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Abstract In this paper, Quasinormal modes of gravitational
perturbation are investigated for the regular Bardeen black
hole surrounded by quintessence. Considering the metric
of the Bardeen spacetime surrounded by quintessence, we
derived the perturbation equation for gravitational perturba-
tion using Regge-Wheeler gauge. The third order Wentzel-
Kramers-Brillouin (WKB) approximation method is used
to evaluate quasinormal frequencies. Explicitly, the behav-
iors of the black hole potential and quasinormal modes
were plotted. The results show that, due to the presence of
quintessence, the gravitational perturbation around the black
hole damps more slowly and oscillates more slowly.

1 Introduction

Nowadays research in physics focused a lot attention on the
evolution of the Universe and particularly on black holes and
strange phenomena enclosed to it.The behavior of the matter
and fields surrounding a black hole not only tells us about its
presence but also helps us determine its parameters. The evo-
lution of external field perturbation around black holes leads
to damped oscillations called quasinormal modes (QNMs)
[1–19]. The QNMs of a black hole are defined as proper
solutions of the perturbation equations belonging to certain
complex characteristic frequencies, which satisfy the bound-
ary conditions, appropriate for purely ingoing waves at the
event horizon and purely outgoing waves at infinity [20].
QNMs of black holes are in general not complete and though
insufficient to fully describe the dynamics, but contain a great
amount of information. It is shown that QNMs can provide
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a direct way to identify a black hole existence in the uni-
verse since they carry the characteristic information of black
holes [21,22]. The QN frequencies are directly connected to
the parameters of the black hole (mass, charge and angular
momentum) and that means that QNMs will carry a unique
“fingerprint” which would lead to the direct identification of
the black hole existence. Clearly, the presence of perturba-
tions affects the photon trajectories, causing some of the pho-
tons that would have crossed the horizon to escape and vice
versa. This will significantly influence the shape and size of
the shadow cast by the black hole on the surrounding emis-
sion. Moreover, the radial character of these perturbations
causes light rays with different impact parameters to period-
ically bundle up and diverge, which will alter the brightness
amplification introduced by gravitational lensing and lead to
bright structures in the resulting images [23].

From recent measurements, we can see that our universe
is dominated by a mysterious form of energy called “Dark
Energy”. This kind of energy is responsible of the acceler-
ated expansion of our universe. Today, inflation is quite well
understood in terms of its phenomenology, but it still has a
number of unresolved foundational questions. Despite these,
it is certainly clear that cosmic inflation requires a period of
cosmic acceleration that cannot be described by a cosmolog-
ical constant [24,25]. Cosmic inflation is understood to be
driven by some matter field typically called the “inflaton”,
which exhibits an equation of state p = ρqωq , where p is
the pressure, ρq is the density of energy and ωq is the state
parameter. In this category, we can find quintessence [26,27],
phantom [28], k-essence [29], and quintom [30,31] models.

In 1968, the first example of a black hole with regular
non-singular geometry with an event horizon satisfying weak
energy condition was constructed by Bardeen [32]. The solu-
tion was obtained introducing an energy-momentum tensor
interpreted as the gravitational field of some sort of nonlin-
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ear magnetic monopole charge β. Recently, the quasinormal
modes of the regular Bardeen black hole were investigated
for gravitational perturbation [33], scalar perturbation [34–
36], and Dirac perturbation [37]. Ghaderi and Malakolkalami
[38] investigated the effects of quintessence on the thermo-
dynamics of the black hole. In this paper, quasinormal modes
of gravitational perturbation are investigated for the regular
Bardeen black hole surrounded by quintessence.

The paper is organized as follows. In Sect. 2, the regular
Bardeen black hole surrounded by quintessence is presented.
In Sect. 3, we derive the wave equation for gravitational per-
turbation of the black hole using the Regge-Wheeler gauge.
In Sect. 4, the quasinormal frequencies were evaluated by the
help of third order WKB approximation. The last section is
devoted to a conclusion.

