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Abstract Gravitational waves in the presence of a non-
minimal curvature-matter coupling are analysed, both in
the Newman–Penrose and perturbation theory formalisms.
Considering a cosmological constant as a source, the non-
minimally coupled matter-curvature model reduces to f (R)

theories. This is in good agreement with the most recent data.
Furthermore, a dark energy-like fluid is briefly considered,
where the propagation equation for the tensor modes differs
from the previous scenario, in that the scalar mode equation
has an extra term, which can be interpreted as the longitudi-
nal mode being the result of the mixture of two fundamental
excitations δR and δρ.

1 Introduction

We have just celebrated the centennial of Einstein’s General
Relativity (GR), one of the most extraordinary theories ever
conceived by the human mind. Despite being derived mainly
through theoretical criteria of elegance, aesthetics and sim-
plicity, GR has been extremely successful in accounting for
the weak-field experimental regime of gravitation (see e.g.
Refs. [1,2] and references therein). One of its outstanding
predictions, namely, gravitational waves (GW) – ripples in
the fabric of spacetime – had a first indirect observational evi-
dence from the energy loss of the binary pulsar PSR 1913+16
discovered by Hulse and Taylor in 1974 [3], and has recently
been directly detected from mergers of black holes binaries
by the LIGO collaboration [4–7]. Recently, the observation
of gravitational waves from a binary of neutron stars fol-
lowed by its electromagnetic counterpart has been observed
[8,9]. This amazing discovery has paved the way for a new
era in astronomy, astrophysics and fundamental physics, and
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opened a new window to test the nature of gravity. GR pre-
dicts two massless tensor polarizations travelling at the speed
of light, where the amplitude is inversely proportional to the
distance from the source. However, extensions of GR predict
that additional polarisations may propagate with different
velocities, attenuations and effective masses. Some of these
observables have been highly constrained: an upper bound
on the mass of the graviton [6], lower and upper bounds on
the speed of the gravitational wave [10,11]. In fact, alterna-
tive models equivalent to cosmological scalar fields in scalar-
tensor theories of gravity are in difficulties to comply to those
bounds [12–15].

In order to test gravity with GWs [16], it is important to
note that modifications of GR may imply anomalous devia-
tions in the propagation of tensor modes. Detecting new grav-
itational modes would clearly serve, at a fundamental level,
as an experimentum crucis in discriminating theories since
this fact would certainly hint in requiring modifications of GR
on large scales. More specifically, in higher order extended
theories of gravity [17], containing scalar invariants other
than the Ricci scalar, in addition to a massless spin-2 field,
spin-0 and spin-2 massive modes are expected, where the lat-
ter may consist of ghost modes. This is indicative that much
care should be taken in finding consistent solutions together
with weak-field and cosmological constraints, in order to ren-
der the solutions physically plausible. However, a number of
theories exist where the gravitational wave modes are equiv-
alent to those in GR [18], and techniques should be devised
in order to discriminate models [19].

An interesting way to distinguish these theories is the
application of the Newman–Penrose formalism according to
the Petrov classification [20–24], in addition to the usual
perturbation theory. In f (R) theories [25,26], these two for-
malisms seemed to be inconsistent, as the scalar breathing
mode that appears in the Newman–Penrose formalism [27]
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is not present in the perturbative approach [28]. Later, it was
realised that the usual traceless and transverse conditions
for the gauge were incompatible and hence one degree of
freedom could not vanish [29]. Nevertheless, in the Pala-
tini formalism, there are only two tensor modes as in GR
[27]. In fact, this is to be expected as the Palatini-type
f (R) models are equivalent to Brans–Dicke theories with
the parameter ωBD = −3/2. This particular value corre-
sponds to the vanishing kinetic term of the scalar field, which
is thus nondynamical, and therefore no additional scalar
degree of freedom should appear. Thus, gravitational waves
are a powerful tool to test gravitational theories, despite
some ambiguities that apparently exist between different for-
malisms.

The most useful way to address the problem of gravita-
tional waves is in vacuum. In GR and other alternative the-
ories of gravity where only the gravitational sector is modi-
fied, one can consider matter sources and extend the analysis
resorting to the Green functions’ method. Other approaches
have also been discussed such as the Campbell–Morgan for-
malism [30], the interaction of gravitational waves with mat-
ter [31] or the cyclotron damping and Faraday rotation of
gravitational waves in collisionless plasmas [32,33]. Another
issue that has been explored is the inclusion of a cosmological
constant term. The field equations lose their residual gauge
freedom [34] and some implications for the physical metric
are encountered [35].

