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Abstract Ultraviolet self-interaction energies in field the-
ory sometimes contain meaningful physical quantities. The
self-energies in such as classical electrodynamics are usu-
ally subtracted from the rest mass. For the consistent treat-
ment of energies as sources of curvature in the Einstein
field equations, this study includes these subtracted self-
energies into vacuum energy expressed by the constant
Lambda (used in such as Lambda-CDM). In this study, the
self-energies in electrodynamics and macroscopic classical
Einstein field equations are examined, using the formalisms
with the ultraviolet cut-off scheme. One of the cut-off for-
malisms is the field theory in terms of the step-function-
type basis functions, developed by the present authors.
The other is a continuum theory of a fundamental parti-
cle with the same cut-off length. Based on the effectiveness
of the continuum theory with the cut-off length shown in
the examination, the dominant self-energy is the quadratic
term of the Higgs field at a quantum level (classical self-
energies are reduced to logarithmic forms by quantum cor-
rections). The cut-off length is then determined to repro-
duce today’s tiny value of Lambda for vacuum energy. Addi-
tionally, a field with nonperiodic vanishing boundary con-
ditions is treated, showing that the field has no zero-point
energy.

1 Introduction

Self-interaction energies in field theory, which contain ultra-
violet divergences in continuum theory, sometimes reveal
meaningful properties in physics [1–8]. In our previous paper
[9–12], we formulated a field theory in terms of the step-
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function-type basis functions (SFT field theory), which is
based on the finite element theory [9,12–14] (the formula-
tion is rather different from that by Bender et al.), and cuts
off high-frequency oscillations of wave functions at short
distances. Owing to the space-time continuum and differ-
entiable step-function-type basis functions, this formalism
is Poincaré covariant and removes ultraviolet divergences at
short distances. The advantage of our formalism is the avail-
ability to perform self-energy evaluation. (We note that the
conventional finite element method is widely used [13]. The
validity of theories is of course justified solely by the cor-
rectness of the logical deduction. The support based only on
the fact, where an article was published, is insufficient for
the true justification of the theory. The assessment of the the-
ory is beyond the range of the work by the authors.) The
meaningful self-energy appears in the Lamb shift [1], which
is caused by finite parts of the self-energy in higher-order
terms, and the divergent parts are subtracted from the rest
mass. In contrast, the self-energy also appears in the φ3 model
(the mass is sometimes not renormalized when the mass is a
value in vacuum without containing additional interactions).
In our previous paper [12], we derived excited states such as
meta-stable states at stationary states, which are not always
orthogonal to the ground state.

In the Einstein field equations [15,16], the rest energy
works as a source of the curvature. The mass renormalization
in such as electrodynamics subtracts self-energies, which can
be finite using the cut-off scheme. It is then expected that the
self-energies are involved in the Einstein field equations.

In our formalism, four-dimensional space-time is divided
into many hyper-octahedrons, whose shape are arbitrary and
have the size Δ (cut-off length) in four-dimensional space-
time. For simplicity, we consider three-dimensional space
and divide the region into many cubes. The classical wave
function φ(x, y, z) is expressed in terms of the step-function-
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type basis functions Ω̃3
p(x, y, z) in three-dimensional space

[the step-function-type basis function in one dimension is
defined by Eq. (19)]

φ(x, y, z) =
∑

p

φpΩ̃
3
p(x, y, z), (1)

where the basis function takes a value of 1 in a cube (each
cubic region is identified by index p) and vanishes outside
the cube. The coefficient φp is a constant within the cubic
region identified by the index p.

Motivated by the above expectation, this paper is aimed
at presenting a formulation to include the subtracted self-
energies into vacuum energy with the constant Λ (cosmolog-
ical constant) [16–32] of the macroscopic classical Einstein
field equations. The self-energy in classical electrodynamics
is calculated by the continuum theory with a finite cut-off
length. The self-energy is also derived using the field the-
ory in terms of the step-function-type basis functions, which
was developed by the present authors, and the result is com-
pared with that calculated by the continuum theory. We also
examine the curvature (gravitational) self-energy of the fun-
damental particle with the energy of a rest mass. Considering
the examinations that the self-energies derived in terms of
the step-function-type basis functions and that by the con-
tinuum theory with the same cut-off length are not so dif-
ferent, the classical self-energies are reduced to the logarith-
mic forms. However, the self-energy of the Higgs boson has
the larger quadratic form. The derived self-energy is sub-
tracted and involved in the repulsive vacuum energy with
the constant Λ. Under a classical gravitational field, whose
strength is small for scales larger than the Planck scale, we
consider the contribution from the self-energy of a Higgs
boson to vacuum energy. The cut-off length is then deter-
mined to reproduce the observed vacuum energy constant Λ.
This theoretical vacuum energy constant Λ has today’s tiny
value.

This paper is organized as follows: Section 2 presents
the formalism and analysis procedure. We exhibit a formal-
ism for the subtraction of the self-energy by including the
energy into vacuum energy constant Λ (cosmological con-
stant). Subsequently, the field theory in terms of the step-
function-type basis functions is described to derive finite
self-energies. Section 3 examines the self-energy in clas-
sical electrodynamics and from the macroscopic classical
Einstein field equations. The self-energies are calculated
by the continuum theory and the field theory in terms of
the step-function-type basis functions. Section 4 describes
the relationship between the subtracted self-energies and
the vacuum energy constant Λ, and we derive the cut-
off length to reproduce vacuum energy with the constant
Λ, followed by Sect. 5, which summarizes the conclu-
sions.