2 The regular Bardeen black hole surrounded by
quintessence

The spherically symmetric Bardeen regular black hole metric
is given by

ds2 = − f (r)dt2 + f −1(r)dr2 + r2dθ2 + r2 sin2 θdϕ2,

(1)

where the lapse function f (r) = 1 − 2M(r)
r depends on the

specific form of underlying matter. With the following par-
ticular value of the mass function,

M(r) = mr3

(r2 + β2)3/2 , (2)

where β is the monopole charge of a self-gravitating mag-
netic field described by a nonlinear electrodynamics source,
and m is the mass of the black hole, the metric (1) reduces to
the Bardeen regular black hole metric [32,39–41].

Quintessence is a scalar field whose equation of state
parameter, ωq , is defined as a ratio of its pressure, p, and
its energy density, ρ [42]. The pressure and the energy den-
sity of quintessence are given by p = φ̇2/2 − V (φ) and
ρ = φ̇2/2+V (φ) [43]. The equation of state for quintessence
is

ωq = p

ρ
= φ̇2/2 − V (φ)

φ̇2/2 + V (φ)
, (3)

with −1 ≤ ωq ≤ −1/3.
According to Kiselev’s investigations on quintessence and

black holes [26], the general metric for static and spherically
symmetric spacetime can be written as

ds2 = − eνdt2 + eλdr2 + r2dθ2 + r2 sin2 θdϕ2, (4)

λ and ν being functions of r .

Setting λ = − ln(1 + g), the energy-momentum tensor
for homogeneous and isotropic matter field can be written as

T t
t = T r

r = ρ = 1

2r2 (g + rg′), (5)

T θ
θ = T φ

φ = −1

2
ρ(3ωq + 1) = −1

4r2 (2g′ + rg′′). (6)

These expressions lead to the following equation,

(3ωq + 1)g + 3(ωq + 1)rg′ + r2g′′ = 0, (7)

which has as solution

g(r) = −rg
r

− c

r3ωq+1 , (8)

with c ≥ 0 and rg the normalization factors.
Taking into account these statements, the metric of the

black holes surrounded by the quintessence can be obtained
by adding the quintessence term − c

r3ωq+1 to the metric of the
black holes [38]. The metric of the regular Bardeen black
hole in quintessence field can be expressed as

ds2 = − f (r)dt2 + f −1(r)dr2 + r2dθ2 + r2 sin2 θdϕ2,

(9)

with

f (r) = 1 − 2mr2

(r2 + β2)3/2 − c

r3ωq+1 , (10)

c is the normalization constant related to the density of
quintessence ρq = − c

2
3ωq

r3ωq+3 , ωq is the state parameter of
the quintessence −1 ≤ ωq ≤ −1/3.

3 Wave equation for Gravitational perturbation of the
black hole

For the gravitational perturbation, we will deal with the
Regge-Wheeler gauge [22]. In this gauge, the gravitational
perturbation is regarded as perturbation to the background
metric. We assume the perturbed background metric (ḡμν)
to be as the sum of the unperturbed metric (gμν) and the
perturbation in it (hμν)

ḡμν = gμν + hμν. (11)

The perturbations hμν are supposed to be very small com-
pared with gμν . The hμν can be calculated from gμν , and
Rμν + δRμν from gμν + hμν . The quantity δRμν can be
expressed in the form [44]

δRμν = δΓ α
μα,ν − δΓ α

μν,α, (12)

where

δΓ k
μν = 1

2
gkα

(
hαν,μ + hαμ,ν − hμν,α

)
. (13)
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Similarly, we will use the unperturbed Christoffel symbols
in computing covariant derivatives of perturbation quantities.
From Eq. (25), it follows that

ḡμν � gμν − hμν. (14)

The perturbed Christoffel symbols are given by

Γ̄ k
μν = 1

2
ḡkα(ḡαν,μ + ḡαμ,ν − ḡμν,α) = Γ k

μν + δΓ k
μν, (15)

where

δΓ k
μν = 1

2
gkα(hαν,μ + hαμ,ν − hμν,α). (16)

The last Eq. (16) reveals that the variation of the Christoffel
symbols, δΓ k

μν , forms a tensor, even though the Christoffel
symbols themselves do not.