Some alternative theories of gravity rely on higher-order
curvature terms in the action. This is a relevant modification
since it allows for a successful model of inflation, namely the
Starobinsky’s one [36]. Furthermore, they are also quite use-
ful at late times where they account for dark matter and dark
energy unsolved problems without postulating some exotic
particles or fluids yet to be discovered (see Refs. [37,38] and
references therein).

Another proposal of alternative theories of gravity extends
the f (R) theories by including a non-minimal coupling
(NMC) between curvature and matter [39]. These theories
can mimic dark matter profiles at galaxies [40,41] and clus-
ters [42], modify the Layzer–Irvine and virial theorem [43]
and are stable under cosmological perturbations [44]. They
can also account for the late-time acceleration of the Uni-
verse [45,46] and have some consequences for black hole
solutions [47]. Scalar field inflation is modified for large
energy densities though it is still compatible with Planck’s
data [48]. NMC also plays a relevant role during preheating
[49], and in the sequestering of the cosmological constant
[50]. As any model in f (R) theory, there are certain condi-
tions which have to be satisfied in order to ensure that the
model is viable and physically meaningful. From the point
of view of the energy conditions and of their stability under
the Dolgov–Kawasaki criterion, the viability of these mod-
els was analysed in Ref. [51]. Specific wormholes solutions

were also presented where normal matter satisfies the energy
conditions at the throat, and the higher order curvature deriva-
tives of the NMC are responsible for the null energy condi-
tion violation, and consequently for supporting the respective
wormhole geometries that satisfy the energy conditions [52–
54].

The nonminimal curvature-matter coupling was also pre-
sented in the Palatini formalism [55]. A maximal exten-
sion was explored [56] by assuming that the gravitational
Lagrangian is given by an arbitrary function of the Ricci
scalar R and of the matter Lagrangian Lm , i.e., f (R,Lm)

gravity. The geodesic deviation, Raychaudhuri equation,
and tidal forces and interesting applications were also anal-
ysed in f (R,Lm) gravity [57]. Furthermore, extensions of
f (R,Lm) gravity were explored by considering the presence
of generalized scalar field and kinetic term dependences [58]
and a NMC between the curvature scalar and the trace of
the energy-momentum tensor, the so-called f (R, T ) gravity
[59]. The latter was further generalized with the inclusion of
a term RμνTμν [60,61]. We refer the reader to Ref. [62] for a
recent review on the generalized curvature-matter couplings
in modified gravity.

Therefore, much attention has been given to the non-
minimal curvature-matter couplings and a study of the asso-
ciated gravitational waves is a relevant issue. In what follows
we shall consider the propagation of gravitational waves in a
medium dominated by a cosmological constant and by a dark
energy fluid with an equation of state parameter w = −1. The
first case will reduce to a f (R) scenario, as will be discussed,
and the dark energy scenario is obviously of relevance given
the late time acceleration of the Universe and the impact of
the non-minimal matter-curvature coupling.

This work is organised as follows: In Sect. 2, the NMC
model is presented, as well as its linearisation, and the
Newman–Penrose formalism is reviewed. In Sect. 3, we
study the case of a background dominated by a cosmological
constant both in the perturbation and in the Newman–Penrose
formalisms. In Sect. 4, the case of a perfect fluid with equation
of state parameter w = −1 is analysed. Finally, conclusions
are drawn in Sect. 5.

2 The NMC alternative theory

2.1 General formalism

We start considering the action:

S =
∫

d4x
√−g

[
1

2
f1(R) + f2(R)Lm

]
, (1)

where we have set M2
P = (8πG)−1 = 1 and c = 1.
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Varying the action with respect to the metric, yields the
field equations:

(F1 + 2F2Lm) Rμν− 1

2
gμν f1−Δμν (F1 + 2F2Lm) = f2Tμν ,

(2)

where Fi ≡ d fi/dR, Δμν ≡ ∇μ∇ν − gμν�, Tμν is the
energy-momentum tensor built from the matter Lagrangian
density, Lm , as usual by

Tμν = −2√−g

δ(
√−gLm)

δgμν
. (3)

It is straightforward to retrieve GR by setting f1(R) = R
and f2(R) = 1.

