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Abstract Aiming at exploring the nature of dark energy
(DE), we use forty-three observational Hubble parameter
data (OHD) in the redshift range 0 < z � 2.36 to make a cos-
mological model-independent test of the ΛCDM model with
two-point Omh2(z2; z1) diagnostic. In ΛCDM model, with
equation of state (EoS) w = −1, two-point diagnostic rela-
tion Omh2 ≡ Ωmh2 is tenable, where Ωm is the present mat-
ter density parameter, and h is the Hubble parameter divided
by 100 km s−1 Mpc−1. We utilize two methods: the weighted
mean and median statistics to bin the OHD to increase the
signal-to-noise ratio of the measurements. The binning meth-
ods turn out to be promising and considered to be robust. By
applying the two-point diagnostic to the binned data, we find
that although the best-fit values of Omh2 fluctuate as the
continuous redshift intervals change, on average, they are
continuous with being constant within 1 σ confidence inter-
val. Therefore, we conclude that the ΛCDM model cannot
be ruled out.

1 Introduction

Over the past few decades, there have been a number of
approaches proposed to quantitatively investigate the expan-
sion history and structure growth of the universe (see [1,2]
for recent reviews). The observations of Type Ia supernovae
(SNIa) [3,4] have provided ample evidence for an acceler-
ating expansion to an increasing precision [5]. Other com-
plementary probes support that phenomenon, including the
baryon acoustic oscillation (BAO) measurements, the weak
gravitational lensing, the abundance of galaxy clusters [8],
the cosmic microwave background (CMB) anisotropies, the
linear growth of large-scale structure [10], and the Hubble
constant H0 [11]. There are plenty of cosmological models
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raised to account for the acceleration phenomenon, yet the
best-fit one is still uncertain.

The existence of dark energy (DE) with negative equa-
tion of state (EoS) parameter w ≡ pDE/ρDE is considered
as a prevailing interpretation currently. In this context, the
most popular DE model being used remains to be the sim-
ple cosmological constant cold dark matter (ΛCDM) model,
with w = −1 at all times [12]. However, the popularity of
ΛCDM model does not cover the issue that it suffers from
fine-tuning and coincidence problems [13,14]. In addition, it
is worth noticing about the possibility of DE with evolving
EoS [15], i.e. the dynamical DE models (w = w(z)), such
as Quintessence [w > − 1, 16, 17], Phantom [w < − 1,
18], K-essence [w > − 1 or w < − 1, 19, 20], and espe-
cially Quintom [w crossing −1, 21, 22] models. Neverthe-
less, it deserves more profound, physical explanations for all
these models. Moreover, Zhao et al. [15] find that an evolv-
ing DE can relieve the tensions presented among existing
datasets within the ΛCDM framework. Meanwhile, it is use-
ful to introduce diagnostics based upon direct observations
and capable of revealing dynamical features of DE. One of
these diagnostics is Om(z), which is defined as a function of
redshift z [23,24], i.e.,

Om(z) = h̃2(z) − 1

(1 + z)3 − 1
, (1)

with h̃ = H(z)
H0

and H(z) denoting the Hubble expansion
rate. Om(z) has the property of being Ωm for w = − 1 case.
Moreover, Shafieloo et al. [25] modified this diagnostic to
accommodate two-point situations as follows,

Om(z2; z1) = h̃2(z2) − h̃2(z1)

(1 + z2)3 − (1 + z1)3 . (2)

In this case, if Om(z2; z1) ≡ Ωm held for any redshift inter-
vals, it would substantiate the validity of ΛCDM. In other
words, the measurements of Om(z2; z1) �= Ωm would imply
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a deviation from ΛCDM and the fact that other DE models
with an evolving EoS should be taken into account.

In this paper, we first introduce the measurements of the
observational H(z) data (OHD) and then exhibit the currently
available data sets in Sect. 2. In Sect. 3, we apply two binning
methods: the weighted mean and median statistics techniques
to OHD, and obtain the binned OHD categorically. In Sect. 4,
based on the binned OHD, we test the ΛCDM model with
two-point Omh2(z2; z1) diagnostic. Finally, we summarize
our conclusions in Sect. 5.