2 Formalism for self-energies and the field theory in
terms of the step-function-type basis functions

2.1 Formalism for the subtraction of the self-energy by
involving the energy into vacuum energy constant Λ

In this subsection, we present the formalism for the inclu-
sion of subtracted self-energies produced by interactions (in
such as electrodynamics) into vacuum energy constant Λ.
Throughout this paper, the notation x0 = ct (c is the velocity
of light) is the time coordinate, and the xi are space coordi-
nates, where x1 = x , x2 = y and x3 = z. The infinitesimal
squared distance (according to the notation by Bjorken and
Drell [33]) is denoted

(ds)2 = gμνdxμdxν, (2)

where gμν is the metric tensor and the indices run over 0, 1,
2 and 3. We use the summation conventions such as

gμνdxν = gμ0dx0 + gμ1dx1 + gμ2dx2 + gμ3dx3, (3)

for Greek indices and

gμidx
i = gμ1dx1 + gμ2dx2 + gμ3dx3, (4)

for Latin indices. The metric tensor of gμν in a flat Minkowski
space is given by

gμν =

⎡

⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥⎥⎦ . (5)

The action functional Sg for the gravity is expressed by

Sg =
∫

Lg
√−gdV 4, (6)

where g is the determinant of gμν , g = det(gμν), and dV 4 =
dx0dx1dx2dx3. For the gravity,

Lg = −c3

16πG
R, (7)

where G is the gravitational constant and R is the scalar
curvature written by

R = gμνRμν, (8)

with Rμν being defined by

Rμν = Rρ
μρν, (9)

using the Riemann curvature tensor Rρ
μρν . The tensor Rρ

μρν

is expressed in terms of the Christoffel symbol Γ λ
μν as

Rρ
μρν = ∂Γ

ρ
νσ

∂xμ
− ∂Γ

ρ
μσ

∂xν
+ Γ

ρ
μλΓ

λ
νσ − Γ

ρ
νλΓ

λ
μσ , (10)
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where

Γ λ
μν = 1

2
gλρ

(
∂gρμ

∂xν
+ ∂gρν

∂xμ
+ ∂gμν

∂xρ

)
. (11)

Meanwhile, the action functional of the matter is denoted

Sm = 1

c

∫
Lm

√−gdV 4, (12)

where Lm is the Lagrangian density of the matter, and the
energy-momentum tensor of the matter is obtained from the
relation

1

2

√−gTμν = −
(

∂xρ

∂
√−gLm

∂
∂gμν

∂xρ

− ∂
√−gLm

∂gμν

)
. (13)

The variational calculus with respect to δgμν of the total
action functional,

δSg + δSm

= −c3

16πG

∫ (
Rμν − 1

2
gμν R − 8πG

c4 Tμν

)
δgμν√−gdV 4,

(14)

yields the Einstein field equations,

Rμν − 1

2
gμνR = 8πG

c4 Tμν. (15)

The renormalization of the mass by interactions in such as
electrodynamics subtracts self-energies from the rest mass.
Because the energy of the rest mass produces curvature (grav-
ity), the subtracted energies are included in vacuum energy
with the constant Λ. In the above equation, we then add the
following tensor for the removal of self-energies produced
by interactions (such as in electrodynamics):

T (S)
μν = c4

8πG
gμνΛ

(S), (16)

where Λ(S) is regarded as the vacuum energy constant Λ

(cosmological constant). The Einstein field equations given
by Eq. (15) are rewritten as follows:

Rμν − 1

2
gμνR = 8πG

c4

(
Tμν − T (S)

μν

)
. (17)

We then have

Rμν − 1

2
gμνR + gμνΛ

(S) = 8πG

c4 Tμν, (18)

which corresponds to the Einstein field equations with
vacuum energy constant Λ. Consequently, subtracted self-
energies in the interactions are involved in a vacuum energy
with constant Λ.

2.2 Field theory in terms of the step-function-type basis
functions

In describing physical quantities at short distances, theories
are required to remove ultraviolet divergences. We formu-
lated the field theory [9–12], which is expressed in terms of
the step-function-type basis functions to realize the removal
of the ultraviolet divergences. In this subsection, the formal-
ism is described so as to express the fields in terms of the
step-function-type basis functions in the form used by this
paper. Our described formalism divides four-dimensional
real space-time into hyper-octahedrons with arbitrary shapes
of the boundaries. The hyper-octahedron in real space-time
is mapped from a hypercube with flat boundary surfaces in
a parameter space-time. A basis function defined around a
center of a hypercube takes a value of unity and vanishes
outside the hypercube.

In this paper, the cubic region in three-dimensional space
is approximated by the spherical region for simplicity and
convenience. We calculate fields in spherical coordinates
and divide the spherical symmetric region into shells. The
results can be generalized to the case in which the region is
divided into many hyper-octahedrons with arbitrary shapes.
Grid (lattice) points along the radial r -axis (r = (x2 +
y2 + z2)1/2) are denoted r1, r2, . . . , rk, . . . , rNr+1, with
k = 1, 2, c, . . . , Nr + 1, where Nr is the number of lat-
tice points and k = Nr +1 is the lattice index for a boundary.
We here set the radial cut-off length Δh (corresponding to
the cut-off length Δ with Δ = 2Δh) to the lattice spacing by
Δh = rk −rk−1 and define the notations rk−1/2 = rk −Δh/2
and rk+1/2 = rk +Δh/2. The step-function-type basis func-
tion used is defined by

Ω̃E
k (r) =

{
1 for rk−1/2 ≤ r < rk+1/2,

0 for r < rk−1/2 or r ≥ rk+1/2,
(19)

which has the properties

dΩ̃E
k (r)

dr
|r=rk−1/2 = δ(r − rk−1/2), (20)

dΩ̃E
k (r)

dr
|r=rk+1/2 = −δ(r − rk+1/2), (21)

where δ(r) is the Dirac delta function.
The field φ(r) in spherical coordinates is transformed to

u(r) = rφ(r), (22)

and this wave function u(r) is expressed in terms of basis
functions defined by Eq. (19):

u(r) =
∑

k

ukΩ̃
E
k (r). (23)

Thus, we have prepared the formalism to the analysis of the
self-energies one finds in the next section.
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3 Analysis of self-energies from interactions by classical
fields