Taking the trace of Eq. (2) leads to a useful expression:

� (F1 + 2F2Lm) = 2 f1 − (F1 + 2F2Lm) R + f2T

3
. (4)

From the Bianchi identities, we find that the energy-
momentum tensor is not covariantly conserved in general:

∇μTμν = F2

f2

[
gμνLm − Tμν

] ∇νR , (5)

which, for a perfect fluid with four-velocity uμ, yields an
extra force in the geodesic equation:

f μ = 1

ρ + p

[
F2

f2
(Lm − p) ∇νR + ∇ν p

]
Vμν , (6)

where the projection operator Vμν is given by Vμν = gμν −
uμuν .

Analogously to the pure f (R) theories [28], the trace Eq.
(4) can be seen as a Klein–Gordon equation, but for two
fields Φ1 ≡ F1 and Φ2 ≡ 2F2Lm , rather than just one, with
an effective potential given by:

dV

dΦ1
≡ 2 f1 − F1R

3
,

dV

dΦ2
≡ −2F2Lm R + f2T

3
. (7)

This identification can be made since the NMC theories are
equivalent to a two-scalar field model in the Einstein frame,
although one of them is not dynamical as it is mixed with
the dynamical one [63]. Notwithstanding, when considering
perturbations, as in the next section, this trace equation leads
to a mixture of two fundamental perturbations (associated
to the fundamental fields), which in the linearised level are
decoupled.

2.2 Linearised NMC theories

Perturbing the trace equation around a constant curvature
background R0, we obtain:

3�
(
δ f ′ + δh′) = −R0

(
δ f ′ + δh′) + δ f + δh, (8)

where we have defined the following perturbations:

δ f ≡ (F1 − 2F2Lm + F2T ) δR, (9)

δ f ′ ≡ (
F ′

1 + 2F ′
2Lm

)
δR, (10)

δh ≡ f2δT, (11)

δh′ ≡ 2F2δLm . (12)

Linearising the field equations with the metric gμν =
ημν + hμν , where hμν � 1:

(
F ′

1δR + 2F ′
2LmδR + 2F2δL

)
Rμν + (F1 + 2F2Lm) δRμν

−1

2
ημνF1δR − 1

2
hμν f1 − [∇μ∇ν − hμν�

]
(F1+2F2Lm)

− [∇μ∇ν − ημν�
] (

F ′
1δR + 2F ′

2LmδR + 2F2δLm
)

= f2δTμν + F2TμνδR . (13)

If the background metric is Minkowski, then Rμν = R =
0 (at lowest order). Furthermore, for constant curvatures (in
this case null) we have ∇μFi = F ′

i ∇μR = 0. Thus:

(F1 + 2F2Lm) δRμν − 1

2
ημνF1δR − 1

2
hμν f1

− [
∂μ∂ν − ημν�

] (
F ′

1δR + 2F ′
2LmδR + 2F2δLm

)
+ [

∂μ∂ν − hμν�
]
(F1 + 2F2Lm)

= f2δTμν + F2TμνδR. (14)

We shall require that Lm → Lm + δLm(xμ), so that
∇μLm = 0, which is the case of a constant matter Lagrangian
density, such as a cosmological constant. These assumptions
further simplify the linearised field equations:

(F1 + 2F2Lm) δRμν − 1

2
ημνF1δR − 1

2
hμν f1

− [
∂μ∂ν − ημν�

] (
δ f ′ + δh′) = f2δTμν + F2TμνδR.

(15)

We point out that the far-field, linearised, vacuum field
equations for the NMC yield the same result as in f (R) the-
ories. Therefore, we expect to have six polarisation states
[27]. When considering matter, the polarisation states can be
non-trivial, in particular the longitudinal mode, from the trace
equation, can be decoupled into two scalar modes depend-
ing on the conditions. In the next section we consider the
cosmological constant as a source and study the resulting
polarisation states.
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2.3 The Newman–Penrose formalism

In order to properly analyse the polarisation modes of a gravi-
tational theory, one may resort to the Newman–Penrose quan-
tities, which represent the coefficients of the irreducible parts
of the Riemann tensor: ten Ψ functions, nine Φ functions and
a single Λ̃ function. These structures are related to the inde-
pendent components of the Weyl tensor, the Ricci tensor and
the Ricci scalar, respectively.

