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Abstract Using Rindler method we derive the logarith-
mic correction to the entanglement entropy of a two dimen-
sional BMS-invariant field theory (BMSFT). In particular,
we present a general formula for extraction of the logarith-
mic corrections to both the thermal and the entanglement
entropies. We also present a CFT formula related to the log-
arithmic correction of the BTZ inner horizon entropy which
results in our formula after taking appropriate limit.

1 Introduction

One of the lessons of the AdS/CFT correspondence [1,2]
is that the asymptotic symmetry of the asymptotically AdS
spacetimes in d+1 dimensions is the same as conformal sym-
metry in one dimension lower. One can use this idea to gen-
eralize the gauge/gravity duality beyond the AdS/CFT cor-
respondence. Accordingly, in any non-AdS/non-CFT corre-
spondence, the symmetry of the dual field theory should be
the same as the asymptotic symmetry of the gravity solutions.

The asymptotic symmetry of asymptotically flat space-
times were known long before Maldacena’s conjecture. Such
symmetries are known as BMS, which were first found at null
infinity of four-dimensional asymptotically flat spacetimes
[3–5], and later were generalized to the three-dimensional
case [6]. Recently, Barnich and his collaborates [7–9] have
shown that imposing just locally well-definiteness condition
is enough to enhance both the translation and the rotation
symmetry of the Poincare group at null infinity to an infinite-
dimensional symmetry group. In this work BMS group refers
to this infinite-dimensional group which consists of super-
rotation and super-translation generators.

In one dimension lower than gravity theory, the BMS alge-
bra is given by an ultra-relativistic contraction of the confor-
mal algebra. Thus BMS symmetry can be the symmetry of a
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lower dimensional field theory. It is proposed that the holo-
graphic dual of d+1-dimensional asymptotically flat space-
times are ultra-relativistic d-dimensional BMS-invariant field
theories (BMSFTs) [10–12].

In flat-space holography, BMSFT entanglement entropy
and its holographic dual were first studied in [13] and the
entanglement entropy of a two-dimensional BMSFT was
computed by a method similar to the CFT [14]. A holo-
graphic interpretation of the BMSFT entanglement entropy
in [13] (similar to the Ryu–Takayanagi proposal in the con-
text of AdS/CFT correspondence [15]) is given using Chern–
Simons formulation of three-dimensional flat-space gravity
[16]. Other aspects of BMSFT entanglement entropy has
been studied in [17,18]. A remarkable progress in this sub-
ject has been achieved recently in [19] where Rindler method
[20] is used to derive not only the BMSFT entanglement
entropy formula but also the holographic description in terms
of some curves length in the bulk theory. The central idea of
the Rindler method is to find local unitary transformations
which map entangled states to the thermal states in the field
theory. Then one can use the thermal entropy formula and
find the entanglement entropy.

Calculation of thermal entropies in BMSFTs is performed
using Cardy-like formula first introduced in [21]. Using
Rindler method, the entanglement entropy is given by Cardy-
like formula. Similar to the Cardy-formula in CFT, the saddle
point approximation is used to derive this formula. Thus, it is
possible to improve approximation and find possible correc-
tions of this formula. In [22], employing a method first used
for the Cardy formula in [23]1, logarithmic correction to the
Cardy-like formula has been derived.

1 We note however that the Cardy (high temperature) limit is not always
reliable for extracting the black hole entropy [24]. On the other hand, in
two dimensional CFTs the logarithmic corrections are only universal in
the Cardy regime. From the dual three dimensional gravity perspective,
the universality of the correction is usually because heat kernels do not
contain logarithmic terms [25]. Thus the logarithmic correction to the
BMSFT thermal and entanglement entropies are universal in the limit
that BMSFT Cardy-like formula is reliable.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-5760-x&domain=pdf
mailto:r\protect _fareghbal@sbu.ac.ir
mailto:pedramkarimie@gmail.com