3.1 Self-energy and mass renormalization in classical
electrodynamics by the continuum theory

This subsection examines and summarizes the self-energy
in classical electrodynamic interactions using the continuum
theory [15,34–37]. The mass density μm of a fundamental
particle with a mass mE and size RE is denoted

μm = mE

(4π/3)(RE)3 . (24)

We divide three-dimensional (3D) space into identical cubic
elements, which were considered in Sect. 2.2. The cubic
region is approximated by a spherical region with radius R0.
The charge Q and mass M of the spherical region occupied
by the fundamental particle are expressed by

M = (4π/3)(R0)
3μm, Q = (4π/3)(R0)

3ρ(e), (25)

respectively, where ρ(e) is the charge density. A radial cut-
off length Δh = Δ/2 = R0 in spherical coordinates, corre-
sponding to the cut-off length Δ, is introduced for simplicity
and convenience. From the conventional energy-momentum
tensor of electrodynamics, the self-energy of the static elec-
tric field has the form

E (e)
C =

∫
dV 3

(
1

2

)
|E|2, (26)

where dV 3 = dxdydz. The classical electric field E is pro-
duced as div(E) = ρ(e) from the electric charge density ρ(e)

and is written by E = −∇φ(e), where φ(e) is the electric
potential and satisfies

− ∇2φ(e) = ρ(e). (27)

The above self-energy,

E (e)
C = −

∫
dV 3

(
1

2

)
E · ∇φ(e), (28)

becomes, using Gauss’ theorem and integration by parts,

E (e)
C =

∫
dV 3

(
1

2

)
ρ(e)φ(e). (29)

We consider the case, in which the charges exist in the
region r ≤ R0 and ρ(e) = 0 for r > R0 using Q in Eq.
(25). Gauss’ theorem for Eq. (27) then gives the following
potential:

φ(e)(r) = Q

4πr
for r > R0. (30)

Similarly, for r ≤ R0, we have

4πr2

(
−φ(e)(r)

dr

)
= 4πr3

3
ρ(e), (31)

yielding

− φ(e)(r)

dr
= 1

3
rρ(e) (32)

followed by

φ(e)(r) =
∫

dr ′
(

−φ(e)(r ′)
dr ′

)
= 1

6
r2ρ(e) for r ≤ R0.

(33)

To connect φ(e)(r) for r ≤ R0 in Eq. (33) continuously with
that in Eq. (30) for r > R0 at r = R0, we shift φ(e)(r) in Eq.
(33) to

φ(e)(r) = 1

6
r2ρ(e) − 1

6
R2

0ρ(e) + Q

4πR0
for r ≤ R0.

(34)

Using Eqs. (29), (34) and Q in Eq. (25), we obtain the self-
energy by the classical electric interaction in the continuum
theory:

E (e)
C = 1

2

∫ R0

0
dr(4π)r2ρ(e)φ(e)(r)

= 1

2

(
4π

6
ρ(e) R

5
0

5
ρ(e) − 1

6
R2

0Qρ(e) + QQ

4πR0

)

= 1

2

(
3

10

QQ

4πR0
− 1

2

QQ

4πR0
+ QQ

4πR0

)

= 1

2

(
4

5

QQ

4πR0

)
. (35)

Under an external force fe, the classical Newtonian equa-
tion of motion for the above charged object, with a small
velocity vC compared to the speed of light c, is expressed by
(small magnetic contributions are dropped) [34–37]

M
dvC

dt
= fe +

∫
dV 3(ρ

(e)E), (36)

where M is the mass of the charged object in Eq. (24). Using
the self-energy in Eq. (29), the lower-order terms expanded
with respect to 1/c amounts to

M
dvC

dt
= fe − 4

3c2 E
(e)
C

dvC

dt
, (37)

which results in
(
M + 4

3c2 E
(e)
C

)
dvC

dt
= fe. (38)

(The relativistic version was given by Dirac and Rohrlich,
where the factor 1 appears corresponding to the above factor
4/3 [34–37].) Due to the requirement from the continuum
relativistic theory, the fundamental particle is considered to
be pointlike. Then the above self-energy diverges, which is
why mass renormalization is required in electrodynamics. In
mass renormalization, the self-energy is subtracted from the
term with the mass.
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3.2 Self-energy derivation for classical electrodynamics
using the field theory in terms of the step-function-type
basis functions

In contrast to the analysis of Sect. 3.1, this subsection studies
the self-energy of the same object in Sect. 3.1 in classical
electrodynamic equations, using the step-function-type basis
functions. As mentioned in Sect. 2.2 and by Eqs. (24)–(25),
we divide three-dimensional space into cubic elements with
the cut-off length Δ, and each cubic region is approximated
by a sphere. The action functional for the electric field φ(e)(r)
can be written in the form [considering the form −∇2φ(e) −
ρ(e) = 0 on the left in Eq. (27)]

S(e)
f = −1

2

∫
dxdydz

×
[
φ(e)(x, y, z)

(
∂2

∂2x
+ ∂2

∂2y
+ ∂2

∂2z

)
φ(e)(x, y, z)

]

= −1

2

∫
dr(4πr2)φ(e)(r)

(
d2

d2r
+ 2

r

d

dr

)
φ(e)(r). (39)

Using the transformed potential

u(e)(r) = rφ(e)(r), (40)

as Eq. (22) for spherical coordinates and integration by parts,
we find

S(e)
f = −1

2

∫
dr(4πr2)

u(e)

r

1

r

[
d2

d2r
u(e)(r)

]

= −1

2

∫
dr(4π)

[
d2

d2r
u(e)(r)

]

= 1

2

∫
dr(4π)

du(e)(r)

dr

du(e)(r)

dr
. (41)

As in Sect. 2.2 and by Eqs. (24) and (25), we divide three-
dimensional space, containing the above sphere with radius
R0 centered at the origin in spherical coordinates, into shells
(the number of cells enclosing the central sphere is Nr − 1).
The radial width (lattice spacing implying the radial cut-off
length) of each shell is Δh, which is equal to the radius R0

of the enclosed central sphere. As Eq. (23), the above wave
function u(e)(r) is expressed by

u(e)(r) =
∑

k

u(e)
k Ω̃E

k (r), (42)

in terms of the step-function-type basis functions Ω̃E
k (r)

in Eq. (19). From Eq. (41), it follows that (k, K =
1, 2, . . . , Nr+1)

S(e)
f =

∑

k,K

[
1

2

∫
dr(4π)u(e)

k u(e)
K

(
∂Ω̃E

k (r)

dr

∂Ω̃E
K (r)

dr

)]
.