We shall consider henceforth the propagating axis of the
gravitational wave as oriented in the +z direction. Using the
null-complex tetrads [21]:

k = 1√
2

(et + ez) , l = 1√
2

(et − ez) , (16)

m = 1√
2

(
ex + iey

)
, m̄ = 1√

2

(
ex − iey

)
, (17)

which obey −k · l = m · m̄ = 1 and k · m = k · m̄ =
l · m = l · m̄ = 0, respectively. We should bear in mind
that any tensor T is written as Tabc... = Tμνλ...aμbνcλ...,
where a, b, c, . . . are vectors of the null-complex tetrad basis
(k, l, m, m̄), whilst μ, ν, . . . run over the spacetime indices.

The Newman–Penrose quantities in the tetrad basis read:

Ψ0 ≡ Ckmkm = Rkmkm (18)

Ψ1 ≡ Cklkm = Rklkm − Rkm

2
(19)

Ψ2 ≡ Ckmm̄l = Rkmm̄l + R

12
(20)

Ψ3 ≡ Cklm̄l = Rklm̄l + Rlm̄

2
(21)

Ψ4 ≡ Clm̄lm̄ = Rlm̄lm̄ (22)

Φ00 ≡ Rkk

2
(23)

Φ11 ≡ Rkl + Rmm̄

4
(24)

Φ22 ≡ Rll

2
(25)

Φ01 ≡ Rkm

2
= Φ∗

10 ≡
(
Rkm̄

2

)∗
(26)

Φ02 ≡ Rmm

2
= Φ∗

20 ≡
(
Rm̄m̄

2

)∗
(27)

Φ12 ≡ Rlm

2
= Φ∗

21 ≡
(
Rlm̄

2

)∗
(28)

Λ̃ ≡ R

24
, (29)

where Cαβγ δ is the Weyl tensor.
For a metric theory that admits plane null wave solutions,

those quantities reduce to only six real independent compo-
nents in a given null frame: {Ψ2, Ψ3, Ψ4, Φ22}, hence one has
to consider the “little group” E(2), which is a subgroup of
the Lorentz group that leaves the wavevector invariant, defin-

ing some classes of waves [20,21,23,24]. Since both Ψ3 and
Ψ4 are complex, each one exhibits two polarisations. This
sets under the action of the rotation group yield the helicities
{0,±1,±2, 0}. This means that Ψ2 is a longitudinal mode,
the real and imaginary parts of Ψ3 account for the mixed
vectorial x− and y−modes, the Ψ4 denotes the two trans-
verse tensor polarisations (+, ×), and the transverse scalar
breathing mode is accounted for Φ22.

In what follows, we shall study the waves arising from a
NMC gravity model with a cosmological constant as a source
and establish their class.

3 Cosmological constant as a source

Let us consider the case of a geometry determined by a cos-
mological constant:

Lm = −Λ ⇒ Tμν = −Λgμν ⇒ T = −4Λ . (30)

Thus, the field equations read:

(F1 − 2F2Λ) δGμν − 1

2
( f1 − 2 f2Λ) hμν

= [
∂μ∂ν − ημν�

] (
δ f ′ + δh′) , (31)

where the perturbed Einstein’s tensor is defined as δGμν ≡
δRμν − 1

2ημνδR, thus, R0 = 0, the fluctuations δ f ′ =(
F ′

1 − 2F ′
2Λ

)
and δh′ = 0, since δΛ = 0.

The above quantities can be written in terms of the met-
ric perturbations since the perturbed Ricci tensor and scalar
curvature read:

δRμν = 1

2

[−�hμν + h α
ν ,μα + h α

μα, ν − h,μν

]
, (32)

δR = hαβ
,αβ − �h , (33)

respectively.
We choose the following gauge:

∂μ

[
hμν − 1

2
ημνh − ημν

(
δ f ′ + δh′

F1 − 2F2Λ

)]
= 0 . (34)

This is suitable because F1−2F2Λ ≡ F1(R0)−F2(R0)Λ

is computed at a given curvature, in this case R0 = 0. In this
gauge, we have:

�
(
hμν − 1

2
ημνh − ημνΩ

)
= f1 − 2 f2Λ

F1 − 2F2Λ
hμν , (35)

with

Ω ≡ δ f ′ + δh′

F1 − 2F2Λ
. (36)

This is interesting as in the adopted gauge, we can have a
massive degree of freedom (scalar mode), but we also have
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a dressed graviton on the RHS that breaks residual gauge
invariance h′

μν = hμν − ∂(μεν), as expected [34]. It is worth
mentioning that the presence of a cosmological constant as
an integration constant in the gravity sector [64–66], that is
f1(R) = R − 2Λ, leads to a rather different result.

