrum and bottom right panel: transfer function for different
b-values. Note that suppression in small scales is proportional to b and
is more evident in these quantities

However, it is remarkable that one can reproduce it by using
the simple RRG description, in a model-independent way
and without any supposition about particle physics models.

One can wonder how CMB power spectrum is affected
by the suppression on matter overdensities in small scales.
The Fig. 4 shows the CMB temperature power spectrum for
different b-values . One can observe that even with the strong
suppression in P(k), the CMB temperature power spectrum
is not considerably affected for b2 � 10−10. At large scales,
when l � 30, all curves coincide. The differences only appear
at the scales smaller than l ∼ 30. The most of the difference
is at the intermediate scales 30 � l � 1300. In order to
quantify deviations from ΛCDM we compute difference

ΔDl = DΛCDM
l − DΛWDM

l , Dl = l(l + 1)Cl

2π
(19)

where Cl represents the CMB temperature power spectrum.
Bottom panel of Fig. 4 shows ΔDl . Notice that the maximum
difference is � 0.015% and takes place for b2 = 10−10.
However, ΔDl could be slightly higher for the values of b
larger than b2 = 10−10. Even though large scales l � 30
are not influenced by thermal velocities of dark matter, the
rest of the spectrum does. It is possible to show that some
velocities � 30 km/s (b2 � 10−8) produce strong distortions
in the interval 30 � l � 1300, such that it would hardly fit
the data.

It is interesting to compare the RRG-based results with
the ones which are based on different approaches. In the
context of WDM, the effect of the free-streaming on matter
distribution is quantified by a relative function transfer T̄ (k)

Fig. 4 CMB temperature power spectrum for several values of b. Plots
for b2 = 10−10, 10−11 and 10−12 are shown in top panel. In bottom
panel it is shown the difference Dl defined in Eq. (19). Note that for
l � 30 all curves are indistinguishable and differences appear after
l ∼ 30. For velocities of the order of v � 3 km/s, differences with
CDM case is ∼ 0, 015% at maximum

which is defined as

T̄ (k) ≡
[
PΛWDM(k)

PΛCDM(k)

]1/2

, (20)

where PΛWDM and PΛCDM are linear matter power spectra
for ΛWDM and ΛCDM cases, respectively. The function
T̄ (k) can be approximated by the following fitting expression
[35],

T̄ (k) = [1 + (αk)2ν]−5/ν, (21)
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Table 2 Values for α and ν

parameters that fit relative
transfer function (21) for
different b

b2 α ν

10−10 2.450 2.12

10−11 0.510 1.64

10−12 0.350 1.23

10−13 0.092 1.15

10−14 0.028 1.10

10−15 0.005 0.92

where α and ν are fitting parameters.
For the sake of comparison, let us denote the relative func-

tion transfer computed via RRG by T̄RRG(k). After comput-
ing T̄RRG(k), we perform a fit for Eq. (21) and find parameters
α and ν for different values of b. The results are summarized
in three first entries of Table 2. The results show that RRG
reproduces the relative transfer function which is considered
standard in the WDM framework with accuracy of � 1%,
which can be seen in Fig. 5. Once again, one can see that the
RRG enables one to reproduce known features of WDM in
a very economic way.

In the left top panel of Fig. 5 we show T̄RRG(k) with
b2 = 10−15 and T̄ (k) with α = 0.0147 and ν = 1.12, and
in its bottom panel it is shown the relative error between
T̄RRG(k) and T̄ (k). The same plots are shown in right panel
of Fig. 5 for the case where the T̄RRG(k) was computed with
b2 = 10−14 and T̄ (k) was computed with α = 0.0242 and
ν = 1.12. Note that, for both cases, the relative error is � 1%.

In what follows we shall consider a more detailed compar-
ison between RRG approach and the well established particle
physics candidate for WDM associated to thermal relics. Our
comparison shall include some non-linear features.

