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Abstract The present paper is devoted to investigate the
possible emergence of relativistic compact stellar objects
through modified f(R, T) gravity. For anisotropic matter
distribution, we used Krori and Barura solutions and two
notable and viable f (R, T) gravity formulations. By choos-
ing particular observational data, we determine the values of
constant in solutions for three relativistic compact star candi-
dates. We have presented some physical behavior of these rel-
ativistic compact stellar objects and some aspects like energy
density, radial as well as transverse pressure, their evolution,
stability, Eos parameters, measure of anisotropy and energy
conditions.

1 Introduction

General relativity (GR) is considered as the most fruitful
theory for understanding the evolution of universe and its
hidden secrets, yet the evidence of dark matter (DM) and
the cosmic accelerating nature of spacetime put some chal-
lenges on this [1-15]. The Einstein’s GR explained the cos-
mological phenomena in a regime of weak field, while some
modifications may be needed to study the strong fields in the
scenario of accelerating expansion of the universe. In this
direction, Qadir et al. [16] reinforced the requirement of the
modified relativistic dynamics and indicated that this modi-
fication may help to settle down the problems related to DM
and quantum gravity. As a result, many techniques were used
like by introducing the cosmological constant as well as the
modified theories from time to time.

Modified gravitational theories (MGTs) are actually the
generalization of GR in which function of the Ricci scalar
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(R) is substituted in the Einstein—Hilbert action. These mod-
ified gravity theories are dubbed with the names, Einstein- A
[17], f(R) [18-21] (R is the Ricci scalar), f(R, T) [22-25]
(T is the trace of energy momentum tensor), f(G) [26] (G is
the Gauss—Bonnet term) and f(R, T, Ry Té7™) gravity [27-
30]. In the recent times, Nojiri et al. [31] presented various
mathematical techniques to understand burning issues of cos-
mos related to bouncing cosmos. They asserted that gravity
mediated by f(R) and f(G) theories could be used to real-
ize many hidden secrets of our universe. Once can observe
the pity good agreement results between the cosmological
models in MGTs and the observational data [32-35]. The
f (R, T) gravity is one of the MGTs, in which the f(R) is
replaced with the function of R and 7" [36]. It is claimed that
the evidence behind the dependence of 7 may come from
the presence of imperfect fluid or it may be some kinds of
quantum effects (for further reviews on DE and MGTs, see,
for instance, [37-51]).

In f(R, T) gravity, many cosmological applications were
discussed in [52-58]. From literature, some of them are, The
non-static line element for collapsing of spherical body hav-
ing anisotropic fluid were discussed in [59]. The static spheri-
cal wormhole solutions were found in [60,61]. Furthermore,
the perturbation techniques were used in study of spheri-
cal stars [62]. The effects on gravitational lensing due to
f (R, T) gravity were discussed in [63]. The spherical equi-
librium theme of polytropic and strange stars were investi-
gated in [64]. Houndjo [65] constructed few observationally
notable cosmic models in f (R, T) gravity for studying mat-
ter dominated era of the expanding universe. Baffou et al.
[66] applied perturbation on the spacetimes of de-Sitter and
power law models in order to explore some cosmic viability
bounds.

Bamba et al. [67] analyzed the effects of higher degrees of
freedom coming from MGT on the dynamical features of our
accelerating cosmos. Bamba et al. [73] further checked the
viability regimes on the parameters of f(G) gravity mod-
els and presented some mathematically consistent cosmic
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zones. The stability of gravitational evolving stellar bodies
have been investigated in few models of f(R) gravity by
[69,71]. Das et al. [72] calculated exact relativistic models of
spherical interiors in MGT and discussed the physical impli-
cations of their results on compact stars.

Yousaf and his collaborators examined the role of vari-
ous curvature invariant functions on the existence as well
as stability of the planar [74—76], spherical [17,77-80] and
cylindrical [23,81-83] geometries. Sahoo with his cowork-
ers [84-86] studied the viability of the spatially regular cos-
mos along with some other cosmological aspects in f(R, T)
gravity. Moraes et al. [64] worked out the stability of some
well-known compact stars by computing their corresponding
hydrostatic equations in (R, T) = R + 2AT gravity.