Equation (35) can be cast in a different form:

�
(
hμν − 1

2
ημνh

)
= f1 − 2 f2Λ

F1 − 2F2Λ
hμν

+ημν

3

(
hαβ

,αβ − �h
)

. (37)

However, �Ω = 1
3δR = 1

3

[− 1
2�h + �Ω

] ⇒ �Ω =
− 1

4�h. Thus, the previous equation becomes:

�
(
hμν − 1

4
ημνh

)
= f1 − 2 f2Λ

F1 − 2F2Λ
hμν , (38)

that is, the scalar mode is completely absorbed into a scaling
of the term of the trace of the graviton, though it still remains
in the gauge choice Eq. (34). This equation has the solution:

hμν = A+eikαxα

e+
μν + A×eikαxα

e×
μν , (39)

where A+, A× are the amplitudes of the “plus” and “cross”
polarisations, and e+

μν, e
×
μν are the usual polarisation tensors,

respectively. We further require the following dispersion rela-
tions for the tensor modes: kαkα ≡ ω2 −k2 = f1−2 f2Λ

F1−2F2Λ
. This

implies that h = 0, so that the traceless solution naturally
occurs when considering a cosmological constant. Conse-
quently, the coefficient of hμν in Eq. (38) corresponds to
the squared mass of the graviton, which has been recently
bounded tomg < 7.7×10−23 eV/c2 [6]. Given the two func-
tions and their first derivatives evaluated at vanishing curva-
ture, and an upper bound on the mass of the graviton, one has
that the denominator has to be much larger than the numer-
ator, and that both of them need to have the same sign. For a
pure non-minimal matter-curvature coupling ( f1(R) = R),
and using Λ = 4.33 × 10−66 eV 2 [67] one has the follow-
ing restriction: f2(0) > −6.8 × 1020 (in our convention,
c = 1). This is a too feeble constraint on the value of the
non-minimal coupling function evaluated at vanishing cur-
vature. Furthermore, in order to avoid tachyonic instabilities,
hence − f2(0)Λ > 0 ⇒ f2(0) < 0. Thus, a non-minimal
coupling to the cosmological constant model is a quite viable
model.

The group velocity, vg , of the gravitational wave follows
from the dispersion relation, yielding:

vg ≡ ∂ω

∂k
= 1√

1 + f1−2 f2Λ
F1−2F2Λ

1
k2

≈ 1 − m2
gw

2k2 , (40)

where mgw = f1−2 f2(0)Λ
F1−2F2(0)Λ

� 1, thus this model predicts
a group velocity of the gravitational wave slightly smaller

that the speed of light, thus avoiding Cerenkov radiation,
but really close to it. This is consistent with the most recent
constraints −3 × 10−15 <

vg−c
c < 7 × 10−16 [10]. Given

the dependence of k, or equivalently, the energy dependence
on the group velocity, the soft-graviton case, where k � 1,
could be problematic. However, for the observed frequencies
of gravitational waves f ∼ 250 Hz, and given the smallness
of the graviton’s mass, in our model ω ∼ k, thus leading to
vg = 1− mgw

2k2 ≈ 1−7.0×10−23 → 1−, which is compatible
with the above bounds.

Furthermore, the so-called “speed” of a gravitational
wave, cgw, follows from a modified dispersion relation in
models with rotation invariance of the form [11,68]

ω2 = m2
g + c2

gwk
2 + a

k4

Δ
, (41)

where Δ is a high-energy scale cut-off that has been con-
strained to be large [69], and a is an operator that depends
on each theory. This speed has been constrained to be in
the range 0.55 < cgw < 1.42 [11]. When comparing Eq.
(41) with the non-minimal coupling dispersion relation, then
cgw = 1, thus being observationally viable.