267 Page 2 of 8 Eur. Phys. J. C (2018) 78 :267

In this paper, we use the logarithmic correction to Cardy-
like formula along with Rindler method to find the logarith-
mic correction of BMSFT entanglement entropy. Similar to
the leading term, this correction depends on central charges
of BMS algebra, the interval of the sub-system and the cut-
off. However, the interesting point is that we can rewrite the
corrections in a universal form:

S = S0 − 3 log

(
C

1
3
M

∂S0

∂CL

)
(1.1)

where S0 is the leading term and CL and CM are the cen-
tral charges of BMS algebra. S can be both of the thermal
entropy (which is given by the Cardy-like formula) and the
entanglement entropy. This formula works for all BMSFTs
on plane or cylinder at zero or finite temperature.

The entanglement entropy of the boundary theory can be
used to reconstruct the bulk dynamics [26,27]. In this view,
the logarithmic correction of the entanglement entropy might
be helpful to find quantum correction to the Einstein field
equations. This paper is the first step on this road. The idea
is to use the first law of the entanglement entropy as the ana-
logue of the first law of (black hole) thermodynamics [26–
28]. The better understanding of BMSFT modular hamilto-
nian might allow us to achieve not only the classical bulk
dynamics but also the quantum correction to the Einstein
equation without the cosmological constant.

One approach to study Flat/BMSFT is to take limit from
the AdS/CFT calculations. According to the proposal of [12],
the flat space limit in the gravity side corresponds to taking
an ultra-relativistic limit from the CFT calculations. Hence
one can find all BMSFT formulas by taking limit from a
CFT counterpart. It was shown in [29,30] that the Cardy-like
formula of BMSFT is given by taking limit from a formula
in the CFT which is related to the inner horizon entropy of
the gravity solution. If we assume the same relation for the
logarithmic correction, the logarithmic term in (1.1) is related
to a logarithmic correction in the entropy of the inner horizon.
We propose a suitable logarithmic correction in the inner
horizon formula which corresponds to the logarithmic term
of (1.1) after taking limit. Using logarithmically corrected
inner and outer horizon entropy formulas we can calculate
their multiplication. The observation is that the previously
known result, the multiplication being mass independent for
the Einstein gravity [31] (see also [32]), is violated in the
presence of the logarithmic terms.

The structure of this paper is as follows: In section two
we review the results of [19] which uses the Rindler method
to derive the BMSFT entanglement entropy and its holo-
graphic description. In section three we review the deriva-
tion of BMSFT Cardy-like formula and its logarithmic cor-
rection. In section four we put together the results of section
two and three to derive the logarithmic correction of BMSFT
entanglement entropy. Section five is devoted to the deriva-

tion of the BMSFT entanglement entropy formula by taking
flat-space limit.

2 Entanglement entropy of BMSFT using rindler
method

One of the advantages of the Rindler method is the conve-
nience it provides for the calculation of entanglement entropy
in the context of gauge/gravity duality. In this view, the ther-
mal entropy of the boundary theory is mapped to the horizon
entropy of the black hole (object) in the gravity side. Thus,
one can use it to prove Ryu–Takayanagi (RT) formula for the
holographic entanglement of CFTs. Moreover, since many
thermal properties of the gravitational systems are known
for the non-AdS cases, we expect that the Rindler method
gives a lot of insights to find the analogue of RT formula for
the dualities beyond the AdS/CFT correspondence.

In Rindler method, the asymptotic symmetries play an
essential role. We are interested in BMSFTs which are pro-
posed to be the holographic dual of asymptotically flat space-
times. In our case, a Rindler transformation is of the form of
BMS transformation and final coordinates are invariant under
specific thermal identifications. These transformations act
like unitary operators UR on the fields and map the reduced
density matrix in the subregion A (which we want to calcu-
late the entanglement entropy for) to a thermal density matrix
in the interval B,

ρA = UR ρB U−1
R . (2.1)

Since the unitary transformations do not change the entropy,
the thermal entropy of the subregion B is the same as entan-
glement entropy of the subregion A.