(43)

Using Eqs. (20) and (21), S(e)
f above is decomposed into

S(e)
f = S(e)−−

f + S(e)−+
f + S(e)+−

f + S(e)++
f , (44)

where

S(e)−−
f = 4π

1

2

∑

k,K

u(e)
k u(e)

K

∫
dr [δ(r − rk−1/2)δ(r − rK−1/2)],

(45)

S(e)−+
f = 4π

1

2

∑

k,K

u(e)
k u(e)

K

∫
dr [δ(r − rk−1/2)δ(r − rK+1/2)],

(46)

S(e)+−
f

= 4π
1

2

∑

k,K

u(e)
k u(e)

K

∫
dr [δ(r − rk+1/2)δ(r − rK−1/2)],

(47)

S(e)++
f

= 4π
1

2

∑

k,K

u(e)
k u(e)

K

∫
dr [δ(r − rk+1/2)δ(r − rK+1/2)]. (48)

With the help of the lattice spacing Δh mentioned above
Eq. (19), an element such as S(e)−−

f in Eq. (45) is reduced to

S(e)−−
f = 4π

1

2

∑

k,K

u(e)
k u(e)

K [δ(rk−1/2 − rK−1/2)]

= 4π
1

2

∑

k,K

Δh

Δh
u(e)
k u(e)

K [δ(rk−1/2 − rK−1/2)]

= 4π
1

2

×
∑

k

1

Δh

∫
drK−1/2{u(e)

k u(e)
K [δ(rk−1/2 − rK−1/2)]}

= 4π
1

2

1

Δh

∑

k,K

u(e)
k u(e)

K δk,K , (49)

where δk,K is the Kronecker delta. By similar calculations
for the elements of S(e)

f given by Eqs. (46)–(48), the total

S(e)
f in Eq. (44) amounts to

S(e)
f = 4π

2

1

Δh

∑

k,K

(
−u(e)

k u(e)
K−1δk,K−1

+ 2u(e)
k u(e)

K δk,K − u(e)
k u(e)

K+1δk,K+1

)
. (50)

On the other hand, the action functional of the electric
charge of the matter for spherical coordinates is expressed
using u(e)(r) in Eq. (40) by [considering also the form
−∇2φ(e) − ρ(e) = 0 on the left in Eq. (27)]

S(e)
m = −

∫
dr(4π)r2ρ(e)φ(e)(r)

= −
∫

dr(4π)rρ(e)u(e)(r). (51)
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Subsequently, by the expansion of u(e)(r) given by Eq. (40)
in terms of the basis functions in Eq. (19), the above action
becomes

S(e)
m = −

∫
dr(4π)rρ(e)

∑

k

u(e)
k Ω̃k(r)

= −(4π)ρ(e)
∑

k

u(e)
k

r2
k+1/2 − r2

k−1/2

2
. (52)

Because R0 = Δh as mentioned below Eq. (24),

R0 = rk+1/2|k=1 = r1+1/2, (53)

which implies ρ(e) = 0 for k > 1 (the index 1 is one) in Eq.
(52), and rk−1/2 = 0 (or rk−1/2 = ε with ε → 0 after the
calculation). Using Q in Eq. (25) and R0 = Δh, we have

S(e)
m = −ρ(e)

∑

k

u(e)
k

3

2

4π

3

(Δh)
3

Δh
δk,1

= −
∑

k

u(e)
k

3

2

1

Δh
Qδk,1, (54)

where δk,1 is the Kronecker delta (the index 1 is one).
From Eqs. (50) and (54), the variation with respect to u(e)

k ,

δS(e)
f + δS(e)

m = 0, (55)

leads to

− 1

Δh

(
u(e)
k−1 − 2u(e)

k + u(e)
k+1

)
= 3

2

Q′

Δh
δk,1

with Q′ = Q

4π
. (56)

This equation is equivalent to

u(e)
k−1 − 2u(e)

k + u(e)
k+1

(Δh)2 = −3

2

Q′

(Δh)2 δk,1, (57)

corresponding to Eq. (27) for φ(e)(r) = ru(e)(r).
We then have

u(e)
k−1 − 2u(e)

k + u(e)
k+1 = 0 for k > 1, (58)

which is rewritten by

u(e)
k−1 − u(e)

k = u(e)
k − u(e)

k+1 for k > 1. (59)

Additionally, for the boundary rk−1/2 with k = 1 (the index
is 1)

r1−1/2 = ε > 0 (60)

(we set ε → 0 after the calculation), the basis function is not
given in the region for r < 0. Considering this boundary for
Eq. (57), we obtain

−2u(e)
k + u(e)

k+1

(Δh)2 = −3

2

Q′

(Δh)2 for k = 1. (61)

In contrast, using Q′ in Eq. (25) and R0 = Δh for the charge,
the outer boundary condition imposed is

u(e)
N+1 = Q′, (62)

which implies φ(e)(rN+1) = Q′/rN+1 in Eq. (40). Then Eq.
(59) becomes

u(e)
N−1 − u(e)

N = u(e)
N − Q′. (63)