3.1 Longitudinal scalar mode

We shall discuss now the absence of the scalar mode Ω in
the solution of the wave equation. Since the perturbation δh′
vanishes for a cosmological constant as a source term, the
solution for Ω is straightforwardly achieved. The linearised
trace equation gives:

�Ω = m2
ΩΩ , (42)

with

Ω ≡ δ f ′

F1 − 2F2Λ
= F ′

1 − 2F ′
2Λ

F1 − 2F2Λ
δR , (43)

and the mass term

m2
Ω ≡ 1

3

[
F1 − 2F2Λ

F ′
1 − 2F ′

2Λ

]
. (44)

In the case of a gravitational wave in a cosmological con-
stant background passing, for instance, through a galaxy, the
mass of the fluctuation changes as in f (R) theories [70]. Con-
sidering a constant matter Lagrangian of the form L = −ρ0,
the underlying physics would be the same and we have only to
replace Λ by ρ0. Other forms for the matter Lagrangian yield
technical problems to handle, however, it does not change our
conclusions given the weakness of the coupling of gravity to
matter.
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3.2 Newman–Penrose analysis

Now we consider the Newman–Penrose (NP) formalism in
order to characterise the full nonlinear NMC model with a
cosmological constant background. This case is the same as
a f (R) theory with f (R) ≡ f1(R) − 2 f2(R)Λ. This means
that there may be six polarisation states.

Let us consider, for instance, the following forms for the
two functions f1(R) = R − αR−β and f2(R) = 1 + γ Rn .
From the trace equation we get:

R − 4Λ = 3�
(
αβR−β−1 − 2γ nΛRn−1

)

+α(β + 2)R−β + 2Λγ (2 − n)Rn . (45)

Note that for homogeneous and static scalar curvatures
(∇μR = 0) and for n = −β = 2, the solution is R = 0,
which is the case of a flat spacetime, for intance, as explored
in the previous subsection.

For the special case where n = −β = 2, but not for
homogeneous and/or static curvatures, then:

�R = − R − 4Λ

6(α + 2γΛ)
, (46)

whose solution is:

R(z, t) = 4Λ + R0e
ikαxα

, (47)

with R0 as an integration constant and k = (ω, 0, 0, k) under
the condition kαkα = 1/(6α + 12γΛ). The z and t depen-
dences of the Ricci scalar should not be surprising since the
computations have been made in the general case without
specifying a priori the spacetime.

Plugging this solution into Eq. (2), we obtain the nonvan-
ishing terms of the Ricci tensor:

Rtt = −Λ − R0eikαxα

2

[
1 − 4 (α + 2γΛ) k2

]
, (48)

Rzz = Λ + R0eikαxα

6

[
1 + 12 (α + 2γΛ) k2

]
, (49)

Rtz = − (α + 2γΛ) kωR0e
ikαxα

, (50)

Rxx = Ryy = Λ + 1

6
R0e

ikαxα

. (51)

It is straightforward to verify that R = −Rtt + Rxx +
Ryy + Rzz = 4Λ + R0eikαxα

. In Ref. [27], the term Rtz was
missing, thus leading to some incomplete conclusions.

This is an interesting result, as it yields a Starobinsky-like
model with a quadratic non-minimal coupling (the quadratic
term yields a GR behaviour with respect to inflation [48]).

The nonvanishing NP-Ricci quantities are:

Φ00 = α + 2γΛ

2
(ω − k)2 R0e

ikαxα

, (52)

Φ22 = α + 2γΛ

2
(ω + k)2 R0e

ikαxα

, (53)

Φ11 = Λ̃ − Λ

6
. (54)

This procedure allows us to study the Ricci tensor, or alter-
natively its traceless version, the Plebański tensor, Sμν =
Rμν − gμνR/4, and undertake a classification likewise the
Petrov one for the Weyl tensor. As for the Weyl tensor, we
must have the full metric in order to compute the Riemann
tensor. Expanding the metric in perturbation theory may lead
to a different Petrov classification, therefore the full metric
is mandatory to fully describe the theory.

