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Abstract We find an exact solution on the brane for a static
black hole in the DGP model. In the appropriate limit we
recover the two known solutions, the Schwarzschild and the
Reissner–Nordström solutions with tidal charge. The solu-
tion has two branches, which correspond asymptotically to a
de Sitter or flat Universe. Finally, we study the linear stabil-
ity of the solutions. We find that the Regge–Wheeler and the
Zerilli potential are positive and conclude on the stability.

1 Introduction

Extra dimensions provide an approach to modify gravity
without abandoning the form of the action proposed in Ein-
stein’s general relativity. From a phenomenological point of
view we can avoid constraints coming from standard model
observations, by considering a brane-world scenario, that is,
we are living in a hypersurface (3-D) in a higher-dimensional
spacetime. From the theoretical point of view, string theory
predicts a boundary layer, a brane, on which edges of open
strings stand [1]. The possibility that we may be living in
a brane generates many questions as to how gravity looks
like. Also in an attempt to solve the much debated hierarchy
problem, various problems were studied, but also in order to
understand the cosmology, such as inflation and dark energy.
In this contribution to study of the consequences of the brane
world in 4-D, we study one of the most famous models, the
DGP (Dvali, Gabadadze, Porrati) [2] model. Even if the DGP
model has been ruled out by the observations [3] and we
have the presence of a ghost [4–6], it remains an interesting
laboratory for brane models and their consequences. In that
direction, the galileon models [7] have been derived from
it by integrating out the extra dimension and obtaining an
effective field theory on the boundary, where the additional
scalar field, the galileon, represents the brane-bending mode
or tells how the brane bends in the extra dimension. This extra
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degree of freedom has a very interesting phenomenology,
like for example producing a screening mechanism through
the non-linearities of it, the Vainshtein mechanism. In that
direction, we would like to study the black hole solution,
which means we have the full exact solution and not only a
linearized version of the theory.

We know that the physics of black holes and gravitational
collapse is complicated, especially because of the matter
localized on the brane, while the gravitational field can access
the extra dimension. This is also because of the non-local
effects of the bulk which can backreact on the brane.

Our first aim will be to reduce the theory to an effective
theory on the brane and find an exact solution. We cannot
necessarily embed this solution into a bulk but some infor-
mation of the global solution can be understood, and some
intuition can be developed. The solution can be smoothly
continued into the bulk via the ADM formalism, where the
solution on the brane can be considered as an initial data.
At least a local solution of the bulk exists, even if the global
solution is not guaranteed. Hence, we analyze the solution,
the existence of a horizon and the stability of it under odd
and even perturbations.

2 DGP model

The model is defined as an empty five-dimensional space
(not necessarily Minkowski) and all the energy-momentum
is localized on the four-dimensional brane. The theory is
described by the following action in vacuum:

S = M3
(5)

∫
d5X

√−gR(5) − 2M3
(5)

∫
d4x

√−hK

+ M2
(4)

2

∫
d4x

√−hR(4), (1)

where (g, h) are, respectively, the metric of the bulk and the
brane, (X A, xμ) the coordinates in the bulk, and over the
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brane K is the extrinsic curvature (the Gibbons–Hawking
term), (R(5), R(4)) the intrinsic curvature in 5-D and 4-D,
respectively, and (M(5), M(4)) are the coupling constants.

Variation of the action gives

δS = M3
(5)

∫
d5X

√−g
[
R(5)
AB − 1

2
R(5)gAB

]
δgAB

− M3
(5)

∫
d4x

√−h
[
Kμν − Khμν

]
δhμν

+ M2
(4)

2

∫
d4x

√−h
[
R(4)

μν − 1

2
R(4)hμν

]
δhμν (2)

and therefore we have

Bulk equation: R(5)
AB − 1

2
R(5)gAB = 0, (3)

Brane equation: R(4)
μν − 1

2
R(4)hμν = 1

rc

(
Kμν − Khμν

)
,

(4)

where rc = M2
(4)/2M3

(5) is the crossover scale that governs
the transition between four-dimensional behavior and five-
dimensional behavior. The bulk equation implies R(5)