We consider a solution that takes

u(e)
N = (β − 1)Q′ + Q′ for k = N , (64)

where β is a constant to be determined below. Equations (59)
and (62)–(64) lead to

u(e)
N−1 = [(β − 1)Q′ + Q′]

+[(β − 1)Q′ + Q′ − Q′

= 2(β − 1)Q′ + Q′, (65)

u(e)
N−2 = [2(β − 1)Q′ + Q′]

+[2(β − 1)Q′ + Q′ − [(β − 1)Q′ + Q′]
= 3(β − 1)Q′ + Q′. (66)

Using Eqs. (58), the sequential manipulations result in

u(e)
k = [(N − k + 1)(β − 1)]Q′ + Q′ for k > 1. (67)

Because the above solution diverges unless β = 1 for k = 2,
we derive the following solution, by setting β = 1 and using
Q′ = Q/(4π) in Eq. (56):

u(e)
k = Q′ = Q

4π
for k > 1. (68)

Furthermore, from Eqs. (61) and (68) as well as Q′ =
Q/(4π) in Eq. (56), we have the solution (at the remaining
point) for k = 1:

u(e)
1 = 1

2

(
3

2
Q′ + Q′

)
= 5

4
Q′ = 5

4

Q

4π
for k = 1. (69)

Thus, from Eqs. (29), (40) and (69) with 2r1 = Δh =
R0 = Δ/2, we obtain the following classical electric self-
energy in the region with the cut-off length Δ (whose volume
Δ3 is approximated by (4π/3)(Δh)

3 with the charge density
ρ(e) and charge Q in Eq. (25) for this volume):

E (e)
Ω = 1

2

4π

3
(Δh)

3ρ(e) 5

4
Q

(
1

4πr1

)

= 1

2

5

4

QQ

4πr1
= 1

2

[
5

2

QQ

(4π)2r1

]

= 1

2

(
5

2

QQ

4πΔh

)
= 1

2

[
5

2

QQ

(4π)(Δ/2)

]
. (70)
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3.3 Self-energy in macroscopic classical Einstein field
equations

This subsection presents the analysis of the curvature self-
energy in the Einstein field equations. Although the gravita-
tional field is different from the charged particle fields, we
treat the Newtonian approximation case, which is similar to
the charged particle case. When the renormalization is diffi-
cult in this case, it is possible to use the cut-off length. The
self-energy is first evaluated by the continuum field theory.
Subsequently, the self-energy is evaluated using the formal-
ism in terms of the step-function-type basis functions. As
described by Landau and Lifshitz [15] (owing to the negligi-
ble contributions of higher-order terms with respect to 1/c in
the Lagrangian with c being the velocity of light), the New-
tonian approximation, within the scheme of the Einstein field
equations for the matter with the slow velocities compared
to c, has the infinitesimal squared distance expressed by

(ds)2 = gμνdxμdxν = (ημν + hμν)dx
μdxν

=
(

1 + 2
φ

c2

)
(dx0)2

−
(

1 − 2
φ

c2

)
[(dx1)2 + (dx2)2 + (dx3)2], (71)

where

ημν =

⎡

⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥⎥⎦ , |hμν | � 1,

g00 = 1 + 2
φ

c2 , (72)

and φ is the Newtonian potential. We note that the Newtonian
potential (field) φ is distinguished from electric field φ(e).
Letting μm be the density of the mass, we have the energy-
momentum tensor

T ν
μ =

{
μmc2 for μ = 0 and ν = 0
0 for μ 	= 0 or ν 	= 0

. (73)

It is well known that the field equation Eq. (15) can be
rewritten

Rν
μ = 8πG

c4

(
T ν

μ − 1

2
δν
μT

)
, (74)

where δν
μ is the unit tensor and

T = gμνTμν. (75)

Furthermore, using the well-known relations for Eq. (74)

R0
0 = 1

c2

∂2φ

∂xi2
, (76)

8πG

c4

(
T 0

0 − 1

2
δ0

0T

)
= 8πG

c4

1

2
(μmc

2), (77)

and from Eqs. (72)–(75), we obtain the Newtonian equation

∂2φ

∂xi2
= 4πGμm. (78)

From Eq. (72), the term δg00√−g in Eq. (14) is approx-
imated by (higher-order terms with respect to 1/c in

√−g
are neglected)

δg00√−g ≈ +δ

(
2φ

c2

)
. (79)

We then approximate the action functional for directly lead-
ing to the Newtonian equation as follows. Because the action
functional for the matter is linear with respect to φ, this action
is approximated by

S(N)
m = − −c3

16πG

(
2

c2

)
8πG

c4

∫
1

2
(μmc

2)φdV 4. (80)

Meanwhile, we approximate the following action functional
of the gravity, which is consistent with the above equation
(the factor 1/2 appears considering the variational of both
∂2φ/∂xi2 and φ with respect to φ), with integration by parts:

S(N)
g = − −c3

16πG

(
2

c2

)
1

c2

1

2

∫ (
∂φ

∂xi

)(
∂φ

∂xi

)
dV 4. (81)

By variation with respect to φ, the above action functionals
S(N)

g and S(N)
m lead to the Newtonian equation given by Eq.

(78).
In the Newtonian approximation within the Einstein

scheme, the energy-momentum tensor has a similar form to
that in Eq. (29) for the static electric field. Using the notation
∇ = (∂x1, ∂x2, ∂x3), the static energy is written

E (N) = − 1

8π

∫
dr(4π)r2(−∇φ) · (−∇φ)

= 1

2

∫
dr(4π)r2μmφ. (82)

As in Sects. 2.2, 3.1 and 3.2, the 3D sphere, which is the
approximation of the cubic element in 3D space with the cut-
off length Δ, has the radius R0 = Δ/2 and mass density μm

in Eq. (24) of the fundamental particle. The mass M in Eq.
(25) is the product of μm and the volume of the 3D sphere.
From Eq. (78), the gravitational potential, which corresponds
to Eq. (30) in the electrodynamical case, becomes

φ(r) = −G
M

r
for r > R0. (83)

A similar correspondence to Eq. (34) for r ≤ R0 gives

φ(r) = −G
4π

6
r2μm + G

4π

6
R2

0μm − G
M

R0
for r ≤ R0.