2 The observational H(z) data sets

The OHD can be used to constrain cosmological parameters
because they are obtained from model-independent direct
observations. Until now, three methods have been developed
to measure OHD: cosmic chronometers, radial BAO size
methods [26], and gravitational waves [27]. Jimenez et al.
[28] first proposed that relative galaxy ages can be used to
obtain H(z) values and they reported one H(z) measurement
at z ∼ 0.1 in their later work [29]. Simon et al. [30] added
additional eight H(z) points in the redshift range between
0.17 and 1.75 from differential ages of passively evolving
galaxies, and further constrained the redshift dependence of
the DE potential by reconstructing it as a function of red-
shift. Later, Stern et al. [31] provided two new determinations
from red-envelope galaxies and then constrained cosmologi-
cal parameters including curvature through the joint analysis
of CMB data. Furthermore, Moresco et al. [32] obtained eight
new measurements of H(z) from the differential spectro-
scopic evolution of early-type, massive, red elliptical galax-
ies which can be used as standard cosmic chronometers. By
applying the galaxy differential age method to SDSS DR7,
Zhang et al. [33] expanded the H(z) data sample by four
new points. Taking advantage of near-infrared spectroscopy
of high redshift galaxies, Moresco et al. [34] obtained two
measurements of H(z). Later, they gained five more latest
H(z) values [35]. Recently, Ratsimbazafy et al. [36] provides
one more measurement of H(z) based on analysis of high
quality spectra of Luminous Red Galaxies (LRGs) obtained
with the Southern African Large Telescope (SALT).

On the other side, H(z) can also be extracted from the
detection of radial BAO features. Gaztañaga et al. [37] first
obtained two H(z) data points using the BAO peak position
as a standard ruler in the radial direction. Blake et al. [38]
further combined the measurements of BAO peaks and the
Alcock–Paczynski distortion to find three other H(z) results.
Samushia et al. [39] provided a H(z) point at z = 0.57 from
the BOSS DR9 CMASS sample. Xu et al. [40] used the BAO
signals from the SDSS DR7 luminous red galaxy sample to
derive another observational H(z) measurement. The H(z)
value determined based upon BAO features in the Lyman-α

forest of SDSS-III quasars were presented by Delubac et al.
[41] and Font-Ribera et al. [42], which are the farthest pre-
cisely observed H(z) results so far. Alam et al. [43] obtained
three H(z) measurements with cosmological analysis of the
DR12 galaxy sample.

Moreover, Liu et al. [27] present a new method of measur-
ing Hubble parameter by using the anisotropy of luminosity
distance, and the analysis of gravitational wave of neutron
star binary system.

After evaluating these data points from [44,45], we com-
bine these 43 OHD and present them in Table 1 and mark
them in Fig. 1. Note that it is obvious that the cosmic
chronometer method is completely model-independent, and
one may misjudge the radial BAO method to be dependent
of model since they involve in some fiducial ΛCDM models.
However, in fact, the fiducial models cannot affect the results
as mentioned in the references (e.g., see P. 5 of Alam et al.
[43]). Moreover, the three H(z) measurements taken from
Blake et al. [38] are correlated with each other, and also, the
three measurements of Alam et al. [43] are correlated. This
fact will affect the choice of binning range afterwards.

We use a ΛCDM model with no curvature term to compare
theoretical values of Hubble parameter with the OHD results,
with the Hubble parameter given by

H(z) = H0

√
Ωm(1 + z)3 + 1 − Ωm, (3)

where cosmological parameters take values from the Planck
temperature power spectrum measurements [9]. The best fit
value of H0 is 67.81 km s−1 Mpc−1, and Ωm is 0.308. The
theoretical computation of H(z) based upon this ΛCDM is
also shown in Fig. 1.

Being independent observational data, H(z) determina-
tions have been frequently used in cosmological research.
One of the leading purposes is using them to constrain DE.
Jimenez and Loeb [28] first proposed that H(z) measure-
ments can be used to constrain DE EoS at high redshifts.
Simon et al. [30] derived constraints on DE potential using
H(z) results and supernova data. Samushia and Ratra [46]
began applying these measurements to constraining cosmo-
logical parameters in various DE models. In the meanwhile,
DE evolution came into its own as an active research field in
the last twenty years [47–51]. To sum up, the OHD are proved
to be very promising towards understanding the nature of DE.

In the next section, we will bin the OHD in Table 1 by
using two binning techniques.