Since the QNMs of a black hole undergo complex fre-
quencies, they can easily be studied in the case of odd per-
turbations as they involve a simple differential equation [45].
Adopting the matching of Ref. [22], the final canonical form
for an odd wave is then

hμν =

⎛

⎜⎜
⎝

0 0 0 h0(r)
0 0 0 h1(r)
0 0 0 0

sym sym 0 0

⎞

⎟⎟
⎠

exp(−ikT )(sinθ∂θ )Pl(cos θ). (17)

This form represents the perturbation of a spherically sym-
metric black hole in Regge-Wheeler gauge.

The radial wave equation is the final equation which gives
us the behavior of the perturbation’s oscillation. It can be
reduced to a simple linear differential equation.
In vacuum, the perturbed field equations are simply reduced
to [46]

δRμν = 0. (18)

Using that and the background metric, we get from δR23 =
0,

f (r)−1iωh0 + d

dr

[(
1 − 2mr2

(r2 + β2)3/2 − c

r3ωq+1

)
h1

]
= 0,

(19)

and from δR13 = 0,

f (r)−1iω
(dh0

dr
+ iωh1 − 2h0

r

)
+ (l − 1)(l + 2)

h1

r2 = 0.

(20)

Defining

φ(r) =
(

1 − 2mr2

(r2 + β2)3/2 − c

r3ωq+1

)
h1/r, (21)

and the tortoise coordinate r∗,

dr∗
dr

=
(

1 − 2mr2

(r2 + β2)3/2 − c

r3ωq+1

)−1
, (22)
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Fig. 1 Black hole’s effective potential

and eliminating h0, we then get

( d2

dr2∗
+ ω2

)
φ(r) = Vφ(r), (23)

where

V = f (r)
( (l − 1)(l + 2)

r2 − 6mr2

(r2 + β2)3/2 − 3c(ωq + 1)

r3ωq+3

)
.

(24)

Equation (23) is a second order linear differential equation
which represents a perturbation equation. The potential V
depends explicitly on the radius r . Its behavior is represented
on Fig.1.

Through this figure, we can see that the potential decreases
with increasing c. That implies that the presence of
quintessence reduces the magnitude of the gravitational
potential.

4 Quasinormal frequencies

The wave equation ( 23) can be rewritten as:

d2ψ

dr2∗
+ Q(r∗)ψ = 0, (25)

where Q(r∗) = ω2−V (r∗). For a black hole, the QN frequen-
cies correspond to solution of perturbation equation which
satisfy the boundary conditions appropriate for purely ingo-
ing waves at the horizon and purely outgoing waves at infin-
ity. Incoming and outgoing waves correspond to the radial
solution proportional to e−iωr∗ and eiωr∗ , respectively. Only
a discrete set of complex frequencies satisfies these condi-
tions.

To evaluate the QN frequencies, we applied here the third
order WKB approximation method derived by Schutz, Will
[47] and Iyer [48] to the above equation and these QN fre-
quencies are given by [49]
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Table 1 Quasinormal
frequencies of gravitational
perturbation of regular Bardeen
black hole without quintessence

β l ω(n = 0) ω(n = 1) ω(n = 2) ω(n = 3) ω(n = 4)

0 2 0.3732–0.0892i 0.3460–0.2749i 0.3029–0.4711i 0.2475–0.6729i

3 0.5993–0.0927i 0.5824–0.2814i 0.5532–0.4767i 0.5157–0.6774i 0.4711–0.8815i

4 0.8091–0.0942i 0.7965–0.2844i 0.7736–0.4790i 0.7433–0.6783i 0.7072–0.8813i

5 1.0123–0.0949i 1.0021–0.2858i 0.9833–0.4799i 0.9575–0.6778i 0.9264–0.8792i

0.25 2 0.3775–0.0885i 0.3514–0.2724i 0.3101–0.4666i 0.2572–0.6662i 0.1918–0.8696i