The exploration on the existence of self-gravitating com-
pact stars have always been a source of great attention among
gravitational physicists [87-94]. In this direction, many
researchers reconstructed different models for the study of
anisotropic relativistic compact stars. Various physical prop-
erties, like masses of compact stars, radii, stability etc. and
the moment of inertia of neutron stars were studied with the
comparison developed with GR and other MGTs [95]. Virb-
hadra et al. [96-98] discussed the relation between naked
singularity and black holes formation accompanied with a
well-consistent mathematical stand point. Egeland [109] per-
formed the modeling of neutron star by examining some mass
radius relations and concluded that A should exist to justify
the vacuum density. Sharif and Yousaf [99] also found these
relations and checked the existence of compact structures in
the platform of MGTs. Bhatti et al. [100] calculated dark
dynamical variables and checked the dynamics of compact
stars with the help of these variables. Recently, Yousaf et al.
[101] investigated the stability of three different compact
structures in the presence of dark sources terms mediated
by quadratic, cubic and exponential f(R) formulations.

Here, we use the modified f(R, T) gravity, which can
be considered as more well established theory than that of
cosmological constant. To explore the formation of relativis-
tic anisotropic compact stellar objectsin f (R, T') gravity, we
use two such a viable f(R, T') models for three candidates of
strange stars, i,e., Her X-1, SAXJ1808.4-3658 and 4U1820-
30. We shall label these stars with CS1, CS2 and CS3, respec-
tively. We find the solutions of relativistic anisotropic stellar
bodies in f (R, T') gravity, that enforce some constraints on
the cosmic model parameters. In very next section, we for-
mulate f(R, T) equation of motions, after having the back-
ground of f (R, T) gravity, we take anisotropic matter con-
tents for static spherical star geometry. In Sect. 3, we demon-
strate some of the physical viable models in f (R, T') gravity.
In Sect. 4, we explore the solutions and discussed the physi-
cal properties of relativistic compact stars through graphical
illustrations. At the end, we finalize our results.
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2 f(R, T) gravity

The action for f (R, T) gravity can be written as

I = /dx4\/ —8 [f(R, T) + Lyatter]s 2.1)
where g and L, 41 indicate determinant of metric tensor

and the matter Lagrangian, respectively. By varying the above
equation with metric tensor, we get

1
Rex fr = 58en f + (8ex ViV = Viu Vi) fr

= Tén - fT®§r[ _fTTEJT9 (2-2)
where the notations fr, V, and f7 are operators for covari-
ant and partial derivatives of their arguments, respectively,
while ©,,, can be expressed through the stress-energy tensor

(Tys) as

9%L,,
0gmagup”
(2.3)

B
geP 3T,
e Tﬂaﬁ = —2Tix + gex Lm — 28°7

The aim of this work is to check the different properties of
some of the compact stars with locally anisotropic pressure.
Now, we consider that the spherical distribution of geometric
system is coupled with the following relativistic fluid

Ty = (o + POV Vy — Prgun + TIX, Xy, 2.4
in which IT = P, — P, and p is the matter energy den-
sity and V) and X, are the 4-vectors corresponding to
fluid and radial directions, respectively. Under the non-tilted
coordinate system, the four vectors satisfy V¢V, = 1 and
Xfx g = —1 relations. Equation (2.3) can be written, after
choosing L,, = p, as

®oz/3 = _ZTaﬁ + P8ap
Then, the field equations (2.2) boil down to

1
Rgn _ _RgSn' — Teff

> T 2.5

where Tgf is dubbed with the effective stress energy ten-
sor for f(R, T) gravity whose mathematical formulations is
given by
off 1 1
Ter = T (14 /1) Ten — p8ex fr + 5 (f = RfR)8ex
+(VeVr — 862 V*Va) fr]. (2.6)