3 Binning OHD

As stated by Farooq et al. [45,52], there are two techniques:
the weighted mean and median statistics, which can be used
to bin Hubble parameter measurements. In [45], they listed
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Table 1 The current available
OHD dataset. Where I and II
represent the cosmic
chronometer and the radial BAO
size method, respectively, and
H(z) is in units of
km s−1 Mpc−1 here

z H(z) Method References

0.0708 69.0 ± 19.68 I Zhang et al. (2014) [33]

0.09 69.0 ± 12.0 I Jimenez et al. (2003) [29]

0.12 68.6 ± 26.2 I Zhang et al. (2014) [33]

0.17 83.0 ± 8.0 I Simon et al. (2005) [30]

0.179 75.0 ± 4.0 I Moresco et al. (2012) [32]

0.199 75.0 ± 5.0 I Moresco et al. (2012) [32]

0.2 72.9 ± 29.6 I Zhang et al. (2014) [33]

0.240 79.69 ± 2.65 II Gaztañaga et al. (2009) [37]

0.27 77.0 ± 14.0 I Simon et al. (2005) [30]

0.28 88.8 ± 36.6 I Zhang et al. (2014) [33]

0.35 84.4 ± 7.0 II Xu et al. (2013) [40]

0.352 83.0 ± 14.0 I Moresco et al. (2012) [32]

0.38 81.5 ± 1.9 II Alam et al. (2016) [43]

0.3802 83.0 ± 13.5 I Moresco et al. (2016) [35]

0.4 95 ± 17.0 I Simon et al. (2005) [30]

0.4004 77.0 ± 10.2 I Moresco et al. (2016) [35]

0.4247 87.1 ± 11.2 I Moresco et al. (2016) [35]

0.43 86.45 ± 3.68 II Gaztañaga et al. (2009) [37]

0.44 82.6 ± 7.8 II Blake et al. (2012) [38]

0.4497 92.8 ± 12.9 I Moresco et al. (2016) [35]

0.47 89 ± 67 I Ratsimbazafy et al. (2017) [36]

0.4783 80.9 ± 9.0 I Moresco et al. (2016) [35]

0.48 97.0 ± 62.0 I Stern et al. (2010) [31]

0.51 90.4 ± 1.9 II Alam et al. (2016) [43]

0.57 92.4 ± 4.5 II Samushia et al. (2013) [39]

0.593 104.0 ± 13.0 I Moresco et al. (2012) [32]

0.6 87.9 ± 6.1 II Blake et al. (2012) [38]

0.61 97.3 ± 2.1 II Alam et al. (2016) [43]

0.68 92.0 ± 8.0 I Moresco et al. (2012) [32]

0.73 97.3 ± 7.0 II Blake et al. (2012) [38]

0.781 105.0 ± 12.0 I Moresco et al. (2012) [32]

0.875 125.0 ± 17.0 I Moresco et al. (2012) [32]

0.88 90.0 ± 40.0 I Stern et al. (2010) [31]

0.9 117.0 ± 23.0 I Simon et al. (2005) [30]

1.037 154.0 ± 20.0 I Moresco et al. (2012) [32]

1.3 168.0 ± 17.0 I Simon et al. (2005) [30]

1.363 160.0 ± 33.6 I Moresco (2015) [34]

1.43 177.0 ± 18.0 I Simon et al. (2005) [30]

1.53 140.0 ± 14.0 I Simon et al. (2005) [30]

1.75 202.0 ± 40.0 I Simon et al. (2005) [30]

1.965 186.5 ± 50.4 I Moresco (2015) [34]

2.34 222.0 ± 7.0 II Delubac et al. (2015) [41]

2.36 226.0 ± 8.0 II FontRibera et al. (2014) [42]
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Fig. 1 The full OHD set and theoretical curve of standard flat ΛCDM
model. The OHD are represented by gray points along with the uncer-
tainties. The red curve shows theoretical H(z) evolution based upon the
adopted ΛCDM model which is described in Sect. 2

two reasons to compute “average” H(z) values for bins in
redshift space. On the one hand, the weighted mean tech-
nique can indicate whether the original data have error bars
inconsistent with Gaussianity. On the other hand, the binned
data can more clearly visually illustrate tendencies as a func-
tion of redshift, without the assumption of a particular cos-
mological model.

As for the weighted mean technique, the ideal choice
should be a trade-off between bin size and number of mea-
surements per bin that maximizes both quantities. In order to
avoid correlations at one bin, we choose 3–4, 4–5, 5–6, and
5–6–7 measurements per bin, which separates the correlated
data, and the last four measurements are binned by twos for
all the cases.