(84)

Subsequently, from Eqs. (82), (84) and M in Eq. (25), we
have the following gravitational self-energy in the case of
the continuum theory:
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E (N) = 1

2

∫ R0

0
dr(4π)r2μmφ(r)

= −1

2

(
4

5

GMM

R0

)
= −1

2

(
4

5

GMM

Δ/2

)
. (85)

In contrast to the above analysis, we next study the
self-energy in the Einstein field equations, using the step-
function-type basis functions. We also use the above 3D
sphere with the radial cut-off length R0 = Δ/2 related to
the cut-off length Δ. The mass density μm in Eq. (24) of the
fundamental particle leads to the mass M in Eq. (25). As in
Sect. 2.2, we divide three-dimensional space, containing the
above sphere (with the radius R0 = Δh) centered at the ori-
gin in spherical coordinates, into shells (the number of cells
enclosing the central sphere is Nr − 1). The radial width of
each shell is Δh, which is equal to the radius of the sphere
R0.

To use the basis functions in Sect. 2.2, the action functional
for the gravity in Eq. (81) with the factor

γg = −c3

16πG

2

c2

1

c2 Δx0 (86)

(Δx0 is the time interval and can be dropped for the
present static case) is rewritten (considering the form ∇2φ −
4πGμm = 0 of Eq. (78))

S(N)
g = γg

2

∫
dxdydz

×
[
φ(x, y, z)

(
∂2

∂2x
+ ∂2

∂2y
+ ∂2

∂2z

)
φ(x, y, z)

]

= γg

2

∫
dr(4πr2)φ(r)

(
d2

d2r
+ 2

r

d

dr

)
φ(r). (87)

Using the transformed potential u(r) in Eq. (22) for spherical
coordinates, we find

S(N)
g = −γg

2

∫
dr(4π)

du(r)

dr

du(r)

dr
. (88)

The above wave function u(r) is then expressed in terms of
the step-function-type basis functions in Eq. (19). From Eqs.
(23) and (88), we have (k, K = 1, 2, . . . , Nr+1)

S(N)
g =

∑

k,K

[
−γg

2

∫
dr(4π)ukuK

(
∂Ω̃E

k (r)

dr

∂Ω̃E
K (r)

dr

)]
.

(89)

Similar to the action in Eq. (50) for the electric field, the
above action becomes

S(N)
g = −4π

2
γg

1

Δh

∑

k,K

(−ukuK−1δk,K−1

+2ukuK δk,K − ukuK+1δk,K+1). (90)

Meanwhile, using u(r) in Eq. (22), the action functional
of the matter in Eq. (80) for spherical coordinates becomes

[considering the form ∇2φ − 4πGμm = 0 of Eq. (78)]

S(N)
m = −4πGγg

∫
dr(4π)r2μmφ(r)

= −4πGγg

∫
dr(4π)rμmu(r). (91)

By the expression of u(r) given by Eq. (23) in terms of basis
functions denoted in Eq. (19), the above action is written by

S(N)
m = −4πGγg

∫
dr(4π)rμm

∑

k

ukΩ̃k(r) (92)

= −4πGγg

∑

k

uk
3

2

M

Δh
δk,1. (93)

From Eqs. (90) and (92), the variational calculus with
respect to uk

δS(N)
g + δS(N)

m = 0, (94)

results in

1

Δh
(uk−1 − 2uk + uk+1) = 3

2

GM

Δh
δk,1. (95)

Corresponding to the electric field case in Eqs. (67) and (68),
the solution obtained for k > 1 is

uk = −GM for k > 1. (96)

Equations (95) and (96) yield the solution for k = 1:

u1 = −1

2

(
3

2
GM + GM

)
= −5

4
GM for k = 1. (97)

Consequently, from Eqs. (22), (82) and (97) with r1 =
Δh/2 = (Δ/2)/2, we derive the following classical curva-
ture self-energy in the region with the radial cut-off length
Δh = R0 (related to the cut-off length Δ) and the mass
M = (4π/3)(Δh)

3(μm) [in Eqs. (24)–(25)]:

E (N)
Ω = 1

2

4π

3
(Δh)

3μm
(−5)

4
GM

(
1

r1

)

= −1

2

(
5

2

GMM

2r1

)
= −1

2

(
5

2

GMM

Δh

)

= −1

2

(
5

2

GMM

Δ/2

)
. (98)

4 Relationship between the subtracted self-energy and
vacuum energy constant Λ

The continuum relativistic theory requires that a fundamental
particle be considered pointlike, and the radius of a pointlike
particle leads to ultraviolet divergences. However, our for-
malism can obtain finite self-energies by expressing fields
in terms of the step-function-type basis functions. As in
Sect. 2.1, the self-energy subtracted from the energy of the
rest mass is included in vacuum energy expressed in terms
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of the constant Λ (cosmological constant). The self-energy
calculated using the step-function-type basis function with
the cut-off length Δ is not so different from that calculated
by the continuum theory with the same cut-off length as was
shown in Sect. 3. For a fundamental particle, the self-energy
caused by the classical electrodynamics was proportional to
1/Δ. This self-energy is reduced to the following logarith-
mic form by quantum corrections [33,38] (h̄=h/(2π ) with h
being the Planck constant):

E (e)
Q = 3

4π

(
e2

4π h̄c

)
mEc

2
{

ln

[
(h̄c/Δ)2

(mEc2)2

]
+ 1

2

}
. (99)

(Δ is the cut-off length and mE is the rest mass of an electro-
dynamically interacting fundamental particle.) This reduc-
tion of the Coulomb-type self-energy also occurs in chro-
modynamics with the asymptotic freedom at short distances
[39–41]. However, a stronger divergence of the self-energy
at a quantum level appears in the Higgs boson case. (Funda-
mental particles (quarks) receive a mass through the coupling
to the Higgs field.) The gravitational field is treated at a clas-
sical level, because the cut-off length below in this section is
longer than the Planck scale and the gravitational strength is
small. Under such a small gravitational field, our treatment
in this section relates vacuum energy to the Higgs boson
self-energy, which is dominant among other interactions at
a quantum level. This relation (between vacuum energy and
the Higgs self-energy) determines the cut-off length, repro-
ducing today’s tiny value of the cosmological constant Λ as
described below.