A two-dimensional BMSFT has the following symmetry
[33]:

ũ = ∂φ f (φ)u + g(φ),

φ̃ = f (φ), (2.2)

where f (φ) and g(φ) are arbitrary functions of the origi-
nal coordinate (u, φ). The BMS algebra is given by using
infinitesimal BMS transformation as

[Ln, Lm] = (n − m)Ln+m + CL

12
n(n2 − 1)δn+m,0,

[Ln, Mm] = (n − m)Mn+m + CM

12
n(n2 − 1)δn+m,0,

[Mn, Mm] = 0. (2.3)

where for a BMSFT on a plane with coordinates (u, φ) the
generators Ln and Mn are given by
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Ln = −u(n + 1)φn∂u − φn+1∂φ

Mn = φn+1∂u . (2.4)

The global part of this algebra is identified with n = 0,±1.
A Rindler transformation is of the form x̃ = T (x), but

it should be invariant under some imaginary identification
(thermal identification) of the new coordinate x̃ i ∼ x̃ i +
i β̃ i . Moreover, vectors ∂x̃ i annihilate the vacuum and hence
should be written as the linear combination of the global part
of the BMS algebra:

∂x̃ i =
1∑

n=−1

(bnLn + dnMn). (2.5)

Using (2.2) and (2.5) we conclude that

∂φ f (φ) = 1

Y
, ∂φg(φ) = − T

Y 2 , (2.6)

where

Y = −b−1 − b0φ − b1φ
2, (2.7)

T = d−1 + d0φ + d1φ
2. (2.8)

Solutions to (2.6) determine vector ∂x̃ i . It is assumed that

entangled region is given by A = {(−lφ
2 , −lu

2 )∪ (
lφ
2 , lu

2 )}. We
can use the following constraints to find vector ∂x̃ i and the
geometric (modular) flow kt = −β̃φ∂φ̃ + β̃u∂ũ :

1. The finite interval on A should be mapped to the infinite
interval on B,

(−lφ
2

,
−lu

2

)
→ (−∞,−∞), (2.9)

(
lφ
2

,
lu
2

)
→ (∞,∞). (2.10)

2. The origin of the entangled interval is mapped to the
origin of the thermal interval

(0, 0) → (0, 0) (2.11)

3. The thermal interval (tilde coordinate) obeys a thermal
identification of the following form

(φ̃, ũ) ∼ (φ̃ + i β̃φ, ũ − i β̃u). (2.12)

4. The modular flow kt vanishes on the boundary of the
entangled region

kt (∂A) = 0 ⇒
⎧⎨
⎩
kt

(−lφ
2 , −lu

2

)
= 0,

kt
(
lφ
2 , lu

2

)
= 0

(2.13)

Using these conditions, [19] completely determines the
Rindler transformation and modular flow of a BMSFT on
the plane as below:

φ̃ = β̃φ

π
tanh−1 2φ

lφ
, (2.14)

ũ + β̃u

β̃φ

φ̃ =2β̃φ(ulφ − luφ)

π(l2φ − 4φ2)
, (2.15)

kt = − β̃φ∂φ + β̃u∂u

=−π

2lφ

((
l2φ − 4φ2

)
∂φ

+
(
lulφ + 4

lu

lφ
φ2 − 8uφ

)
∂u

)
(2.16)

For a BMSFT with identification of coordinates as

(ũ, φ̃) ∼ (ũ + i ā, φ̃ − ia) ∼ (ũ + 2π b̄, φ̃ − 2πb), (2.17)

The degeneracy of states is given by a Cardy-like formula
[19,21,34] (see next section).

Sb̄|b(ā|a) = −π2

3

(
CL

b

a
+ CM

(āb − ab̄)

a2

)
. (2.18)

Using (2.18), the entanglement entropy of a BMSFT on the
plane for the interval A = {(−lφ

2 + εφ, −lu
2 + εu) ∪ (

lφ
2 −

εφ, −lu
2 − εφ)} becomes [19]

SEE = CL

6
log

lφ
εφ

+ CM

6

(
lu
lφ

− εu

εφ

)
, (2.19)

where εu and εφ are ultraviolet cut-offs in u and φ coordi-
nates. Similarly the entanglement entropy for finite temper-
ature BMSFT on the cylinder has been calculated in [19].