According to Podariu et al. [53], the weighted mean of
H(z) is given by

H(z) =
∑N

i=1

(
H(zi )/σ 2

i

)

∑N
i=1 1/σ 2

i

, (4)

where H(zi ) and σi stand for the Hubble parameter data and
the standard deviation for i = 1, 2, . . . , N measurements
in the binning redshift range. Similarly, the corresponding
weighted bin redshift z and weighted error σ are as follows,

z =
∑N

i=1

(
zi/σ 2

i

)

∑N
i=1 1/σ 2

i

, (5)

and

σ =
√

1
∑N

i=1 1/σ 2
i

. (6)

The goodness of fit for each bin, the reduced χ2
ν , can be

expressed as

χ2
ν = 1

N − 1

N∑

i=1

(
H(zi ) − H(z)

)2

σ 2
i

, (7)

where the expected value and error of χν are unity and
1/

√
2(N − 1). Thus the number of standard deviations

which χν deviates from unity for each bin is presented as

Nσ = |χν − 1|√2(N − 1). (8)

Non-Gaussian measurements, the presence of unaccounted
for systematic errors, or correlations between measurements
can result in large Nσ . The weighted mean results for the
binned H(z) measurements are listed in Table 2, where the
Nσ values are considerably small for all bins, just like results
of Farooq et al. [45], hence indicating that the 43 OHD are
not inconsistent with Gaussianity.

Since the median statistics technique originally proposed
by Gott et al. [54] has a prerequisite which assumes that mea-
surements of a given quantity are independent and that there
are no systematic effects, and as previously mentioned the
correlative measurements of OHD from Blake et al. [38] and
Alam et al. [43] may contaminate the results, we decide to
remove these data for the sake of purity. While other mea-
surements are all uncorrelated and independent with each
other, they are more sustainable for evaluation and free of
negative influence on the binning results. Table 3 displays
the results from median statistics technique. After assuming
that there is no overall systematic error in the reduced OHD
as a whole and all the remaining measurements are indepen-
dent, it is convenient to use the median statistics to combine
the OHD. As the number of the measurements increases and
approaches to infinity, the median can be presented as a true
value, therefore, this technique has the merits of reducing the
effect of outliers of a set of measurements on the estimate of
a true median value. Nevertheless, although OHD are a bit
of short in quantity as opposed to the large amount of mea-
surements needed to reveal the true value, we still employ
this technique for comparison purpose. If N measurements
Mi (where i = 1, 2, . . . , N ) are considered, the probability
of finding the true median between values Mi and Mi+1 is
[54]

Pi = 2−N N !
i !(N − i)! , (9)

where N ! represents the factorial of N . After applying this
technique to the reduced 37 OHD for binning, we obtain the
binned results as listed in Table 3, applying the same binning
scheme presented above. The results seem reasonable, but
the precision is less than the weighted mean results, which
may be caused by the smaller amount of OHD.
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Table 2 Weighted Mean
Results for 43 Redshift
Measurements, where the unit
of H(z) is km s−1 Mpc−1