AB = 0
and R(5) = 0, which implies

R(5)
ABCD = W (5)

ABCD (5)

where W is the bulk Weyl tensor. To obtain the equation on
the brane, we follow the formalism defined in [8]. For that,
we define the spacelike unit vector to the brane nA and the
projection tensor over the brane qAB = gAB − nAnB which
reduces to the brane metric hμν when the bulk coordinates
X A reduces to the brane coordinates xμ. Projecting indices
of the Riemann tensor, we can find a relation between the
Ricci tensor in 4D and the Riemann tensor in 5D, known as
the Gauss equation,

R(4)
μρνσ = R(5)

ABCDq
A
μq

B
ρ q

C
ν q

D
σ + KμνKρσ − Kμσ Kρν. (6)

Contracting the indices ρ and σ , we get

R(4)
μν = R(5)

ABCDq
A
μq

B
ρ q

C
ν q

D
σ hρσ + KKμν − Kμσ K

σ
ν . (7)

But because n is orthogonal to the brane, its projection is
zero (nAqAB = 0), and we have

qB
ρ q

D
σ hρσ = (δBρ − nBnρ)(δDσ − nDnσ )hρσ

= qBD = gBD − nBnD, (8)

which gives

R(4)
μν = R(5)

ACq
A
μq

C
ν −R(5)

ABCDq
A
μq

C
ν nBnD+KKμν −Kμσ K

σ
ν

= − R(5)
ABCDq

A
μq

C
ν nBnD + KKμν − Kμσ K

σ
ν , (9)

because R(5)
AC = 0. Finally, we can write it as

R(4)
μν = −W (5)

ABCDq
A
μq

C
ν nBnD + KKμν − Kμσ K

σ
ν (10)

= −Eμν + KKμν − Kμσ K
σ
ν (11)

where we defined Eμν = W (5)
ABCDq

A
μq

C
ν nBnD , known as

the electric part of the Weyl tensor. One generally has to
solve the bulk equations of motion first in order to evaluate
it. Therefore it represents a non-local term from a brane point
of view. Notice also that it is traceless, Eμ

μ = 0.
Contracting this equation, we get

R(4) = K 2 − Kρσ K
ρσ (12)

and therefore

R(4)
μν − 1

2
R(4)hμν = −Eμν + KKμν − Kμσ K

σ
ν

− 1

2
hμν

(
K 2 − Kρσ K

ρσ
)
. (13)

Therefore we end with two coupled equations on the brane,

Gμν = 1

rc

(
Kμν − Khμν

)
, (14)

Gμν = −Eμν +KKμν −Kμσ K
σ
ν − 1

2
hμν

(
K 2−Kρσ K

ρσ
)
,

(15)

where we dropped the index (4) because from now on all
quantities will be defined in the four-dimensional brane.

Following the idea developed in [9], we define the tensor

Lμν = Kμν − K

2
hμν + 1

2rc
hμν (16)

and rewrite Eq. (14) as

Gμν + 3

2r2
c
hμν = 1

rc

(
Lμν + L

2
hμν

)
, (17)

where L is solution of the following algebraic equation,
obtained by equating Eqs. (14) and (15):

L α
μ Lαν − L2

4
hμν + 3

4r2
c
hμν = −Eμν. (18)

3 Solution on the brane

In the following, we will focus on static spherically solutions
in the vacuum of the form
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ds2 = −A(r)dt2 + dr2

B(r)
+ r2dΩ2. (19)

As shown in [10,11], the electric part of the Weyl tensor can
be decomposed. In fact, we can define a unit timelike vector
uμ and define the projection tensor associated fμν = hμν +
uμuν . Therefore we can write in a spherically symmetric
background

Eμν = ρ(r)
(
uμuν + 1

3
fμν

)
+ P(r)

(
rμrν − 1

3
fμν

)
, (20)

where (ρ, P) are, respectively, an effective energy density
and anisotropic stress on the brane arising from the 5-D grav-
itational field, and rμ is a unit radial vector.