3 Logarithmic correction to Cardy-like formula of
BMSFT

The entropy of CFT thermal states is calculated using Cardy
formula. Using the saddle point approximation, it is possi-
ble to find a similar formula for the degeneracy of thermal
states in a BMSFT [19,21,34]. Due to the Rindler method,
any correction to Cardy-like formula has influence on the
entanglement entropy formula. In this section, we review the
logarithmic correction to Cardy-like formula [22] and then
use it to find the logarithmic correction to the entanglement
entropy. Method of [22] is based on [23] that introduces the
first order logarithmic correction to the Cardy formula (For
a calculation of all order corrections see [35])
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We start from the modular invariant partition function of
BMSFT on a torus defined by

Z0(β̂u |β̂φ) = Tr e
−β̂u

(
M0−CM

24

)
+β̂φ

(
L0−CL

24

)

= eβ̂u
CM
24 −β̂φ

CL
24 Z(β̂u |β̂φ), (3.1)

where Z(β̂u |β̂φ) is

Z(β̂u |β̂φ) = Tr e−β̂uM0+β̂φL0

=
∑

hM ,hL

e(−β̂uhM+β̂φhL )d(hM , hL), (3.2)

and identification of torus are

(û, φ̂) ∼ (û + i β̂u, φ̂ − i β̂φ) ∼ (û, φ̂ − 2π). (3.3)

Here, hL and hM are respectively the eigenvalues of L0 and
M0. It is shown that the BMS modular invariant partition
function satisfies [19]

Z0(β̂u |β̂φ) = Z0

(
−4π2 β̂u

β̂2
φ

|4π2

β̂φ

)
. (3.4)

Plugging equation (3.4) into (3.1) gives,

Z(β̂u |β̂φ) = e
β̂u

CM
24 −β̂φ

CL
24 − π2 β̂uCM

6β̂2
φ

− π2CL
6β̂φ Z

×
(

−4π2 β̂u

β̂2
φ

|4π2

β̂φ

)
. (3.5)

By using the inverse Laplace transformation in last term of
(3.2) we find

d(hL , hM ) =
∫

dβ̂udβ̂φe
β̂u

CM
24 −β̂φ

CL
24 − π2 β̂uCM

6β̂2
φ

− π2CL
6β̂φ

+β̂uhM−β̂φhL
Z

×
(

−4π2 β̂u

β̂2
φ

|4π2

β̂φ

)
. (3.6)

In order to simplify (3.6), we use two approximations. First,
we consider large charges which yields

d(hL , hM ) =
∫

dβ̂udβ̂φe
− π2 β̂uCM

6β̂2
φ

− π2CL
6β̂φ

+β̂uhM−β̂φhL
Z

×
(

−4π2 β̂u

β̂2
φ

|4π2

β̂φ

)
. (3.7)

Then, we approximate (3.6) around the saddle point given by

(β̂s
φ)2 = π2CM

6hM
, β̂s

u = β̂s
φ

2hM CM
(CMhL − CLhM ).

(3.8)

Finally, the entropy or Cardy like formula for BMSFT reads
as2

S0 = log d(hL , hM ) = − π2

3(β̂s
φ)2

(
CM β̂s

u + CL β̂s
φ

)
. (3.9)

To find logarithmic correction we expand the integral (3.7)
around the saddle point (3.8) up to quadratic term:

d(hL , hM ) = eS
0
∫

dβ̂udβ̂φe
1
2 (X2−Y 2), (3.10)

where

X = πCM

3β̂s
φ A

(β̂u − β̂s
u),

Y = π A

(β̂s
φ)2

[
−(β̂φ − β̂s

φ) + CM β̂s
φ

3A2 (β̂u − β̂s
u)

]
, (3.11)

A =
√
CM β̂s

u + 1

3
CL β̂s

φ. (3.12)