Now, we wish to consider the diagonally symmetric static
form of spherically symmetric spacetime as
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ds® = e"dr® = e"dr? — r? (d6* + sin®0dg?) @7
where metric coefficients a and b are the r dependent func-
tions. Our aim is to analyze the role of anisotropicity in the
modeling of some stellar toy models. So, we assume that
Eq. (2.7) is composed of the locally anisotropic fluid content
given in Eq. (2.4). The f(R, T) equations of motion (2.2)
for the geometry (2.7) and fluid (2.4) yield

4 /

pet H%a/mz P “7} fr (R T)

2 4
+ (b D 3) o = IR — fR”] , 2.8)
r 2
b et a b, b1,
"WH‘T?“ Ty }fR
a2\, ¢ pfr
+(5+;> fr +3fR] i TEst 2.9
_ e? b roy ’ SR 1 ’ ’
= [{e +35 (b —a)—1}r—2+{—§(b —d)
1 ’ " Q bi|_ ofr
+r}fR L B (2.10)

where the over prime indicates d/dr operator.

In order to analyse the impact of f(R, T') gravity on the
construction of stellar models, we assume the separable form
of Rand T in f(R, T) model as follows
FR,T) = fi(R)+g(T). (2.11)
This choice of separable R and T can be regarded as a pos-
sible linear corrections in the well-known f(R) theory. By
choosing f;(R) from [33] along with the linear combination
of g(T), the viable f (R, T') model can be designed. There-

fore, we suppose g(7) = €T in which € is a very small
positive number. In this context, Eqs. (2.8)—(2.10) provide

1 [ (2 + 5¢)
= 2 , 2.12
Y 20+20 | (10 o1+ e+ 6<ﬂ3:| (2.12)
-1 [ €
— —24+3 2 ,
= 30e 1 D) _(6+1)<p1 2 +36)p2 + 6(/)3]
(2.13)
P L S 2(1 4 €)
= €Py — € ,
T _(]+6)<p1 [05) ©3
(2.14)
where
L a/2+a// b/ /+a/ f N b/ 2
pEe e T e )R g

et (v a v, 1, ot 2+a’
=—||—-——=—-—= a —-a -+ =
2T Uro \r T2 34 T, RT3
1
XfR/‘I'Eebe]
= e’ -eb—lr(a/—b’)—l &
“=re 72 2

+{%—%(b/—a/)}fR/-i-%eb‘l‘fR”}.

We write a and b as a combinations of radial coordinates sug-
gested by Krori and Barua [110]. They proposed the specific
forms of these functions as a(r) = Br2+C and b(r) = Ar?,
where A, B and C are the three constant numbers. One can
find the values of this triplet (A, B, C) by considering some
appropriate boundary conditions. Then, Egs. (2.12)—(2.14)
yield

A2
eAr

T 221 +¢)(1+26)
4 (2(=1 = 2¢ + 3Brle 4+ Bt 4 47’

[—eArZr2 (1+e)f;

P

x (14 2€) + Ar? (2 +4de — Br26>)

+ e 21+ OR) f + r((—4 — 6€ + 3Brle
+ AP Q+3DR [ —r Q+30) R f]
—r 243e) R £/,
e—Ar2

T 221 4€) (1 +2€)
—(2(=1—2¢ + B2 % + e (1 4 2¢)
_ B2 (2 fe+ Arze)) +ef 21+ R) S
+ r[{4 + 6€ + Ar’e + Brl(2 +€)}
% R/fi// _ rGR//fi// _ I’ER/zfiW]],

B efAr2

C 2r2(14€) (1+2e)
—r[2{=BQ2+ €+ Br’(14+¢)) + A(1 + 2¢
+ Br2(1 + )} +e* (14 €) RIf, + 2R fi"
—2Ar*R' fi" +2Br*R' fi" +2¢R' f!'
—3Ar%R f!' + BrieR f/' + 2f/'rR" + 3reR" f/'
+2rR?f" + 3reR*f]"]. (2.17)

(2.15)

A2 (1 + ) f

r

(2.16)

[ (1 + €) fi

Py

3 Boundary conditions

We consider a timelike hypersurface denoted by <2 that
has differentiated interior manifold given in Eq. (2.7) and
outer geometry. The exterior region is through the vacuum
Schwarzschild spacetime as