It is well known that the matter is mainly composed of
protons. The averaged energy of the rest mass of the funda-
mental particles is mEc2 ≈ 3.23 [MeV]. Considering that
the contribution from the mass of the fundamental particles
to that of a proton is very small, we set

γE = energy of proton

energy of fundamental particles

= energy density of matter

energy density of fundamental particle
≈ 96.7. (100)

To derive the cut-off length, the ratio γΛ is defined by

γΛ = energy density of vacuum energy with Λ

energy density of matter

= self-energy density

energy density of matter
≈ 0.73

0.04
. (101)

The fundamental particle (quark) mass mE is due to the
coupling to the Higgs field with the coupling constant λ f

written by

λ f =
√

2

v
mE, (102)

where v is the vacuum expectation value of the symmetry-
broken Higgs field. The Higgs self-energy EH (included in

vacuum energy) for the cut-off length Δ and λ f above is
written by

|EH| =
√

2

4π
λ f

h̄c

Δ
c2

=
√

2

4π

√
2

v
mEc

2 h̄c

Δ
= 1

2π

1

v
mEc

2 h̄c

Δ
. (103)

Meanwhile, from Eqs. (100) and (101) it follows that

|EH|
mEc2 = γEγΛ. (104)

Combining Eqs. (103) and (104), we have

Δ = 1

γE

1

γΛ

1

2π

h̄c

v
. (105)

Because v ≈ 246 [GeV], we derive the cut-off length
Δ ≈ 7.2 × 10−8 [fm], which corresponds to ≈ 2.7 × 106

[GeV], that is, Δh ≈ 3.6 × 10−8 [fm] corresponding to
≈ 5.5 × 106 [GeV].

Even if modifications of values or definitions are required
for the above calculations, we obtain a similar value of
Δ. Owing to the above cut-off length Δ derived, the field
theory may be advanced without ultraviolet divergences.
When the renormalization is difficult, the analysis is pos-
sible by using the cut-off length. In general, gμν is written
gμν(x) = ημν(x) + hμν(x) as given in Eq. (71), and the
tensor field hμν(x) is expressed by

hμν(x) =
∑

p

hμνpΩ̃
4
p(x), (106)

where the coefficients hμνp are tensor elements, and Ω̃4
p(x)

is the four-dimensional basis function, which takes the
value of unity in a hyper-octahedron with the index p
in four-dimensional space-time and vanishes out of the
hyper-octahedron. Namely, the present theory divides the
space-time continuum of classical general relativity into
pieces (hyper-octahedrons). The expression of wave func-
tions in terms of step-function-type basis functions restricts
the degrees of freedom of the wave functions in a hyper-
octahedron (cuts off high-frequency contributions), meaning
the quantization of space-time in classical general relativity.
In Sect. 3, it was shown that the quantities calculated using
the step-function-type basis functions are similar to the corre-
sponding quantities calculated by using the continuum theory
with the cut-off. The formalism and calculated quantities in
the continuum theory are mapped to the corresponding for-
malism and quantities using step-function-type basis func-
tions. Then, from Eqs. (103)–(105), the cut-off length used
for the step-function-type basis functions is related to Higgs
self-energy, which amounts to the vacuum energy expressed
by the constant Λ (of such as Λ-CDM).

In the Einstein field equations, the energy of the rest mass
is the source of the curvature, and the renormalization (by
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such as the electrodynamic interaction) subtracts the self-
energy from the rest mass. The subtracted self-energies can
be involved in vacuum energy constant Λ in the Einstein
field equations, as described in Sect. 2. (Concerning the cur-
vature self-energy by the gravitational coupling between the
mass and the produced field, it is well known that the general
curvature self-energy is not always within the renormaliza-
tion scheme.) The relatively large cut-off length (compared
to the Planck length) of the present theoretical formalism has
an advantage with naturalness that the Higgs self-energy is
suppressed, and this cut-off is related to today’s tiny vac-
uum energy expressed by Λ, without fine tuning. In contrast,
by the relatively small cut-off at the Planck scale in other
models arises the huge Higgs self-energy, which needs the
following fine tuning. In a highly precise fine tuning, the huge
Higgs self-energy for the cut-off at the Planck scale is can-
celed by another physical quantity to adjust the Higgs mass.
Furthermore, the Planck energy composing Λ (cosmologi-
cal constant) in other models needs fine tuning to obtain the
present tiny value of Λ by the cancellation from such as a
huge Higgs self-energy for the cut-off at the Planck scale.
Therefore, the present formalism provides an answer to the
fine-tuning problem. The present formalism also has the pos-
sibility to offer a fundamental physical theory, predicting a
cut-off length that may play the role of a fundamental physi-
cal constant, if experimentally observed. The present model
has another merit: that the initial universe has no possibility to
form a black hole because of the relatively large cut-off length
unlike the cut-off at the Planck scale near the black hole
size of the whole universe. Furthermore, the gravity in the
present formalism is weak compared to the other fundamen-
tal interactions, and space-time coordinates do not largely
deviate from classical numbers. Moreover, the present theo-
retical vacuum energy constant Λ decreases to today’s order
of magnitude expressing the vacuum energy density, telling
the ratio of vacuum energy density to the energy density of
the matter.