3 0.6060–0.0920i 0.5898–0.2792i 0.5620–0.4728i 0.5262–0.6716i 0.4837–0.8738i

4 0.8180–0.0935i 0.8060–0.2822i 0.7841–0.4752i 0.7551–0.6727i 0.7207–0.8738i

5 1.0233–0.0942i 1.0137–0.2837i 0.9956–0.4762i 0.9710–0.6723i 0.9412–0.8719i

0.5 2 0.3925–0.0855i 0.3697–0.2624i 0.3336–0.4486i 0.2879–0.6400i 0.2320–0.8344i

3 0.6292–0.0892i 0.6152–0.2701i 0.5911–0.4566i 0.5601–0.6479i 0.5235–0.8423i

4 0.8487–0.0906i 0.8384–0.2732i 0.8195–0.4594i 0.7943–0.6496i 0.7644–0.8431i

5 1.0614–0.0912i 1.0531–0.2747i 1.0376–0.4606i 1.0162–0.6497i 0.9904–0.8418i

0.75 2 0.4277–0.0737i 0.4058–0.2247i 0.3666–0.3833i 0.3146–0.5490i 0.2512–0.7203i

3 0.6844–0.0775i 0.6709–0.2337i 0.6454–0.3934i 0.6097–0.5573i 0.5654–0.7253i

4 0.9223–0.0787i 0.9123–0.2369i 0.8930–0.3970i 0.8652–0.5599i 0.8299–0.7257i

5 1.1527–0.0793i 1.1448–0.2384i 1.1291–0.3987i 1.1064–0.5610i 1.0772–0.7254i

ω2 = [V0 + (−2V ′′
0 )1/2Λ̃]

−i

(
n + 1

2

)
(−2V ′′

0 )1/2[1 + Ω̃], (26)

where

Λ̃ = 1

(−2V ′′
0 )1/2

{
1

8

(
V (4)

0

V ′′
0

)(
1

4
+ α2

)

− 1

288

(
V ′′′

0

V ′′
0

)2

(7 + 60α2)

}
,

Ω̃ = 1

−2V ′′
0

{
5

6912

(
V ′′′

0

V ′′
0

)4

(77 + 188α2)

− 1

384

(
V ′′′2

0 V (4)
0

V ′′3
0

)
(51 + 100α2)

− 1

288

(
V (6)

0

V ′′
0

)
(5 + 4α2)

+ 1

288

(
V ′′′

0 V (5)
0

V ′′2
0

)
(19 + 28α2)

+ 1

2304

(
V (4)

0

V ′′
0

)2

(67 + 68α2)

}
,

with α = n + 1
2 , and V (n)

0 = dnV
drn∗ |r∗=r∗(rp).

Using Eq. (26), we calculated numerically the QN fre-
quencies of the scalar field perturbation for M = 1 without
and with quantum correction of the black hole. The results
are shown in Tables 1, 2 and 3, where l is the harmonic angu-
lar index, n is the overtone number, ω is the complex QN
frequency, β is the monopole charge, ωq is the state param-
eter of the quintessence and c is the normalization constant
related to the density of quintessence.

Through these tables, we can see that in the absence of
quintessence, for β = 0, the obtained results coincide with
those of the Schwarzschild black hole [50]. When increas-
ing β, the real parts of the quasinormal frequencies increase
while the absolute values of the imaginary parts decrease and
that is in agreement with the results of Ref. [33].

In the presence of quintessence, we can see that the real
parts as well as the absolute value of the imaginary parts of
the quasinormal frequencies decrease when increasing c or
decreasing ωq .

The relationship between the real and imaginary parts of
quasinormal frequencies of the gravitational perturbation in
the background of the black hole is plotted in Fig.2. We also
plot the behavior of the gravitational perturbation for some
frequencies. The results are shown in Fig. 3.