Using (3.11), Eq. (3.10) takes the form

d(hL , hM ) = eS
0

(
− π2CM

3(β̂s
φ)3

)−1 ∫
dXdYe

X2−Y2
2 . (3.13)

In the above equation the result of integration is just a number.
Thus we find correction to the entropy up to a constant as [22]

S = log d(hL , hM )

= − π2

3(β̂s
φ)2

(
CM β̂s

u + CL β̂s
φ

)

−3 log

⎛
⎝−C

1
3
M

β̂s
φ

⎞
⎠ + constant. (3.14)

The interesting point is that the logarithmically corrected
term can be rewritten (up to a constant) as the derivative of
the leading term with respect to CL :

S = S0 − 3 log

(
C

1
3
M

∂S0

∂CL

)
. (3.15)

4 Logarithmic correction to entanglement entropy

In this section, we put together the results from sections two
and three to find the logarithmic correction of BMSFT entan-
glement entropy. As mentioned before, the idea is to map
entangled states to thermal states and then calculate entropy.
The entropy is computed using BMSFT Cardy-like formula
(3.14) which also has a logarithmic correction. In the deriva-
tion of (3.14) the identification of coordinates (3.3) plays

2 It is assumed that the partition function is slowly varying at the
extremum.
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an essential role. It is possible to use (3.14) for finding the
degeneracy of thermal states with more generic identification
of coordinates as

(ũ, φ̃) ∼ (ũ + i ā, φ̃ − ia) ∼ (ũ + 2π b̄, φ̃ − 2πb) (4.1)

The coordinate change between (ũ, φ̃) and (û, φ̂) is a BMS
transformation,

φ̂ = φ̃

b
, û = ũ

b
+ b̄

b2 φ̃, (4.2)

where

β̂φ = a

b
, β̂u = ā b − a b̄

b2 . (4.3)

Thus Cardy-like formula (3.14) can be written as

S = −π2

3

(
CL

b

a
+ CM

ā b − a b̄

a2

)
− 3 log

(
−C

1
3
M
b

a

)

(4.4)

In order to find the logarithmic correction of BMSFT entan-
glement entropy, it is enough to map the entanglement
entropy to a thermal entropy and then use (4.4). As it was
reviewed in Sect. 2, the Rindler transformation which gov-
erns this map is determined in such a way that finally induces
the thermal identification (2.12). Comparing (2.12) to (4.1)
shows that

a = β̃φ, ā = β̃u . (4.5)

The values of β̃φ , β̃u and b, b̄ depend on the details of the
Rindler transformation. These are given in terms of the cut-
offs and the interval for which entanglement entropy is cal-
culated.

Starting from a regulated interval in the BMSFT given by

(
− lu

2
+ εu,− lφ

2
+ εφ

)
→

(
lu
2

− εu,
lφ
2

− εφ

)
, (4.6)

the Rindler transformation yields the following results [19]:

• For the zero temperature BMSFT on the plane we have

a = β̃φ = − 2π2

log lφ
εφ

, ā = β̃u = − β̃2
φ

2π2

(
lu
lφ

− εu

εφ

)
,

(4.7)

b = − β̃φ

2π2 log
lφ
εφ

,

b̄ = 1

2π2

(
β̃φlu
lφ

− β̃φεu

εφ

− β̃u log
lφ
εφ

)
, (4.8)

Then the logarithmically corrected Cardy-like formula
(4.4) becomes

SEE = CL

6
log

lφ
εφ

+ CM

6

(
lu
lφ

− εu

εφ

)

−3 log

(
C

1
3
M log

lφ
εφ

)
+ constant. (4.9)

The third term in the above formula is the calculated cor-
rection.

• For the finite temperature BMSFT with identification

(u, φ) ∼ (u + iβu, φ − iβφ), (4.10)

we can use the results of [19] and Eq. (4.4) to write

SEE =CL

6
log

(
βφ

πεφ

sinh
πlφ
βφ

)

+ CM

6

1

βφ

[
π

(
lu + βu

βφ

lφ

)
coth

πlφ
βφ

− βu

]

− CMεu

6 εφ

− 3 log

(
C

1
3
M log

(
βφ

πεφ

sinh
πlφ
βφ

))
+ constant.