Also it is easy to see from (17) and (19) that L is diagonal,

hence we write Lμ
ν = diag

(
L0, L1, L2, L3

)
, which from

Eqs. (18) and (20) give

L1 = ±
√
L2

0 − 2

3
(2ρ + P), (21)

L2 = L3 = ±
√
L2

0 − 1

3
(4ρ − P). (22)

Also from the brane equation (17), we have

−A
d

dr

( B

A

)
= r

rc

(
L1 − L0

)
. (23)

Hereafter, we will assume that radial photons should expe-
rience no acceleration, the velocity of light in the radial
direction should remain constant. Therefore we have [12]
A = B, which implies L1 = L0; hence from (21) we have
2ρ+P = 0. This constraint between the density and the pres-
sure is the same as in the absence of the induced curvature
term [11].

Finally, we have from (18)

4L2
0 + 2P ± 8L0

√
L2

0 + P = 3

r2
c
. (24)

To solve this equation, we define [9] v = 2 ±
√
L2

0 + P/L0

and obtain

L2
0 = 3

2r2
c (v2 − 3)

, (25)

P = 3

2r2
c

(v − 1)(v − 3)

v2 − 3
. (26)

We see that we need v2 > 3. The only undetermined function
is v, all the other quantities as (ρ, P, Kμν) are related to v.

Considering now the Bianchi identity derived from Eq.
(17),

∇μL
μ
ν + 1

2
∇νL = 0, (27)

we can close the system of equations and get an equation for
v,

dv

dr
+ 2

3r
(v − 3)(v2 − 3) = 0, (28)

which gives after integration

r4

r2
c

= Q2 |v − √
3|(

√
3+1)/2

|v + √
3|(√3−1)/2|v − 3| , (29)

where Q is an integration constant.
Equation (29) gives v(r), which from (25) gives L0(r),

and therefore we can solve Eq. (17),

r B ′(r) + B(r) − 1

r2 = − 3

2r2
c

±
√

3/2

r2
c

v√
v2 − 3

, (30)

where the sign ± is because of the sign of L0.
We have found three different solutions depending on the

range of v. In the first solution we have v < −√
3, the second

solution corresponds to
√

3 < v < 3 and the last one to
v > 3. Accordingly the range for r will be, respectively,
r >

√
Qrc, r > 0 and r >

√
Qrc. The second and the

third solutions are identical except the range for r ; hence we
keep only the second solution which covers the full spacetime
(brane). The first solution does not cover the full spacetime
r >

√
Qrc and therefore cannot describe a black hole. This

solution will not be studied in this paper. Hence we have two
branches of the solution,

A ≡ B = 1 − 2m

r
− r2

2r2
c

± r2

2r2
c
f (v), (31)

where m is an integration constant, v is solution of the alge-
braic equation (29) and f can be written in terms of Gauss’
hypergeometric function,

f (v) = √
6

v − 2√
v2 − 3

− 4
√

2(
√

3 − 1)(v − 3)2

5(v − √
3)3/2(v + √

3)1/2 2

F1

[
1,

3(3 − √
3)

8
,

9

4
, (

√
3 − 1)

v − 3

v − √
3

]
. (32)

f is a concave down monotonically increasing function of r .
It is negative for r � 0.78

√
Qrc and positive otherwise and

limr→∞ f = 1.
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In conclusion to this section, we found for the first time
the exact static spherically symmetric solution of the DGP
model on the brane by assuming only A = B. The solution
is given in a parametric form Eqs. (29), (31), and (32).