@ Springer
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oM oM\ !
ds? = <1 - —) dr? — (1 - —> dr?
r r

_ 2 (d92 + sin 92d<p2) , 3.1)
where M is the gravitating matter content. At the boundary
surface €2, the continuity of the metric variables g;;, g, and
the dg;;/dr provide the following constraints

—1 oM M oM\ !
A=—mh(1-="), B==(1-=) ., @32
R3 R

oM M oM\ !
C=Inf1-")-=(1=-=") .
R R R

For the smooth and continuous matching of the manifolds,
the above constraints at €2 should be fulfilled. We now pick
some observational values of A, B and C from the litera-
ture to check the construction as well as the stability of the
compact stellar bodies. We consider, three stellar toy mod-
els Her X-1, SAXJ1808.4-3658 and 4U1820-30 labeled with
CS1, CS2 and CS3 here. The masses of these star candidates
are 0.88, 1.435 and 2.25 solar masses, respectively. All of
these stellar structures satisfy Buchdahl Bondi bound as their
2M /R ratios are less than 8/9. We further suppose that the
junction conditions at the stellar core are [113]

(3.3)

p(r) = pe (3.4)
da
5(0) =0, 3.5)
b(0) =0, (3.6)

where p, is the critical mass density.

4 Various f (R, T) models

The aim of this section is to study some of the notable
f (R, T) models. We want to analyze the influences of these
f (R, T) models in the construction and stability of the com-
pact stellar candidates in the background of some observa-
tions. We shall discuss some realistic features of spherical
systems like, compactness, stability, evolution of energy den-
sity with radial coordinate, the measurement of anisotropic
pressure evolution and the different energy conditions. The
results obtained such investigations may provide some hid-
den realities corresponding to the both theoretical and astro-
physical regimes. Equation (2.11) provides
SR, T)= fi(R)+€T, 4.1
wherei = 1, 2. There has been very interesting results which
reveal that the inclusion of extra dark energy/DM compo-

@ Springer

nents mediated from alternative theories could bring some
exciting results. For instance, collapse time, existence of
more compact structure, stability, phenomenon of core for-
mation and above all can be well influenced by these dark
source terms unlike GR. The reexamination of GR problems
in alternatives theories may be helpful to shed some light on
the models viability and their usefulness on physical grounds.
The cross-examinations may present both quantitative and
qualitative different consequences than that of GR.

It is of particular interest for many researchers to explore
the predictions as well as the outcomes of modified gravita-
tional theories like f (R, T') theory concerning the existence
of stellar structure and their stability. The f (R, T') gravity
can be treated as a mathematical tool to examine various
unknown features of gravitational dynamics at large scales.
Schaefer and Koyama [102] generalized their study of gravi-
tational collapse of spherical structures in the realm of modi-
fied gravity and Birkhoff-theorem and found enhanced clus-
ter merging rates as well as overdensed populations of rela-
tivistic structures (due to modified gravity). Capozziello et al.
[103] computed modified Lané-Emden expression with met-
ric f (R) corrections and Newtonian approximation. They get
some exceptional results of density and pressure distribution
in the analysis of the hydrostatic scenario of few celestial bod-
ies. Cembranos et al. [104] studied stellar structure formation
in the background of modified gravity and found compara-
tively higher contraction in the collapsing rate of spherical
systems at its initial stages unlike GR.

Astashenok et al. [105] examined the impact of few mod-
ified gravity formulations on the existence of compact struc-
ture and inferred that there exists some models whose correc-
tions could lead arena of having relatively more compact stars
than in GR. Yousaf and Bhatti [106] studied the influences of
modified dark source terms on mass-radius relationships for
compact stars and concluded that some extended gravities
mediated by Lagrangians o R* and aﬁ;’IiR are likely to host
supermassive relativistic systems with comparatively smaller
radii than in GR. Resco et al. [107] numerically calculated
apparent masses of neutron star models in modified gravity
and inferred that generically some modified extra degrees
of freedom likely to keep significantly massive neutron star
with smaller radii than in GR. Such type of investigations
could provide theoretical well-consistent way to handle and
study classes of massive and super massive structures at large
scales. Bamba et al. [73] claimed that modified gravitational
dynamics could provide an additional platform in few regions
of spacetime that could lead to stable configurations of rela-
tivistic system. In this paper, we found relatively stellar bod-
ies with much higher densities than that found in GR [108]
as seen from Fig. 1.