(4.11)

The forth term in the above equation is the obtained cor-
rection for finite temperature.

• For the zero temperature BMSFT on the cylinder, the
entanglement entropy with logarithmic correction reads
as

SEE = CL

6
log

(
2

εφ

sin
lφ
2

)
+ CM

12

(
lu cot

lφ
2

− 2εu

εφ

)

−3 log

(
C

1
3
M log

(
2

εφ

sin
lφ
2

))
+ costant.

(4.12)

It is clear from all the above cases that up to a constant,
the entanglement entropy formula including the logarithmic
correction is given by

SEE = S0 − 3 log

(
C

1
3
M

∂S0

∂CL

)
(4.13)

This formula is also valid for the thermal entropy when S0 is
the Cardy-like formula. Thus, we propose a universal form
for the logarithmic correction of entanglement entropy and
thermal entropy. We expect the same common form for the
CFT case. In the next section, we propose a similar form
of logarithmic correction to CFT thermal and entanglement
entropy and try to find (4.13) by taking limit from CFT for-
mula.
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5 Logarithmic correction of BMSFT entropy by taking
limit from CFT counterpart

For a two dimensional CFT with central charges c and c̄ and
right and left temperatures β and β̄, the Cardy formula is

S0 = π2

3

(
c

β
+ c̄

β̄

)
. (5.1)

Using AdS/CFT correspondence, this formula results in the
same entropy as the outer horizon entropy of asymptotically
AdS black holes in the gravity side. The logarithmic correc-
tion to (5.1) was evaluated in [23]:

Slog = −3

2
log

(
c1/3

β

)
− 3

2
log

(
c̄1/3

β̄

)
+ constant. (5.2)

Employing (5.1) and (5.2) we can write

S = S0 + Slog = S0 − 3

2
log

(
c1/3 ∂S0

∂c

)

−3

2
log

(
c̄1/3 ∂S0

∂ c̄

)
+ constant. (5.3)

Using Rindler method we can expect the same formula for the
logarithmically corrected CFT entanglement entropy. Thus
we propose (5.3) as a universal formula that can be used for
both the thermal entropy and the entanglement entropy.

It is known that taking flat space limit from the asymptoti-
cally AdS spacetimes (written in the appropriate coordinate)
yields asymptotically flat spacetimes. It is proposed in [12]
that the flat space limit in the bulk corresponds to taking the
ultra-relativistic limit in the boundary CFT. In other words,
BMSFT is given by taking ultra-relativistic limit from the
CFT. Starting from conformal algebra in two dimensions,
one can introduce an ultra-relativistic contraction and gener-
ate BMS algebra [12]. The relation between central charges
of conformal algebra and BMS algebra is given by

CL = lim
ε→0

(c − c̄) , CM = lim
ε→0

ε (c + c̄) (5.4)

where ε is a dimensionless parameter which corresponds to
G/	 on the gravity side. G is the Newton constant and 	 is
the AdS-radius. Thus ε → 0 in the boundary corresponds to
	 → ∞.

It is plausible to find all BMSFT quantities by taking limit
from the CFT counterparts. Thus one can look for the possible
relation between (4.13) and (5.3). However, assuming S0 in
(5.3) as the Cardy formula (5.1) and using (5.4) does not
result in the Cardy-like formula (3.9). It was shown in [29]
and [30] that the appropriate formula which its limit yields
the Cardy-like formula is

S0
inner = π2

3

(
c

β
− c̄

β̄

)
. (5.5)

For taking limit we should scale the temperatures as below:

βu = lim
ε→0

(
β − β̄

2ε

)
, βφ = lim

ε→0
−

(
β + β̄

2

)
. (5.6)

Using AdS/CFT correspondence, (5.5) corresponds to the
inner horizon entropy of asymptotically AdS black holes.
Thus, we expect that taking limit from (5.3) which is written
for the outer horizon does not yield (4.13). In the rest of this
section, we introduce appropriate formula which taking limit
from it result in (4.13).