We will continue with this parametric form of the solution
but, of course, we can write the metric by considering the
change of coordinates (r → v) where

r = √
Qrc

(v − √
3)

√
3+1
8

(v + √
3)

√
3−1
8 (3 − v)1/4

, (33)

and we have

ds2 = −A(r(v))dt2 + r ′(v)2

A(r(v))
dv2 + r(v)2dΩ2. (34)

4 Structure of the solution

The horizon structure of the black hole on the brane depends
on the branch considered. The negative branch (negative sign
in Eq. (31)) has a black hole horizon and a cosmological
horizon because of the de Sitter structure at large distances,
while the positive branch, which is asymptotically flat, has a
single horizon.

It is interesting to study the asymptotic behavior of this
solution. We have at large distances

f (r) = 1 − 2q2r2
c

r4 + 2q4r4
c

5r8 − 4q6r6
c

9r12 + O

(
1

r16

)
, (35)

where we have redefined the integration constant q =√
3/2(3 − √

3)(
√

3−1)/4(3 + √
3)−(

√
3+1)/4Q. Therefore we

have at large distances

positive branch: A = 1 − 2m

r
− q2

r2 + q4r2
c

5r3 + · · · , (36)

negative branch: A = 1 − 2m

r
− r2

2r2
c

+ q2

r2 − q4r2
c

5r3 + · · · .

(37)

We see that only the positive branch has a smooth limit
as rc → 0 (Randall–Sundrum limit) and as such we will
refer to it as the RS branch. In contrast the negative branch
is not smooth as rc → 0 and it represents a distinct new
feature of DGP, the DGP branch also being known as the
self-accelerating branch. The RS branch converges to A =
1 − 2m/r − q2/r2, but it should not be confused with the
Reissner–Nordström spacetime. In fact the tidal charge (q2)
has always the same sign and it is physically more natural for
a brane solution [11]; the tidal charge strengthens the gravita-
tional field. This is why our solution does not have a Cauchy
horizon, even in the limit rc → 0. Also as rc → ∞, we

recover the Schwarzschild solution (1 − 2m/r ) for the two
branches, and the solution is the same as in Einstein theory,
therefore there is no van Dam–Veltman–Zacharov (vDVZ)
[13–15] discontinuity. The continuity of the theory is restored
because the nonlinear effects were taken into account, while
we would conclude to a discontinuity if we use the linearized
solution at large distances (35). It is clearly a realization of
the Vainshtein mechanism.

In the other limit, at small distances, we have

f (r) � − δ
(rcq)3/2

r3 , (38)

with

δ = 2
√

2
Γ

(
5
4

)
Γ

(
1
8

(
3
√

3 − 1
))

33/8Γ
(

3
8

(
3 + √

3
)) � 3.11,

which gives

A = 1 − 2M

r
+ · · · , with M = m ± δ

q3/2

4
√
rc

. (39)

We see that even in the case of a massless black hole (m = 0),
we have a “mass term” because of the fifth dimension. Hence
we recover a standard result; even for a massless black hole,
the behavior of the solution is 1/r at small distances and 1/r2

at large distances.
In order to keep the effective mass positive, in the DGP

branch, we impose q̄ < 4
δ
m̄, where (m̄ = m/

√
qrc, q̄ =

q/rc). The existence of the black hole is constrained in Fig.
1. From this we see that, for a fixed parameter q̄ , the mass of
the black hole has an upper bound but also a lower bound. We
would have a naked singularity for the lightest black holes;
this can be seen as an instability of the branch.

The RS branch is much simpler, we have a black hole
for all positive parameters (m̄, q̄); also these parameters play
the same role, they increase the position of the horizon and
hence its entropy. At large distances, the Newtonian potential
is dominant. Depending on the parameters, the situation can
be the same for all distances, the solution will be very close
to the Schwarzschild solution, except for large values of q̄
where the mass of the black hole will be renormalized at small
distances. But in the case of the DGP branch, we do not have
the same behavior at large and small distances; hence we
have a new distance scale r	 dubbed the Vainshtein radius,

r	 � (mr2
c )1/3. (40)

As we said previously, the mass of the black hole is
bounded from below. The existence of the horizon is con-
strained by m > q̄2r2

c /r	 � q̄21028M	 if we assume the
Vainshtein radius to be of the order of the galaxy scale and
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Fig. 1 Existence of the black hole for the DGP branch: The blue part
represents the range of the parameters (m̄, q̄) for which the black hole
has two horizons. In the gray region, the metric is always negative and
the white region corresponds to a black hole with only a cosmological
horizon, because of the negativity of the effective mass, hence inside
the cosmological horizon the solution would be a naked singularity

the crossover scale of the order of the Hubble scale. A stellar
black hole exists if q̄ < 10−14. Otherwise it will be a naked
singularity.