For n = −β, and defining φ ≡ R−β−1 the result for
the Ricci scalar is as the one obtained in Ref. [27] with the
rescaling

φ
− 1

β+1 − 4Λ

α + 2γΛ
= 3β�φ + (β + 2)φ

β
1+β . (55)

In this case, if β ≥ 1, then at late times R−β 
 R,Λ, and
the Klein–Gordon equation becomes:

�φ ≈ −β + 2

3β
φ

β
1+β ∨ α + 2γΛ = 0. (56)

Assuming that α+2γΛ �= 0, it is straightforward to obtain
the following result:

R(z, t) =
[
iξ

(z − z0) − vt√
1 − v2

+ C−1/2
]−2

, (57)

with

ξ ≡ 1

2(β + 1)

[
2(β + 2)(β + 1)

3β(2β + 1)

]1/2

, (58)

where C is an integration constant and v is the wave propaga-
tion velocity which arises from the Lorentz transformation.
Then the nonvanishing components of the Ricci tensor read:

Rtt = R

6β

[
3 − 2

β + 2

1 − v2

]
, (59)

Rxx = Ryy = R

6β
[−3 + 2(β + 2)] , (60)

Rzz = R

6β

[
−3 − 2

β + 2

1 − v2 v2
]

, (61)

Rtz = R

6β

β + 2

1 − v2 2v . (62)

Thus, the non-null and independent NP-Ricci quantities
are:
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Φ00 = − R

12β
(β + 2)

1 − v

1 + v
, (63)

Φ22 = − R

12β
(β + 2)

1 + v

1 − v
, (64)

Φ11 = R

12β
(β + 2) = 2

β + 2

β
Λ̃ . (65)

The discussion on the NP-Weyl quantities is similar to the
previous case.

If β < −2, under the same conditions as above, then
R−β � R,Λ, the Ricci scalar is defined implicitly by:

(z − z0) − vt√
1 − v2

= √
6β(α + 2γΛ)

(β + 1)

(β + 2)

√
βR−1

β + 1
×

× 2F1

(
1

2
, 1 + β

2
; 2 + β

2
; 4βΛR−1

β + 1

)
,

(66)

where 2F1(a, b; c; z) is the hypergeometric function [71].
This can be evaluated for specific values of the exponent β.
As an example, let us consider the case of β = −3, then the
Ricci scalar reads:

R(t, z) = 6Λ − ((z − z0) − vt)2

108(α + 2γΛ)(1 − v2)
(67)

Thus, the NMC theories with a cosmological constant, or
with L = −ρ0 = const., become a f (R) theory. Further-
more, the polarisation states from the Weyl tensor can be
computed from the full metric of the theory. However, the
components of the Ricci tensor, the ones computed in this
paper, suggest the presence of extra polarisation modes of
the gravitational waves of the alternative model. With more
data available, the detection of these extra modes could be
a direct test of alternative theories of gravity, such as f (R)

and the NMC.

4 Dark-energy-like fluid

Let us now discuss the case where the perfect fluid matter
source has a equation of state parameter of the form w = −1,
which implies p = −ρ:

L = −ρ ≈ const. ⇒ Tμν = −ρgμν ⇒ T = −4ρ . (68)

This case resembles the previous one with a cosmological
constant, but with a difference, namely that, in general, δρ �=
0, so that the linearised field equations read:

�
(
hμν − 1

2
ημνh − ημνΩ

)

= f1 − 2 f2ρ

F1 − 2F2ρ
hμν + 2 f2δρ

F1 − 2F2ρ
ημν , (69)

with

Ω ≡ δ f ′ + δh′

F1 − 2F2ρ
. (70)

Noting that

3�Ω = δR − 4

F1 − 2F2ρ
δρ , (71)

which means �Ω = − 1
4�h − 2 δρ

F1−2F2ρ
, thus:

�
(
hμν − 1

4
ημνh

)
= f1 − 2 f2ρ

F1 − 2F2ρ
hμν . (72)

This result is not surprising, as for the cosmological con-
stant case, the trace of the graviton term is reduced by half,
but additionally the matter perturbation term disappears due
to the fact one required ρ = ρ0 + δρ, and the fluctuation is a
subleading term.

As far as the longitudinal modes are concerned, and
assuming that one can decouple the two modes in the Klein-
Gordon equation, which is assuming that matter and curva-
ture perturbations evolve separately at linear order, we have:

�ω f = m2
ω f

ω f , (73)

�ωh = m2
ωh

ωh, (74)

with

ω f ≡ δ f ′

F1 − 2F2ρ
= F ′

1 − 2F ′
2ρ

F1 − 2F2ρ
δR , (75)

and

ωh ≡ δh′

F1 − 2F2ρ
= −2F2

F1 − 2F2ρ
δρ . (76)

Of course, however, this is not the most general case, in
which the evolution of matter and curvature perturbations
evolve depending on each other, thus being coupled.