These figures show that when increasing c, the imaginary
parts of the quasinormal frequencies increase while the real
parts decrease. The gravitational perturbation damps more
slowly when decreasing ωq and oscillates more slowly.

5 Conclusion

In summary, QNMs of graviatational perturbation have been
investigated for the regular Bardeen black hole surrounded
by quintessence. The quasinormal frequencies were evalu-
ated using the third order WKB approximation. The results of
Table 1 were obtained without considering any dark energy,
while those of Tables 2 and 3 were obtained when considering
the presence of quintessence dark energy in the background
metric of the black hole. Through these tables, we can remark
that the absolute values of the imaginary parts as well as the
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Table 2 Quasinormal frequencies of gravitational perturbation of regular Bardeen black hole surrounded by quintessence for β = 0.5 and c = 0.01

ωq l ω(n = 0) ω(n = 1) ω(n = 2) ω(n = 3) ω(n = 4)

−1/3 2 0.3862–0.0839i 0.3640–0.2576i 0.3286–0.4404i 0.2839–0.6282i 0.2293–0.8189i

3 0.6191–0.0875i 0.6055–0.2651i 0.5818–0.4481i 0.5515–0.6358i 0.5156–0.8266i

4 0.8352–0.0889i 0.8251–0.2681i 0.8066–0.4508i 0.7819–0.6375i 0.7526–0.8273i

5 1.0444–0.0895i 1.0363–0.2696i 1.0211–0.4520i 1.0002–0.6375i 0.9749–0.8260i

−1/2 2 0.3820–0.0827i 0.3602–0.2539i 0.3256–0.4339i 0.2818–0.6189i 0.2283–0.8068i

3 0.6124–0.0862i 0.5991–0.2612i 0.5758–0.4414i 0.5459–0.6263i 0.5107–0.8141i

4 0.8261–0.0876i 0.8162–0.2640i 0.7980–0.4440i 0.7737–0.6277i 0.7449–0.8147i

5 1.0330–0.0882i 1.0251–0.2654i 1.0101–0.4451i 0.9896–0.6277i 0.9647–0.8133i

−2/3 2 0.3748–0.0809i 0.3539–0.2483i 0.3206–0.4242i 0.2785–0.6048i 0.2270–0.7881i

3 0.6010–0.0843i 0.5881–0.2552i 0.5656–0.4311i 0.5367–0.6116i 0.5027–0.7950i

4 0.8106–0.0855i 0.8010–0.2579i 0.7835–0.4335i 0.7600–0.6129i 0.7321–0.7954i

5 1.0137–0.0861i 1.0060–0.2592i 0.9915–0.4346i 0.9716–0.6129i 0.9475–0.7940i

−5/6 2 0.3625–0.0786i 0.3435–0.2405i 0.3130–0.4098i 0.2739–0.5833i 0.2258–0.7592i

3 0.5812–0.0816i 0.5694–0.2467i 0.5488–0.4164i 0.5221–0.5900i 0.4902–0.7661i

4 0.7839–0.0827i 0.7752–0.2492i 0.7590–0.4186i 0.7374–0.5913i 0.7114–0.7667i

5 0.9803–0.0832i 0.9732–0.2504i 0.9599–0.4196i 0.9416–0.5914i 0.9193–0.7656i

−1 2 0.3409–0.0757i 0.3264–0.2301i 0.3018–0.3889i 0.2687–0.5505i 0.2269–0.7141i

3 0.5467–0.0781i 0.5377–0.2357i 0.5214–0.3958i 0.4994–0.5584i 0.4723–0.7227i

4 0.7373–0.0790i 0.7306–0.2379i 0.7180–0.3984i 0.7006–0.5609i 0.6791–0.7251i

5 0.9219–0.0795i 0.9165–0.2389i 0.9062–0.3996i 0.8917–0.5618i 0.8736–0.7255i

Table 3 Quasinormal frequencies of gravitational perturbation of regular Bardeen black hole surrounded by quintessence for β = 0.5 and c = 0.02