4 Thermal relics via RRG

In the context of thermal relics, there are two values
for the lower bound for the WDM particle mass mw.
The first one is the ultra conservative case, where mw = 3.5
keV and comes from high redshift Lyman-α forest data. The
second one is formw = 5.3 keV and is given in the reference
[60]. Hence, it would be interesting to perform a compari-
son between thermal relics with such a bounds and RRG
approach. For this reason, it is necessary first to find a
equivalence between thermal relics mass scales and RRG
b-parameter. Thus we recall that for relics we have ν = 1.12
and the parameter α, in units of h−1Mpc, is related to the
mass scale mw via [34,35,61],

α = 0.049
( mw

1keV

)−1.11
(

Ωw0

0.25

)0.11 (
h

0.7

)1.22

. (22)

In order to obtain a complete association of the RRG
parameter b2 and the mass of WDM particles in the ther-
mal relics context, it was used the following particular set of

Fig. 5 Top left: Plots for T̄RRG(k) with b2 = 10−15 and T̄ (k) with α = 0.0147 and ν = 1.12. Top right: T̄RRG(k) with b2 = 10−14 and T̄ (k) with
α = 0.0242 and ν = 1.12. Bottom left and right: relative error for both cases
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Fig. 6 Fitting formula for the WDM mass particle (in keV ) in terms
of the RRG parameter b2

values for the b2,

b2 =
(

1 × 10−15, 2 × 10−15, . . . , 9 × 10−12, 1 × 10−11
)

.

(23)

For each point it was defined a χ2 function,

χ2 =
(
T̄ (k)th. − T̄ (k)num.

)2
, (24)

where the T̄ (k)th. is given by the Eq. (21) and the T̄ (k)num.

is obtained with the CAMB code for each value of b2 in the
set (23). Then we minimize the Eq. (24) in order to find the
best-fit α-value for each b2.

Using the Eq. (22) we found, for each value of b2, the
corresponding mass mw. This correspondence is shown in
Fig. 6, where the dots indicate the best-fit value formw found
through the Eq. (24) and the solid line is the linear regres-
sion in the loglog frame. This linear regression results in the
following fit-formula,

mw = 4.65 · 10−6
(
b2

)−2/5
keV. (25)

By using Eq. (25) we found that the mass scales of 3.5
and 5.3 keV in thermal relics are equivalent to b2 = 2.03 ×
10−15 and b2 = 7.21×10−15 respectively in RRG approach.
These values for b2 brings difficulties in distinguishing
between WDM via RRG and CDM scenarios both at back-
ground and linear perturbative level. At background this can
be seen in the left panel of the Fig. 1, where for b2 � 10−6 the
expansion dynamics after matter-radiation equality is indis-
tinguishable from CDM case and also, the best fit value for
Ωm0 is almost the same as ΛCDM (see Fig. 2). On the other
hand, at linear regime, CMB signal via RRG for b2 � 10−10

Fig. 7 Total matter perturbation in the Fourier space. The solid line
corresponds to ΛCDM model, the dotted line corresponds to WDM
case (thermal relics) with mass 3.5 and 5.3 keV, and the dashed line
corresponds to the RRG approach with their respective values of b2

is completly indistinguishable of ΛCDM (see Fig. 4) and lin-
ear matter power spectrum has the expected little suppression
in small scales (see Fig. 3). In order to better observe such
tiny differences, we can for example, recompute the mat-
ter power spectrum in the Fourier space in its dimensionless
form, denoted by Δ2 (k) = k3

2π2 P(k) .