If the expansion of the universe is matter dominated (in the
present case the vacuum energy caused by the self-energy has
the same property of the matter), the vacuum energy constant
Λ seems to be proportional to t−2

U (at least) at present, where
tU is the age of the universe at each point in time. This is due
to the well-known fact that the solution of the Friedmann
equation indicates the scale of the universe a(tU) as a func-
tion of tU to be a(tU) ∝ t2/3

U , that is, [a(tU)]−3 ∝ t−2
U . The

matter density ρm (we can include the dark matter and vac-
uum energy into the matter) is written by ρm ∝ [a(tU)]−3,
which leads to ρm ∝ t−2

U and Λ ∝ t−2
U , because the vacuum

energy expressed by the vacuum energy constant Λ obeys the
relation Λ ∝ ρm in our scheme. This is the reason why the
vacuum energy constant Λ seems to be proportional to t−2

U . In
contrast, at the Planck scale the wave packet size for the mass
of the Planck energy (≈ 1019 [GeV]), which seems to be the

whole energy of the universe, is equal to the gravitational-
based radius, and the conditions between the above two cases
are quite different. When the present model is generalized to
the early universe, the initial size of the universe is the cut-
off length of the present model. Because Λ ∝ t−2

U mentioned
above diverges in the limit as tU → 0 (tU is larger than the
cut-off length), the early universe expands rapidly, although
the expansion rate is different from the exponential expansion
of inflation models.

Finally, we add that, owing to the nonperiodic boundary
condition, the zero-point energy for the candidate of vacuum
energy constant Λ is not seen in the present formalism. Let
us consider a simple action for the wave function Φ(x),

SB = 1

2

∫
dx

(
dΦ(x)

dx

dΦ(x)

dx

)
. (107)

The wave function in terms of the basis functions in Eq. (19)
with the lattice spacing Δ is given by

Φ(x) =
∑

k

ΦkΩ̃
E
k (x). (108)

Similar to Eq. (50), we write the action functional

SB = 1

2

∑

k,K

∫
dx

(
ΦkΦK

dΩ̃E
k (x)

dx

dΩ̃E
K (x)

dx

)

= 1

2

1

Δ

∑

k,K

(ΦkΦK )(−δk−1,K + 2δk,K − δk+1,K ). (109)

The variation with respect to Φk ,

δSB = 0, (110)

yields

1

Δ
(Φk−1 − 2Φk + Φk+1) = 0, (111)

which leads to

1

Δ2 (Φk−1 − 2Φk + Φk+1) = 0, (112)

where k, K = 1, 2, ..., Nx . For the above equation, the
following boundary conditions on the wave function are
imposed (Nx+2 is the number of lattice points, and the lattice
indices of the boundary points are denoted by k = 0, Nx+1):

Φ0 = 0, ΦNx+1 = 0. (113)

Similar to the classical vibrational case [42], the eigen-
vector for a diagonalization of the action is expressed as

ΦK = 1

CN
sin

(
kKπ

Nx + 1

)
, (114)

123



Eur. Phys. J. C (2018) 78 :315 Page 11 of 12 315

where CN is a normalization constant. Then the element SB,k

of the action in Eq. (109) is diagonalized giving

SB,k = 1

2

1

Δ

∑

K

(−δk−1,K + 2δk,K − δk+1,K )ΦK

= 1

2Δ

1

CN

×
{
− sin

[
k(k − 1)π

Nx + 1

]
+ 2 sin

[
kkπ

Nx + 1

]

− sin

[
k(k + 1)π

Nx + 1

]}

= 1

Δ

1

CN

[
1 − cos

(
kπ

Nx + 1

)]
sin

(
kkπ

Nx + 1

)

= ηkδk,KΦK , (115)

yielding the eigenenergies

ηk ∝ 1 − cos

(
kπ

Nx + 1

)
, (116)

with k = 1, 2, · · ·, Nx . Consequently, the zero-point energy
for the candidate vacuum energy is not seen in the present sys-
tem because of the boundary condition in Eq. (113). (Simi-
larly, eigenvalues in higher dimensions are obtained [10,12].)

We note that when the system is considered using a box
normalization, in which wave functions are defined in a
box with periodic boundary conditions at the box surfaces,
eigenvalues may have zero-point energies. However, physi-
cal quantities such as the transition amplitude are calculated
without using the zero-point energies by expressing plane
waves in the form of complex exponential functions. The
zero-point energies dropped in this case may not be included
in vacuum energy, because the zero-point energies appearing
here are due to the non-vanishing periodicity (which seems
to lack in the real expanding universe) in approximate calcu-
lational manipulations.

As the dark matter, we considered the classical solution
with quantum field fluctuations in chromodynamics in Ref.
[12]. Although the Big Bang is out of the scope of this paper,
an expansion may arise making the Big Bang like the vapor-
ization of water in vacuum by absorbing heat.

5 Conclusions

For the renormalization of the mass, we have considered the
subtracted self-energies, which act as sources of the curvature
in the Einstein field equations. It was shown that this consis-
tency is satisfied by including these self-energies into the vac-
uum energy expressed by the constant Λ. The self-energies
in electrodynamics and Einstein field equations were investi-
gated by using the ultraviolet cut-off length. The field theory,
which was developed by the present authors, expresses wave
functions in terms of the step-function-type basis functions to

cut off oscillations at short distances. In the other continuum
theory, we used the same cut-off length as that used for the
former theory. From the examination, the continuum theory
with the cut-off length is effective. Classical self-energies are
reduced to logarithmic forms by quantum corrections, and the
quadratic Higgs self-energy is dominant at a quantum level.
The cut-off length was determined so as to reproduce the
observed vacuum energy constant Λ, using the self-energy
derived from the above cut-off theories. The derived vacuum
energy expressed by the constant Λ is of the order of the
matter (composed of the conventional matter such as atoms
and dark matter), showing that the vacuum energy constant
Λ has today’s tiny value.
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