ωq l ω(n = 0) ω(n = 1) ω(n = 2) ω(n = 3) ω(n = 4)

−1/3 2 0.3800–0.0824i 0.3583–0.2528i 0.3237–0.4322i 0.2800–0.6165i 0.2265–0.8036i

3 0.6092–0.0859i 0.5959–0.2602i 0.5727–0.4397i 0.5429–0.6239i 0.5078–0.8110i

4 0.8218–0.0872i 0.8119–0.2630i 0.7937–0.4423i 0.7696–0.6254i 0.7408–0.8116i

5 1.0276–0.0878i 1.0197–0.2644i 1.0048–0.4434i 0.9843–0.6254i 0.9595–0.8103i

−1/2 2 0.3715–0.0799i 0.3507–0.2453i 0.3175–0.4192i 0.2756–0.5978i 0.2245–0.7792i

3 0.5956–0.0833i 0.5828–0.2522i 0.5604–0.4261i 0.5317–0.6046i 0.4978–0.7860i

4 0.8034–0.0845i 0.7938–0.2549i 0.7764–0.4285i 0.7530–0.6059i 0.7253–0.7863i

5 1.0046–0.0851i 0.9969–0.2562i 0.9826–0.4295i 0.9628–0.6058i 0.9388–0.7849i

−2/3 2 0.3567–0.0763i 0.3375–0.2339i 0.3071–0.3992i 0.2685–0.5688i 0.2213–0.7410i

3 0.5719–0.0793i 0.5600–0.2399i 0.5393–0.4052i 0.5126–0.5746i 0.4810–0.7468i

4 0.7713–0.0804i 0.7625–0.2423i 0.7462–0.4072i 0.7245–0.5756i 0.6986–0.7468i

5 0.9644–0.0809i 0.9573–0.2434i 0.9440–0.4080i 0.9255–0.5754i 0.9032–0.7453i

−5/6 2 0.3300–0.0711i 0.3147–0.2171i 0.2897–0.3686i 0.2574–0.5233i 0.2172–0.6800i

3 0.5292–0.0734i 0.5196–0.2219i 0.5026–0.3737i 0.4803–0.5287i 0.4534–0.6856i

4 0.7138–0.0743i 0.7066–0.2238i 0.6933–0.3755i 0.6752–0.5298i 0.6534–0.6861i

5 0.8924–0.0747i 0.8866–0.2247i 0.8757–0.3763i 0.8605–0.5298i 0.8417–0.6853i

−1 2 0.2799–0.0634i 0.2721–0.1915i 0.2584–0.3213i 0.2393–0.4521i 0.2146–0.5838i

3 0.4490–0.0647i 0.4441–0.1946i 0.4349–0.3256i 0.4221–0.4574i 0.4057–0.5900i

4 0.6055–0.0652i 0.6018–0.1959i 0.5947–0.3273i 0.5847–0.4594i 0.5719–0.5921i

5 0.7570–0.0655i 0.7540–0.1966i 0.7482–0.3281i 0.7400–0.4602i 0.7294–0.5929i
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Fig. 3 Behavior of the gravitational perturbation for β = 0.5, c = 0.02
and l = 2

real parts of the quasinormal frequencies with quintessence
are smaller compared to those without quintessence, for fixed
set of l and n. Moreover, we can also remark that these val-
ues decrease when increasing c or when decreasing ωq . That
can be clearly seen through Figs. 2 and 3. On the other hand,
increasing c or decreasing ωq implies increasing the density
of quintessence. Thus, we can conclude that, due to the pres-
ence of quintessence, the quasinormal modes of gravitational
perturbation of the regular Bardeen black hole damp more
slowly and oscillate more slowly and this behavior increases
when increasing the density of quintessence. That means that
quintessence reduces the dissipative effect of the black hole
on its neighborhood.
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