In the following we discuss two different f (R, 7)) models.
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Model |

Fig. 1 Graph for the density (km~2) evolution with both f (R, T) models

Table 1 The observational

values of the radii R, masses M Compact stars (CS) R (km) M H= % B (km~?) A (km™?)

compactness j1 3¢ e gy CSI 7.7 0.88Mo  0.168 0.004267364618  0.006906276428

and CS3 ’ cs2 7.07 1435M 0299 0.01488011569  0.01823156974
cs3 10 225My 0332 0.009880952381 001090644119

4.1 Model 1

Firstly, we take the tanh modification of the Ricci scalar func-
tion that was proposed by [114]. In this respect, the f(R, T)
gravity model (4.1) give

f(R,T) = R — aR tanh (%) +eT, 4.2)

where @ € Rt and R € R* in which R* denotes the set
of positive real numbers. On setting o« = 0, the dynamics of
Einstein’s gravity can be discussed.

4.2 Model 2

Next, we consider another viable formulations of f(R) grav-
ity that was first suggested by [115,116]. Under this context,
Eq. (4.1) becomes

R R2 —-q
FR.T)Y= R+ 7R ((1+TZ> - 1) +eT,  (43)
R

where R, y and ¢ are the free non zero and non negative
parameters.

In the coming section, we will use these two viable model
for further investigation of compact stars.

5 Some physical properties

This section is devoted to analyze various aspects of some
compact stellar toy models. We assume three different star

distributions, i.e., CS1, CS2, CS3 as well as two observa-
tionally consistent f (R, 7)) models. Upon substituting this
data in Egs. (2.8)—(2.10), we get values of matter variables in
the form of four parameters, o, R, q and €. Then, we study
some physical features to obtain the realistic configurations
of compact stellar structures (shown in Table 1). The compar-
ison between our theoretical outcomes and the observational
data may provide the strong evidences for f(R, 7') models.
We shall show our results with the help of plots.

5.1 Density and pressure evolutions

This section is devoted to analyze the matter parameters of
all the three stellar bodies whose variations are depending on
the radial coordinate. We check the radial variations in the
anisotropic pressure, energy density and their corresponding
radial derivatives. Now with the help of Egs. (2.8)—(2.10),
we plot Fig. 1 for all the three stellar models in the back-
ground of two above mentioned f (R, 7)) models. We infer
that the behavior of energy densities keep on increasing till
the constraint » — 0. This indicates the distribution of p to
be increasing with respect to the decreasing choices of 7. One
can say from these that our stellar toy models are of having
highly compact cores in the degrees of freedom coming from
Egs. (4.2) and (4.3). Figures 2 and 3 describe the plots of the
variations in the components of the star pressure.
Furthermore, Figs. 4, 5 and 6 are describing the variations
in the r derivative of p and p;. One can observe from these
that 22 < 0, 92 - 0 and 2 < 0 for the given two viable

dr dr dr
models and the three toy models. Under the constraint 7 = 0,

@ Springer
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Model |

Fig. 2 Graph for the radial pressure (km~2) evolution with both f(R) models

Model |

+ CSI
« CS82
- CS3

Fig. 3 Graph for the transverse pressure (km~2) evolution with both f(R, T) models

Model |
dp/dr

-0.001 +

-0.002

-0.003

Fig. 4 Graph describing dp/dr with respect to r for both f(R) models

one can notice that the r variations of all the matter variables
vanishes, such that

dp
~Z =0,
dr
dpr _ 0.
dr

Furthermore, the twice variations of these structural quanti-
ties have been found to be negative. These consequences are
providing a seed for the high compact profiles of such star

@ Springer

Model 2
dp;’dl'

0.005

-0.005

-0.010

structures around their subsequent cores, thus indicating that
the configurations of compact and dense stars do exists in the
arena of f(R, T) gravity.