Bin N z H(z) H(z) (1σ Range) H(z) (2σ Range) Nσ

3 or 4 Measurements per bin

1 3 0.0895 68.9 59.4–78.5 49.9–88.0 1.98

2 4 0.1847 76.0 73.1–78.9 70.2–81.8 1.12

3 3 0.2412 79.6 77.0–82.2 74.4–84.8 1.56

4 4 0.3776 81.7 79.9–83.5 78.1–85.3 1.85

5 3 0.4095 83.8 76.9–90.7 70.0–97.6 0.61

6 3 0.4329 86.2 83.0–89.4 79.8–92.6 1.02

7 4 0.5086 90.0 88.1–91.9 86.2–93.8 0.98

8 4 0.6024 95.8 94.0–97.6 92.2–99.4 0.06

9 3 0.7201 96.6 91.8–101.4 87.0–106.2 0.71

10 4 0.9287 129.2 118.3–140.1 107.4–151.0 0.07

11 4 1.4301 158.3 149.4–167.2 140.5–176.1 0.05

12 2 1.8331 196.0 164.7–227.3 133.4–258.6 1.07

13 2 2.3487 223.7 218.4–229.0 213.1–234.3 0.88

4 or 5 Measurements per bin

1 5 0.1664 75.7 72.4–79.0 69.1–82.3 1.18

2 5 0.2321 78.6 76.3–80.9 74.0–83.2 1.55

3 4 0.3776 81.7 79.9–83.5 78.1–85.3 1.85

4 5 0.4276 85.4 82.4–88.4 79.4–91.4 1.26

5 5 0.5074 90.1 88.3–91.9 86.5–93.7 1.33

6 5 0.6061 95.6 93.8–97.4 92.0–99.2 0.23

7 5 0.7681 102.8 97.3–108.3 91.8–113.8 0.45

8 5 1.3647 157.5 149.3–165.7 141.1–173.9 0.32

9 2 1.8331 196.0 164.7–227.3 133.4–258.6 1.07

10 2 2.3487 223.7 218.4–229.0 213.1–234.3 0.88

5 or 6 Measurements per bin

1 5 0.1664 75.7 72.4–79.0 69.1–82.3 1.18

2 5 0.2321 78.6 76.3–80.9 74.0–83.2 1.55

3 6 0.3785 81.7 80.0–83.5 78.2–85.3 1.75

4 6 0.4276 85.7 82.8–88.6 79.9–91.5 1.89

5 5 0.5263 90.7 89.0–92.4 87.3–94.1 1.13

6 6 0.6312 97.5 95.6–99.4 93.7–101.3 0.51

7 6 1.3128 153.0 145.3–160.7 137.6–168.4 0.28

8 2 1.8331 196.0 164.7–227.3 133.4–258.6 1.07

9 2 2.3487 223.7 218.4–229.0 213.1–234.3 0.88

5, 6 or 7 Measurements per bin

1 7 0.1767 75.4 72.6–78.2 69.8–81.0 1.80

2 7 0.3333 81.1 79.6–82.6 78.1–84.1 2.27

3 7 0.4288 85.8 82.9–88.7 80.0–91.6 1.71

4 6 0.5247 90.4 88.8–92.0 87.1–93.7 0.89

5 7 0.6331 97.7 95.8–99.6 93.9–101.5 0.55

6 5 1.3647 157.5 149.3–165.7 141.1–173.9 0.32

7 2 1.8331 196.0 164.7–227.3 133.4–258.6 1.07

8 2 2.3487 223.7 218.4–229.0 213.1–234.3 0.88
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Table 3 Median statistics
results for 37 reduced Redshift
measurements, where the unit of
H(z) is km s−1 Mpc−1

Bin N z H(z) H(z) (1σ Range) H(z) (2σ Range)