The extrinsic curvature and therefore the curvature con-
stant can be easily derived from (25) and (26),

R = 3

r2
c

(
2 ∓ √

6
v − 1√
v2 − 3

)
, (41)

which is singular at r = 0 (v = √
3). Also we can see that

R > 0 for the DGB branch and it converges to 12/r2
c , while

we have R < 0 for the RS branch and it goes to zero at
infinity. A non-vanishing curvature outside the source leads
usually to a screening mechanism and we have shown previ-
ously the absence of the vDVZ discontinuity. On the phys-
ical stability of the solutions, it is interesting to study the
violation of the energy conditions if we consider the tensor
Kμν − Khμν as a source term, and the positivity of the grav-
itational mass of this spacetime. These particular problems
should be addressed separately.

5 Stability

In order to study the linear stability of this solution, we use
the Regge–Wheeler formalism [16,18] and we decompose
the metric perturbations according to their transformation
properties under two-dimensional rotations. They are classi-
fied as odd (or axial) and even (or polar) perturbations.

5.1 Odd perturbations

In this section, we consider the odd perturbations. For that we
assume an infinitesimal perturbation εμν of the background
metric h̄μν in the form hμν = h̄μν + εμν . Each perturbation
component can be decomposed into spherical harmonics and
also we can remove some of the perturbations by a change
of coordinates. We will assume the Regge–Wheeler gauge
[16]. Finally, because of the symmetries of the background,
we can always fix the azimuthal number m to zero. For more
details, see e.g. [17]. In conclusion, odd-mode perturbations
can be written as

εodd
μν =

⎛
⎜⎜⎝

0 0 0 h0

0 0 0 h1

0 0 0 0
h0 h1 0 0

⎞
⎟⎟⎠ sin θ P ′

l (cos θ) , (42)

where Pl are Legendre polynomials and (h0, h1) are func-
tions of (t, r).

Using Eqs. (14) and ( 15), we obtain

Gμν + r2
c Sμν = −Eμν, (43)

Sμν = Rμσ R
σ
ν + R2

4
hμν − 1

2
Rρσ R

ρσ hμν − 2

3
RRμν. (44)

Therefore, the perturbations are

δGμν + r2
c δSμν = −δEμν. (45)

But unfortunately, because Eμν is a non-local term, we need
to know the geometry and the perturbations of the bulk to
determine it. Therefore, we will assume that there is no back-
reaction of the perturbations of the bulk on the brane.

From the equation δG23 + r2
c δS23 = 0, we obtain

ḣ0 = AA′h1 + A2h′
1 (46)

where (˙ , ′) are derivatives w.r.t. time and r , respectively.
Using this equation in δG13+r2

c δS13 = 0 and the redefinition
h1 = r Q(t, r)/A(r), we obtain

∂2Q

∂t2 − ∂2Q

∂r∗2 + VRW Q = 0, (47)

VRW = A(r)
[ l(l + 1)

r2 − 6m

r3 ± H(r)

r2
c

]
, (48)

H = 6 f (r) + 3

2
r f ′(r) −

6
(

3 + (3 f + r f ′)2
)

12 f + 8r f ′ + r2 f ′′ , (49)

where dr∗ = dr/A, the tortoise coordinate.
From the form of the effective potential, see Fig. 2, we

can conclude to the stability of odd perturbations because
the potential is always positive.
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Fig. 2 Effective potential for odd perturbations in DGP branch (upper
graph) and RS branch (lower graph). RH represents the position of
the event horizon and RC the cosmological horizon. We see that both
branches have always a positive effective potential