The mass terms are defined as

m2
ω f

≡ 1

3

[
F1 − 2F2ρ

F ′
1 − 2F ′

2ρ
− R0

]
, (77)

m2
ωh

≡ 1

3

[
2 f2
F2

− R0

]
, (78)

respectively, which in our case R0 = 0. In order to avoid
tachyonic instabilities, one has to require both F1−2F2ρ

F ′
1−2F ′

2ρ
≥ 0

and f2/F2 ≥ 0.
Thus, considering a dark energy-like fluid, whose L =

−ρ ≈ const., is quite similar to a cosmological constant in
the wave equation for the tensor modes, but with an extra
longitudinal mode related to δρ.
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5 Conclusions

In this work we have analysed the effects of a non-minimal
coupling between matter and curvature on gravitational
waves. The perturbation of the trace of the field equations
exhibits a behaviour that can be interpreted as the dynamics
of the effective scalar field decoupled into two scalar modes:
one that arises from perturbations on the Ricci scalar and the
other from perturbations on the matter Lagrangian density.
In vacuum, the NMC reduces to f (R) and we expect to have
the known polarisation modes.

Considering a background determined by a cosmological
constant, we get the same results as in f (R) theories by iden-
tifying f (R) ≡ f1(R) − 2Λ f2(R). Nevertheless, through
the choice of a suitable gauge, the scalar mode is absorbed
into a scaling of the term of h in the wave equation, and the
source term given by the graviton is dressed by the func-
tions f1(R = 0), f2(R = 0) and the cosmological constant.
This implies that at linear order the graviton propagates with
velocity v � c, and the formalism developed in Refs. [20,21]
cannot be directly applied [72]. Instead, one has to compute
all the Newmann-Penrose quantities in order to assess the
Petrov (for the Weyl tensor) and Plebánski (for the trace-free
Ricci tensor) classifications of the theory [73].

The f (R) and the non-minimal coupling between mat-
ter and a cosmological constant differ from GR in the sense
that, at linear order, gravitational waves propagate at veloci-
ties lower than c, and there are extra polarisation modes. In
particular, one scalar mode that propagates in the longitudinal
way relatively to the gravitational wave has a mass that may
be measured. When considering a gravitational wave pass-
ing through the Milky Way’s arm where the Solar System
lies, assuming that the energy density is roughly constant,
ρ0, then the results derived in this paper still apply replacing
Λ → ρ0. If we consider a dark energy-like matter, the prop-
agation equation for the tensor modes is analogous to the one
in the cosmological constant scenario, as long as ρ ≈ const.,
but the scalar mode equation has an extra term, which can be
interpreted as the longitudinal mode being the result of the
mixture of two fundamental excitations arising from δR and
δρ.

Relatively to the detectability of these theories, one may
resort to the theory-independent method developed in Ref.
[74]: the antenna angular pattern functions of the detec-
tor of gravitational waves measures the linear combina-
tion of the polarisation states. Thus, the response from
combined Gravitational Wave detectors, such as Advanced-
LIGO, Advanced-Virgo or Einstein GW Telescope, could be
used to distinguish between models of gravity.

In fact, the most recent bounds on the mass of the gravi-
ton and on the velocity of the gravitational waves are in
agreement with the non-minimal matter-curvature coupling
model.

In what concerns the strong gravity regime, previous work
on black hole solutions in the context of curvature-matter
nonminimally coupled theories [47] brings some insight on
the issue. Indeed, as discussed in Ref. [47], once the Newto-
nian limit is ensured and the null energy condition is satisfied,
it is found that the Schwarzschild and Reissner–Nordstrom
solutions of GR are recovered in the non-minimally coupled
curvature-matter theories provided the mass, the charge, and
the cosmological constant are suitably “dressed”. This means
that existing analyses on gravitational waves generation by
black holes collisions will essentially hold with a modifica-
tion on the relevant parameters so to account for the effects
of the non-minimal coupling.

In concluding, the present paper addresses the issue of
gravitational waves in NMC theories. Future work requires
extending the formalism of cross-correlation analysis so to
include the new scalar and vectorial modes. It would then be
possible to compute the energy density of the spectrum of
a stochastic background of gravitational waves, similar, for
instance, to the work of Ref. [75].
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