3 or 4 Measurements per bin

1 3 0.09 69.0 49.3–88.7 29.6–108.4

2 4 0.189 75.0 68.5–81.5 62.0–88.0

3 3 0.27 79.7 65.7–93.7 51.7–107.7

4 3 0.352 83.0 69.5–96.5 56–110.0

5 4 0.4125 86.8 76.1–97.5 65.4–108.2

6 4 0.474 90.9 53.5–128.4 16.0–165.8

7 4 0.6365 98.2 88.2–108.2 78.2–118.2

8 4 0.89 121.0 99.5–142.5 78.0–164.0

9 4 1.3965 164.0 146.5–181.5 129.0–199.0

10 4 2.1525 212.0 188.0–236.0 164.0–260.0

4 or 5 Measurements per bin

1 5 0.12 69.0 57.0–81.0 45.0–93.0

2 5 0.24 77.0 63.0–91.0 49.0–105.0

3 5 0.3802 83.0 69.5–96.5 56.0–110.0

4 5 0.4497 87.1 75.9–98.3 64.7–109.5

5 5 0.593 97.0 85.0–109.0 73.0–121.0

6 4 0.89 121.0 99.5–142.5 78.0–164.0

7 4 1.3965 164.0 146.5–181.5 129.0–199.0

8 4 2.1525 212.0 188.0–236.0 164.0–260.0

4, 5 or 6 Measurements per bin

1 5 0.12 69.0 57.0–81.0 45.0–93.0

2 5 0.24 77.0 63.0–91.0 49.0–105.0

3 5 0.3802 83.0 69.5–96.5 56.0–110.0

4 6 0.4598 88.1 76.0–100.2 63.9–112.3

5 6 0.7305 98.2 85.7–110.7 73.2–123.2

6 6 1.3315 157.0 138.0–176.0 119.0–195.0

7 4 2.1525 212.0 188.0–236.0 164.0–260.0

4, 6 or 7 Measurements per bin

1 7 0.17 72.9 60.9–84.9 48.9–96.9

2 6 0.315 83.0 69.3–96.8 55.5–110.5

3 7 0.43 87.1 75.9–98.3 64.7–109.5

4 7 0.68 97.0 84.0–110.0 71.0–123.0

5 6 1.3315 157.0 138.0–176.0 119.0–195.0

6 4 2.1525 212.0 188.0–236.0 164.0–260.0

Even though the OHD obtained from the BAO method
are model-independent, one can still be confused by the
employed fiducial models. Therefore, to avoid the confusion
and also for comparison purpose, we decide to exclude the
OHD from the BAO method and only consider the cosmic
chronometer case, which also have the merit of being inde-
pendent with each other. Tables 4 and 5 present the results
from both binning methods. The results are all reasonable as
well, and compared to the full binned OHD, the discrepan-
cies are considerably small, which can be seen as evidence
of the validity of the OHD derived from the BAO method.

Since the different measurements per bin do not significantly
affect the results, we can acknowledge the robustness of the
binning methods.

4 Testing the ΛCDM model with Omh2(z2; z1)
diagnostic

In our analysis, the validity of Omh2(z2; z1) diagnostic can
be tested using H(z) results from cosmological independent
measurements. On the basis of the above section, we apply
binned OHD from both the weighted mean technique and the
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Table 4 Weighted mean results
for cosmic chronometer
measurements, where the unit of
H(z) is km s−1 Mpc−1

Bin N z H(z) H(z) (1σ Range) H(z) (2σ Range) Nσ

3 or 4 Measurements per bin

1 3 0.0895 68.9 59.4–78.5 49.9–88.0 1.98

2 4 0.1847 76.0 73.1–78.9 70.2–81.8 1.12

3 3 0.3089 80.6 71.0–91.2 61.5–99.7 1.46

4 4 0.4035 83.6 77.5–89.7 71.3–95.9 1.06

5 4 0.4691 85.0 77.7–92.3 70.4–99.6 1.34

6 3 0.6866 97.7 91.7–103.6 85.8–109.5 0.51

7 3 0.8834 118.8 105.9–131.7 93.0–144.6 0.85

8 4 1.2798 166.6 156.6–176.6 146.6–186.6 1.20

9 3 1.58 149.3 136.5–162.1 123.7–174.9 0.33

3, 4 or 5 Measurements per bin

1 5 0.1664 75.7 72.4–79.0 69.1–82.3 1.18

2 5 0.2221 76.1 71.7–80.5 67.3–84.9 1.90

3 5 0.412 85.3 79.8–90.8 74.2–96.4 1.17

4 5 0.5897 90.1 84.7–85.5 79.3–100.9 0.70

5 4 0.5074 111.4 102.6–120.2 93.8–129 0.86

8 4 1.2798 166.6 156.6–176.6 146.6–186.6 1.20

9 3 1.58 149.3 136.5–162.1 123.7–174.9 0.33

5 or 6 Measurements per bin

1 5 0.1664 75.7 72.4–79.0 69.1–82.3 1.18

2 5 0.2221 76.1 71.7–80.5 67.3–84.9 1.90

3 5 0.412 85.3 79.8–90.8 74.2–96.4 1.17

4 5 0.5897 90.1 84.7–85.5 79.3–100.9 0.70

5 5 0.8622 118.3 110.2–126.4 102.2–134.4 0.36

6 6 0.6312 161.1 152.5–169.7 143.9–178.3 0.16

median statistics technique to the two-point Omh2(z2; z1)

diagnostic.
If Om(z2; z1) is always a constant at any redshifts, then

it demonstrates that the DE is of the cosmological constant
nature. In order to compare directly with the results from
CMB, Sahni et al. [55] introduced a more convenient expres-
sion of the two-point diagnostic, i.e.,

Omh2(z2; z1) = h2(z2) − h2(z1)

(1 + z2)3 − (1 + z1)3 , (10)

where h(z) = H(z)/100 km s−1 Mpc−1. The binned H(z)
points calculated based upon the aforementioned binning
methods in each case therefore yield N (N − 1)/2 model-
independent measurements of the Omh2(z2; z1) diagnostic,
as shown in Figs. 2, 3, 4, 5, 6, 7, where the uncertainty
σOmh2(z2;z1)

can be expressed as follows,

σ 2
Omh2(z2;z1)