5.2 Energy conditions

For a realistic matter content distribution, one need to check
some particular conditions, such a mathematical conditions
are called energy conditions (ECs). These mathematical con-
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Model |

-0.0010+
-0.0012}
-0.0014}

Fig. 5 Graph describing dp, /dr with increasing r for both f(R) models

Model |

Fig. 6 Graph describing dp; /dr with increasing r for both f(R) models

Model | Model 1

ooooo

Model |

PHPr+pt
0.05
0.04
0.03
0.02

Model 2

dpr/dr

0.001

-0.001
-0.002

-0.003

Model 2
dpt/dr

0.001

-0.001

-0.002

Fig. 7 ECs viability for three stellar bodies with (R, T) = R — a R tanh (%) teT

ditions are the coordinate-invariant. In the regime of modified
f (R, T) gravity like the effective forms of density and the
anisotropic pressure, the null energy Condition (NEC) and
the weak energy conditions (WEC) are devised, respectively,
as

e NEC & p°ff 4 peff >,
e WEC & o > 0and p° + PP > 0,

while the rest of ECs, i.e., strong energy condition (SEC) and
dominant energy condition (DEC) give

e SEC & o 4 2P 4+ 3P > (0 and pf 4 PET > 0,
e DEC & o > 0 and p* + PF > 0.

It has been easily be figure out from the plots shown in Figs. 7
and 8 that our under considerations of both models with CS1,
CS2 and CS3 obey all ECs. This suggests that anisotropic

@ Springer
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Model 2

Model 2

Model 2

p+pt

0.030
0.025
0.020
0.015
0010

Model 2

0.02

-0.02

Fig. 8 ECs viability for three stellar bodies with f(R, T) = R + y R ((1 + %ﬁ)*q — 1) €T

fluid content (2.4) describes the realistic source of gravita-
tional effects.

5.3 TOV equation

A mathematical expression that provide some restrictions on
the geometrical distributions of the relativistic spherical sys-
tem, which is normally hydrostatic equilibrium and is often
called as TOV equation. For the spherical line element, this
equation is written as

dp, d(p+P) 2P —P)
+ =
dr 2 r

0, G.D

The above equation contains three well-known interactions,
i.e., the gravitational, (F}), hydrostatic, (/) and anisotropic,
(F,) forces. Therefore, one may write above equation as

Fy+ Fy+ F, =0. (5.2)

The values of these forces by using of Egs. (2.8)—(2.10) gives

~1
Fy==Brip+P)=1—_[28 exp(Ar®)r{2(B + A) f}
€

+(B+ AR rf! = R'fI' = R?fi"}],
_dp, _ exp(=Ar?)

dr — 2r3(1 +€)(1 + 2¢)
+ A?Br — exp(Ar?)(1 + 2€) + Ar?
x (1 +2Br? +2¢ — B2 fi' +r{—r@+3Q2 + Ar¥)e
+ B2+ e)f"R?* + R'{(2
+ 8Ar2 — 6Br? + 4ABr* +2¢ + 11Ar%e — 3Br’¢
+2A%r% 4+ 2B%r*e + exp(Ar?) (2

+4€) + exp(Ar)r (1 + €)R) f{' + 3r’eR" f{"}

F = [4{1 + 2¢ + Br*c

@ Springer

— fI'r((4 4 6€ +3Ar%e + Br*(2 +€)R”
_ rERW) + rZGR/Sfl-////}]’
2(P, — P)  2exp(—Ar?)
r Tl +e
— (1 + Ar2 = Br)(1 4 BrA)Y ) 4 r{—(1 + Ar?)
% fi//R/ + fi//rR// + R/eri///}].

F, [{exp(Ar?)

Using above relations together with observational values of
A, B and C from Table 1, we have drawn some diagrams
mentioned in Fig. 9. In Fig. 9, the left plot is for f(R, T)
model (4.2) and right plot is for model (4.3). The role of
these three types of interactions with respect to r (km) has
been seen in this diagram in the modeling of compact bodies
CS1, CS2 and CS3.