5.2 Even perturbations

Following the same philosophy for even-parity perturbations
in the so-called Zerilli gauge, we have

εeven
μν =

⎛
⎜⎜⎝
A(r)H0 H1 0 0
H1

H2
A(r) 0 0

0 0 r2K 0
0 0 0 r2 sin2 θK

⎞
⎟⎟⎠ Pl(cos θ) (50)

where (H0, H1, H2, K ) are functions of (t, r). First, it is easy
to find H0 = H2, then we can find an algebraic equation
between (H0, H1, K ) that we can use to eliminate H0. We
are then left with two first order equations for the variables
(H1, K ). To diagonalize the equations, we need to define the
change of variables

H1(t, r) = h(r)R(t, r) + k(r)S(t, r)

K (t, r) = f (r)R(t, r) + g(r)S(t, r) (51)

where (h, k, f, g) are free functions defined in such a way
that we end with

∂R

∂r∗ = S, (52)

∂S

∂r∗ = (VZ + ∂2

∂t2 )R, (53)

which gives

∂2R

∂t2 − ∂2R

∂r∗2 + VZ R = 0 (54)

where VZ has the same form as in general relativity. Very
surprisingly, all the terms rc which indicate the modification
to general relativity cancel;

VZ =
A
[
2λ2(1 + λ)r3 + a1λ

2 + a2λ + a3

]

r3
(
λr + r2

2 A′ − r A + 1
)2 , (55)

a1 = r3

2

(
r2A′′ + 2r A′ − 6A + 6

)
, (56)

a2 = − r3

4

[
r3AA′′′ + r2AA′′ − 4r2A′′ − 2r2A′2 + 6r AA′

− 8r A′ − 6A2 + 22A − 16
]
, (57)

a3 = − r3

16

[
−4r3A2A′′′ + 4r3AA′′′ − 3r4AA′′2 − 4r2A2A′′

+ 12r2AA′′ − 8r2A′′ − 4r3A′3 + 8r2AA′2 − 12r2A′2

− 8r A2A′ + 24r AA′ − 16r A′ + 2r4AA′′′A′ + 2r4A′2A′′

+ 4r3AA′A′′ + 4A3 − 24A2 + 36A − 16
]
. (58)

The graph of the Zerilli potential is similar to the Regge–
Wheeler potential for the same parameters. Therefore we can
conclude to the stability of both perturbations.

The positivity of the potential indicates the stability of
the spacetime under linear perturbations [19] for the two
branches. It is important to notice that we did not consider
the source term in order to study the stability of the theory.
In this case, the source term is much more complicated than
in general relativity. In fact it is not localized, the source is
a function of the electric part of the Weyl tensor which is a
non-local term.

6 Conclusion

In conclusion, we have derived an exact black hole solution
on the brane for the DGP model. This solution recovers the

123



Eur. Phys. J. C (2018) 78 :318 Page 7 of 7 318

standard results at small and large distances but also cov-
ers the intermediate regime which was not known. The two
branches depend on three parameters, the mass of the black
hole, the tidal charge and the cross scale parameter. We have
shown than if we do not consider the perturbations of the
bulk (the source term), the solutions are stable under linear
perturbations. But as is well known, the DGP branch has a
ghost which looks inconsistent with this result. The first pos-
sibility which might explain the result is that we have a ghost
(negative kinetic term) or laplacian instability which can be
derived from the action which exists even if the black hole
is stable. But it seems very unfortunate to reach a spacetime
with a ghost being stable. See for example [20] for how to
study the presence of a ghost. The second possibility might
be that the instability comes from the bulk and not from the
brane. This means that we would need to incorporate the
perturbations of the bulk term (δEμν) to see the instability.
This is a difficult task because we do not have access to the
bulk solution but it could be found numerically by integrat-
ing the equations from ADM formalism where the solution
on the brane will be our initial condition, our Cauchy sur-
face.
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