=
4

(
h2(z2)σ

2
h(z2)

+ h2(z1)σ
2
h(z1)

)

(
(1 + z2)3 − (1 + z1)3

)2 . (11)

For ΛCDM, we have Omh2 ≡ Ωmh2. The value of
Ωmh2 is constrained tightly by the Planck observations to

be centered around 0.14 for the base of ΛCDM model fit
[9]: the Planck temperature power spectrum data alone gives
0.1426 ± 0.0020, the Planck temperature data with lensing
reconstruction gives 0.1415 ± 0.0019, and the Planck tem-
perature data with lensing and external data gives 0.1413 ±
0.0011, all at 1σ confidence level (CL). As stated in [9], we
conservatively select 0.1415 ± 0.0019 as the Planck value.
If the ΛCDM model can hold, we would expect a constant
value of Omh2 at any redshift intervals. Sahni et al. [55] com-
pared their results with the Planck value to check the validity
of the ΛCDM model. From our perspective, we should not
follow their goals to test the tension between our results and
the Planck value. Instead, we should first consider whether
the values of Omh2 are constant or not. Here we only use
the Planck value for comparison purpose.

As shown in Fig. 2, the results from the weighted mean
cases, within 1σ confidence interval, are mostly continu-
ous with both being constant (on average) and the Planck
value, although some exceptions are presented and the best-
fit Omh2(Δz) values fluctuate. Also, as shown in Fig. 3,
the results from the median statistic cases are all continu-
ous with both being constant and the Planck value within
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Table 5 Median statistics results for cosmic chronometer measure-
ments, where the unit of H(z) is km s−1 Mpc−1

Bin N z H(z) H(z) (1σ Range) H(z) (2σ Range)

3 or 4 Measurements per bin

1 3 0.09 69.0 49.3–88.7 29.6–108.4

2 4 0.189 75.0 68.5–81.5 62.0–88.0

3 3 0.28 83.0 69.0–97.0 55.0–111.0

4 4 0.4002 85.1 72.7–97.4 60.4–109.8

5 4 0.4741 90.9 53.5–128.4 16.0–165.8

6 3 0.68 104.0 92.0–116.0 80.0–128.0

7 3 0.88 117.0 94.0–140.0 71.0–163.0

8 4 1.3315 164.0 145.0–183.0 126.0–202.0

9 3 1.75 186.5 146.5–226.5 106.5–266.5

3, 4 or 5 Measurements per bin

1 5 0.12 69.0 57.0–81.0 45.0–93.0

2 5 0.27 77.0 63.0–91.0 49.0–105.0

3 5 0.4004 87.1 74.2–100.0 61.3–112.9

4 5 0.48 92.0 79.0–105.0 66.0–118.0

5 4 0.8775 111.0 91.0–131.0 71.0–151.0

6 4 1.3315 164.0 145.0–183.0 126.0–202.0

7 3 1.75 172.5 146.5–226.5 106.5–266.5

5 or 6 Measurements per bin

1 5 0.12 69.0 57.0–81.0 45.0–93.0

2 5 0.27 77.0 63.0–91.0 49.0–105.0

3 5 0.4004 87.1 74.2–100.0 61.3–112.9

4 5 0.48 92.0 79.0–105.0 66.0–118.0

5 5 0.88 117.0 97.0–137.0 77.0–157.0

6 6 1.48 172.5 146.7–198.3 120.9–224.1

1σ confidence interval. Note that these results are not con-
tinuous redshift intervals, it only shows the differences for
different Δz. Therefore, it would be useful if we plot the
continuous results alone to extrapolate the outcomes. Then
we illustrate these results with the binned OHD from both
binning methods in Fig. 4, which shows that the values of
Omh2 for both binning methods fluctuate as the continuous
redshift intervals change. The difference between the results
from the weighted mean binning data and results from mean
statistics is that the fluctuations from the former situation
are more intense which makes the tendency more distinct
from the first four panels of Fig. 4. Thus, it is fair to come
up with the conclusion that the validity of ΛCDM is pre-
served.