5.4 Stability analysis

This section illustrates the stability of the compact relativis-
tic structures. It would be interesting to mention that, for
any arbitrary relativistic observer, only those stellar bodies
are worthy to study which remain in stable position after
the application of fluctuations. Thus, the stability problem
is among the burning issues for the relativistic astrophysi-
cists. With this intentions, we analyze the stable regimes
of our under considerations stellar models by applying the
technique developed by [117]. This scheme could be use-
ful to study the phenomenon of cracking. According to this
scheme, the stellar system must have the ranges of v2, and
vszt between 0 and 1, e.g., in the closed interval [0, 1], here
vsr and vy, represent the radial and transverse sound speeds,
respectively. These variables are defined as follows

dPr 2 dP[ 2
dp = Usp» % Ugy-
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Model |
0.0002 e & Fy

-0.0002 Fh

-0.0004

-0.0006

Fig. 9 Graph describing Fy, Fj, and F, with r (km)

Model |

045}
040}
035}
0.30}
025}

2 4 6 8 10

Fig. 10 Change in vfr versus r (km) of CS1, CS2 and CS3

Now, using Egs. (2.8)—(2.10), their values are calculated as

Vgp = /1 v =,/£
sr \117 St \119

where

x = r{4r3(B2(1 + €) + A’(1 + 2¢ + Br(1 + ¢))
— AB(3+2¢+ Bri(1+e)) f' +r{2(1
+€)+ Bri(2+¢) —3Ar2(2 4+ 3¢)}R? fi"
+ R'{(6Br? — 2 +2B%*r* — 2¢ + 3Br?c + 2B>
x rte + 2424 (2 4 3¢) — Ar*(8 + 11e
+2Br*(3 + 2¢)) — exp(Ar®)r?(1 + €)R} fi” + 3r2
X (24 3€)R"fi"} + rfi"{2(1 + €) + Br’ 2 +¢)
—3Ar2(243€))R" +r(2+3e)R"}
+r2 Q2+ 3R fi"),
W = —4[exp(Ar®)(1 + €) — 1 —2e — B*r*e
+ AXM2 + (4 — Bri)e) + Ar*{—1(4Br? —2
+ BE M) fi’ 4+ r{r(3(Br? —2)e — 4
+3Ar2Q2 +3e)R?fi"” + R (2 + 14Ar? — 4A%r* 4 2¢
+23Ar2(1 +€) fi" =3r2(2 4+ 3¢)R" fi")

(5.3)

Model 2
0.002 z Fg
0.001 + Fa
Fh

-0.001

-0.002

Model 2

+rfi"(3Bre —4 — 6 + 3Ar*2 4+ 3e)R" — r(2
+360R") =22 +3e) R fi"")),

¢ = 4[4{1 + 2¢ + B*>r*e + A’Br — exp(Ar®)(1 + 2¢)
+ Ar2(1 + 2Br* + 2¢ — B¥r*e)) fi’
+r{—r(4 432+ Arhe) + Br2Q + e)}R* fi”
+ R'{(2 + 8Ar? — 6Br? + 4ABr* + 2¢
+ 11Ar2%e — 3Br2e + 2A%% + 2B%r¢
+ exp(Ar?) (2 + 4€) + exp(Ar2)r2(1 + €)R) fi”
+3r2eR" fi""} — rfi"{(4 + 6€ + 3Ar’e
+ Br?(2+e)R" —reR"} +r?eR? fi"].

(5.4)

(5.5)

To reach the stable window, the transverse and radial speeds
of the relativistic spherical manifolds must obey 0 < vszr <1
and0 < vszt < 1. We plotted some graphs by using Eqs. (4.2)
and (4.3) and (5.3)—(5.5) along with Table 1. One can clearly
see from the Figs. 10 and 11 that v, and v2, are within the sta-
bility range for all three observed compact stellar structures.
Furthermore, Fig. 12 shows the stability modes like

0< v —vi|<l.

This indicate that our compact spherical geometries are
within the stability bounds even in the presence of extra
degrees of freedom coming from (4.2) and (4.3) f(R,T)
models.