Figure 7 shows Δ2(k) at z = 0 for both cases: standard
treatment for thermal relics with mass 3.5 keV and 5.3 keV
and thermal relics via RRG approach with b2 = 2.03×10−15

and b2 = 7.21 × 10−15. We can see that CDM and WDM
(thermal relics) are indistinguishable until the cutoff of
WDM, where Δ2 (k) falls off too rapidly. In the context of
DM candidates based on thermal distribution, such cut-off
is consistent with constraints based on Lyman-α forest data,
and it does not allow WDM to solve better than CDM the
small scale anomalies [62]. Our RRG treatment for WDM has
exactly the same behaviour that thermal relics case. This is
showing that RRG allows us to capture the potentialities and
weakness of WDM but in a simplified form. In such sense,
would be interesting to better investigate if bounds given by
Lyman-α forest data in the context of others WDM candi-
dates (different than thermal relics) can solve CDM small
scale anomalies. We believe that RRG approach can be help-
ful in this respect.

On the other hand, it is possible to obtain the number of
halos above a given mass M considering a sharp-k filter, that
is designed to work better for power spectra with suppression
at an arbitrary scale and of arbitrary shape, namely:

W (kR) = �(1 − kR), (26)
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Fig. 8 Mass function (left panel) and Redshift where the matter pertur-
bation reach the non-linear regime in function of the scale (right panel).
In both cases the solid line corresponds to ΛCDM model, the dashed

line corresponds to the RRG approach and the dotted line corresponds
to WDM case (thermal relics) with mass 3.5 and 5.3 keV

where � is the Heaviside step function. In this case the mass
function [63] is given by:

dn

d ln M
= 1

12π2

ρ̄

M2 ν f (ν)
P(1/R)

δ2
c R

2 , (27)

wheren is the number density of haloes, ρ̄ the average density
of the universe, ν = δ2

c/σ
2 is the peak-height of perturba-

tions, f (ν) is obtained by the excursion-set approach [64],
δc = 1.69, and σ is the mass variance, using the sharp-k
window function [65]

σ 2(R) = 1

2π2

∫ 1/R

0
dk k2 P(k). (28)

Following [63], in order to recover the predictions provided
by the elliptical collapse with a top-hat filter [66], we need
to assign the mass M enclosed in the radius R by the relation
M = 4πρ̄(2.5R)3/3. On the left panel of Fig. 8, the mass
function obtained following the RRG approach is compared
with the one computed for thermal relics for the WDM and
for the CDM case. Clearly in WDM and RRG context, there
are less collapsed objects than in the ΛCDM model.

Finally, we computed the time scale where the perturba-
tions reach the non-linear regime. In the right panel of the
FIG. 8 it is shown the time (redshift) scale znl in which the
matter perturbation scale R reachs the non-linear regime. znl
is the redshift where the mass variance σ 2(R) = 1. Also in
this case we opted for a sharp-k filter and in order to repro-
duce the standard Λ CDM behaviour computed with top-hat
filter, we need to rescale the x-axis by the factor∼ 1.7. Again
both cases are considered: standard treatment for thermal
relics with mass 3.5 and 5.3 keV, and thermal relics via RRG

approach with b2 = 2.03 × 10−15 and b2 = 7.21 × 10−15.
We can see that, in WDM thermal distribution based can-
didates context, the non-linearity is reached more recently
than in Λ CDM for scales1.7R � 1 Mpc h−1. Furthermore,
from Figs. 7 and 8 it is possible to see the similarity between
the RRG approach and the WDM thermal distribution based
standard description also in the non-linear regime.

Our results in this and in the previous section indicate that
RRG approach is good enough to capture importanet fea-
tures of WDM in linear regime. Specially the suppression
on small scales structures and lack of power in matter spec-
trum at such scales. Also, in the particular case of thermal
relics, RRG reproduces with high precision, the potentiali-
ties and weakness of the candidate in both linear and non
linear regime. Thus, RRG approach could be considered as
a complementary alternative approach to investigate warm
matter and specially for understanding general behavior of
the WDM scenario in a model-independent way.

5 Discussion and conclusions

We have shown that the RRG approach enable one to model
WDM, which is treated as a gas of particles with non-
negligible thermal velocities. The simplifying aspect of RRG
is that all such velocities are taken to be equal. The presence
of warmness produce consequences on the dynamics of the
universe both for the background and perturbations. As we
have anticipated in the Introduction, the RRG enables one to
reproduce the results of the more complicated thermal dis-
tributions in a more simple way, which admits the study by
mostly analytical methods, while providing the same phys-
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ical contents as the conventional WDM models based on
thermal relativistic distributions.