Also, after binning the OHD from the cosmic chronome-
ter method, the corresponding Omh2 results with both bin-
ning techniques are demonstrated in Figs. 5, 6, 7. It is evi-
dent that the fluctuations of the best-fit Omh2 values are

more intense than the results from full binned OHD for both
binning methods. However, on average, the results are con-
stant at 1σ region. Hence, due to the two-point Omh2(z2; z1)

diagnostic combined with binned OHD results, the ΛCDM
model is favored. However, we note that the error bars of
these results are much bigger than the Planck result, there-
fore we can only conclude that the flat ΛCDM model cannot
be ruled out.

5 Conclusions and discussions

In this paper, motivated by the investigations on the nature
of DE, we test the validity of ΛCDM with the two-point
Omh2(z2; z1) diagnostic by using 43 observational H(z)
data (OHD) which are obtained from the cosmic chronome-
ters and BAO methods.

Firstly, instead of direct employment of the OHD on
the Omh2(z2; z1) diagnostic, we introduce the two binning
methods: the weighted mean and median statistics to reduce
the noise in the data. After binning OHD, we conclude that
the original OHD are not inconsistent with Gaussianity, and
the binned data are all reasonable as Tables 2 and 3 dis-
played. The OHD derived from the BAO method are not gen-
erally considered to be completely model-independent, even
though as mentioned above the fiducial models indeed can-
not affect the results (e.g., see Alam et al. [43], p. 5), which
means the data are model-independent after all. Neverthe-
less, due to the trust issue raised by some scientists, we also
apply the binning method to the OHD derived from the cos-
mic chronometer method alone as listed in Tables 4 and 5 for
comparison. The results all seem reasonable and, compared
to the full binned OHD, the discrepancies are considerably
small, which can be the indirect evidence for the validity of
the OHD derived from the BAO method. Since the different
measurements per bin do not significantly affect the results,
we can acknowledge the robustness of the binning methods.

Secondly, combined with the set of binned OHD and, we
exploit the Omh2(z2; z1) diagnostic to test if the Omh2 val-
ues are constant. From Figs. 2, 3, 4, 5, 6, 7, we find that
on average the Omh2 values are mostly constant at 1 σ

confidence interval. Therefore, the flat ΛCDM model is not
invalid. However, this does not mean that the dynamical DE
models are not worth considering.

It is worth noticing that more independent OHD would
bring more accuracy toward the binning methods, which can
result in more reliable Omh2(z2; z1) values. Also, as the
number of OHD grows, the binned OHD would be more effi-
cient as a data clarification instrument that can be employed
on cosmological constraints. OHD with higher precision and
larger amounts are needed and valuable.
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Fig. 2 Binned H(z) data based on full OHD and its corresponding
Omh2 diagnostic values for the weighted mean technique. The pan-
els a–d present the 3–4, 4–5, 5–6 and 5–6–7 measurements per bin

case, respectively, where the red lines and grey shaded regions in the
right panels represent the best-fit value of Omh2 and its uncertainties
retrieved from the Planck CMB data
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Fig. 3 37 reduced OHD associated with binned data and its corre-
sponding Omh2 diagnostic values for the median statistics technique.
The panels a–d present the 3–4, 4–5, 4–5–6 and 4–6–7 measurements

per bin case, respectively, where the red lines in the right panels repre-
sent the best-fit value of Omh2 retrieved from the Planck CMB data
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Fig. 4 Omh2 diagnostic values for both the weighted mean and
median statistics techniques with respect to continuous redshifts. The
panels a–d present the weighted mean 3–4, 4–5, 5–6, and 5–6–7 mea-
surements per bin, respectively. The panels e–h present the median

statistics 3–4, 4–5, 4–5–6 and 4–6–7 measurements per bin case, respec-
tively, where the red lines represent the best-fit value of Omh2 retrieved
from the Planck CMB data
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Fig. 5 OHD from the cosmic chronometer method associated with
binned data and its corresponding Omh2 diagnostic values for the
weighted mean technique. The panels a–c present the 3–4, 3–4–5 and

5–6 measurements per bin case, respectively, where the red lines in the
right panels represent the best-fit value of Omh2 retrieved from the
Planck CMB data
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Fig. 6 Same as Fig. 5, but for the median statistics technique
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Fig. 7 Same as Fig. 4, but for OHD from the cosmic chronometer
method. The panels a–c present the weighted mean 3–4, 3–4–5, and
5–6 measurements per bin, respectively, and the panels d–f present the

median statistics 3–4, 3–4–5, 5–6 measurements per bin, respectively,
where the red lines in the panels represent the best-fit value of Omh2

retrieved from the Planck CMB data
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