@ Springer
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5.5 The measurement of anisotropy

The extent of anisotropicity as well as its magnitude within
a local anisotropic fluid distributions can be defined as

A=Z(P,—P).

Using Eqgs. (2.8)—(2.10), we can write A as

2exp(—Ar?)

T A+
— (14 Ar2 = BrA)(1 + B} fi' + r{—(1 + Ar?)
% R/fl-// +rfl-//R// +}”R/2fim}].

[{exp(Ar?)

@ Springer

Model 2

Model 2

0.0020
0.0015
0.0010
0.0005

-0.0005
-0.0010

The above equation contains fi terms. We use the two dif-
ferent viable fi models from Egs. (4.2) and (4.3) and get
the three different equations, each incorporating a particular
f (R, T) model corrections. After using observational results
of the compact stars given in Table 1, we terminated with six
set of equations. We check the behavior of anisotropy in the
degrees of anisotropicity in the background of relativistic
compact objects, by plotting these equations. It can be seen
from the plot shown in Fig. 13 that the A is remained greater
than zero for all the three relativistic compact stellar struc-
tures which resulting that the influence of radial pressure, P,
is lesser than that of transverse pressure, P;. This outward
directed measure of anisotropy for these two viable models.
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6 Summary

As the universe is accelerating, this ground reality attracts
researchers towards the extension of GR and modified theo-
ries of gravity. The first modification to GR gives birth to
f(R) gravity, which provides a good attention while the
extension of this modification gives rise to f (R, T) gravity
and attain much attentions because of some quantum effects
arising in the theory. These modifications appear in the field
of low energy action for effective quantum gravity theory.

In this work, we study the anisotropic relativistic compact
stellar objects with static and spherical structures. For this
purpose, we consider the relativistic compact stellar objects
whose interior geometry is based on anisotropy in f(R, T)
gravity. Krori and Barua [110] proposed the relativistic inte-
riors of stellar bodies through specific metric combinations.
With these techniques, we connect this interior geometry with
the exterior Schwarzschild geometry and find the constant (in
term of mass and radius) of interior metric over the bound-
ary. After this, we used some observational data from which
we find the numerical values of these constants. Then we
put these numerical values in our calculations and plots our
results.

In this paper, we have used BK solution, according to
which a(r) = Br? + C and b(r) = Ar?, where A, B and
C are the three constant numbers which can be evaluated
depending on several physical requirements. Such solutions
[110] are claimed to be singularity-free for the static spherical
systems in the background of GR. Furthermore, this solution
is asserted to be regular everywhere and the matter variables,
like mass density, pressure etc are finite all over within the
relativistic spherical system.

It is of our interest to check the outcomes and the pre-
dictions of one of the extended gravities, i.e., f(R, T) the-
ory regarding the existence and stability of spherical stars.
Therefore, we have explored the modified version of the TOV
equation in the realm of couple of f(R,T) models. Fig-
ure 9 states that for the particular choices of f (R, T') model
parameters, there exists some eras under which system could
attain equilibrium condition by keeping all the forces sum
to be zero. It is worthy to mention that usual GR forces are
being modified due to f (R, T') models, thus producing some
extra effects in the forces Fy, Fj; and F,. The stability of our
compact stars not only depends upon KB-solution but also on
the choices of parameters involved in f (R, T) models men-
tioned in Egs. (4.2) and (4.3). The difference of the squares
of sound speeds, i.e, v, — v2, has been found to be within
[0, 1], thus describing our relativistic stars to be in stable
window with certain values of parameters involved in the
corresponding f (R, T') models.

The energy density remains positive and maximum at the
core of compact stars. Energy conditions holds for all these
three compact stars and the radial as well as the transverse

equation of state parameter are in ausual range i.g. 0 < w; <
1, here i = r, t. This indicate that the interior structures of
these relativistic compacts stellar objects are composed of
normal ordinary matter. For all case, we find the anisotropy
directed outward, e.g., p; > p, or A > 0. Similarly, the
transverse as well as the radial sound speed for all these
compact stars are in stable limits that implies the stability of
these spherical anisotropic compact bodies in the realm of
f (R, T) gravity.
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