For the background the most important is that radiation
era may be smearing out for greater warmness. In this case
the universe is dominated by WDM up to the DE dominated
era. This scenario could have deep impact on the primor-
dial nucleosynthesis, reionization, recombination and other
effects in the early universe. This new non-standard scenario
may be deserving more careful and specific investigation,
which we leave for the future work. Our analysis here was
limited by the relatively small warmness, with b2 � 10−6. In
this case the radiation dominated era is still maintained, but
the radiation-matter equality takes place before than in the
CDM models. After the equality point, there are no serious
differences with expansion is dominated by cold matter, as it
is shown at the left panel of Fig. 1.

Instead of dealing with the full space of the WDM param-
eters, we restrict consideration to a more reduced set. At
the background level this is achieved by using recent data
from SNIa, H0 and BAO. As a result we arrive at reduced
space which does not contradict more recent background
observations at 1σ CL, i.e b ∈ [0, 2.1 × 10−5] and Ωm0 =
[0.27, 0.35]. Taking this into account one can expect that the
quantification of imprint of warmness on observables should
become more significant. Our analysis in this reduced space
of parameters shows that velocities which satisfy v � 3 km/s
would agree with the CMB observations. This limit is essen-
tially smaller than the bound for HDM, which may have
velocities which are just two order of magnitude smaller than
the speed of light. The velocities bound which were found
here agree with the ones found earlier by other approaches
[32–36]. This fact shows that, regardless of that the RRG
is technically simple, it is a sufficiently reliable approach to
probe new physics within the WDM approach.

The consequences of a warmness of DM are is more evi-
dent in the dynamics of cosmic perturbations. Since DM is
supposed to be the main source of forming gravity poten-
tials and overdensities, the impact of the DM warmness on
structure formation and CMB anisotropies is evident. In the
case of WDM thermal velocities cause free-streaming out
from overdense regions, delaying and inhibiting the growth
of fluctuations at certain scales. Another way to interpret this
effect is by relating velocity to pressure. The non-negligible
pressure of WDM, together with the radiation pressure, are
resisting the gravitational compression and therefore sup-
press the power. This effect is stronger in small scales, as
can be seen in Fig. 3. Furthermore, from Fig. 4 one can con-
clude that thermal velocities do not affect considerably the
CMB temperature power spectrum for b � 10−10. Indeed,
the situation can be opposite for sufficiently large values of
b.

As a next step we reproduced features of thermal relics
by using RRG prescription. First it was necessary to find a

relation between the mass scale in relics context and the b2

parameter of RRG. The b2 equivalent to the lower bound
known for thermal relics brings the necessity to look more
carefully matter perturbations. Thus, we computed the mat-
ter perturbations in the Fourier space Δ2(k), the time scale
where the perturbations reach the non-linear regime (znl ) and
the mass function. In all those cases, our results indicate
that RRG approach is good enough to capture important fea-
tures of WDM even in non-linear regime. Therefore, we have
proved that RRG is a reliable model, and can be considered as
a complementary, greatly simplified alternative approach to
investigate warm matter, in particular for understanding the
behavior of the WDM in a totally model-independent way.

One can foresee the possibility of detailed investigations
of the new Particle Physics candidates to WDM, which
includes the comparison with model-independent RRG. In
our opinion some aspects of this possibility would be quite
interesting. For example, let us mention a relation between
T̄RRG(k) and WDM candidate models, a more complete and
comprehensive exploration of the space of parameters via
Markov Chain Monte Carlo (MCMC) or verifying how RRG
would work in the nonlinear regime of structure formation
through numerical simulations and the possibility if WDM
is really capable of solve small scale problems. The work on
these aspects of the model is currently in progress.
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