Let us start from S0 in (4.13). When it is the thermal
entropy given by the Cardy-like formula, the corresponding
formula in the CFT will be (5.5). The question is then what
is the corresponding CFT formula when S0 in (4.13) is not
the leading order of entanglement entropy?

It is known that taking ultra-relativistic limit from the
entanglement entropy of CFT is not well-defined. For exam-
ple, for a zero temperature CFT on a plane, the entanglement
entropy of an interval

− R

2
(cosh κ, sinh κ) → R

2
(cosh κ, sinh κ), (5.7)

is given by [36]

SEE = c + c̄

2
log

R

εR
− c − c̄

6
κ (5.8)

where εR is a cut-off. Using (5.4) together with ultra-
relativistic contraction t → εt shows that (5.8) is divergent
in the ε → 0 limit.

It is proposed in [17] that BMSFT entanglement entropy
can be found by taking the limit from the CFT counterpart.
In the prescription of [17] it is argued that the symmetries
are enough to fix the form of the entanglement entropy. Then
they use a new contraction of conformal algebra which results
in BMS algebra. But the relation between central charges
of conformal algebra and BMS algebra differs from (5.4).
Since the final algebra is the same as the ultra-relativistic
contraction of [12], the author of [17] argued that their results
are the entanglement entropy of BMSFT.

If we continue the logic which relates the Cardy-like for-
mula to the limit of inner horizon entropy then we conclude
that the entanglement entropy of BMSFT should be related
to a formula in the CFT which is transformed to the inner
horizon formula by using Rindler transformation [19]. It is
not difficult to check that the formula

Sinner = c − c̄

2
log

R

εR
− c + c̄

6
κ (5.9)

results in the leading term of entanglement entropy of zero
temperature BMSFT on the plane after taking the ultra-
relativistic limit. This formula is nothing but the inner horizon
Cardy formula (5.5) if we use Rindler transformation [19].
Therefore we conclude that S0 in (4.13) is given by taking
limit from a formula which is related to the inner horizon
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of dual spacetime. Similarly, the logarithmic correction in
(4.13) is also given by taking limit from a formula which is
the logarithmic correction to the inner horizon entropy. It is
not difficult to check that taking ε → 0 limit from

Slog,inner = −3

2
log

∣∣∣∣c1/3 ∂S0

∂c

∣∣∣∣ − 3

2
log

∣∣∣∣c̄1/3 ∂S0

∂ c̄

∣∣∣∣ − log ε,

(5.10)

results in the logarithmic term of (4.13) up to a constant. The
interpretation of (5.10) in the gravity is of importance. As
mentioned before ε in the field theory corresponds to G/	 on
the bulk side. For the BTZ black holes, we have

β = 2π	

(r+ + r−)
, β̄ = 2π	

(r+ − r−)
. (5.11)

where r± are the radii of inner and outer horizons. Thus,
using (5.5), (5.10) and (5.11), we can find the logarithmic
correction to the inner horizon entropy of BTZ black hole as

SBT Z
inner = πr−

2G
− 3

2
log

r2+ − r2−
	2 + constant, (5.12)

where we have substituted central charges as c = c̄ = 3	
2G .

On the other hand, using (5.1), (5.2) and (5.11) we find that

SBT Z
outer = πr+

2G
− 3

2
log

r2+ − r2−
	2 − log

	

G
+ constant. (5.13)

It is clear from (5.12) and (5.13) that due to the logarith-
mic corrections, multiplication of inner and outer horizon
entropies depends not only on the angular momentum but
also on the mass of BTZ. This corrects the result of [31]
which in the leading term the multiplication of inner and
outer entropies is mass independent.

6 Conclusion

In this paper we introduced a generic formula for the log-
arithmic corrections of the BMSFT thermal and the entan-
glement entropies. Our derivation is based on the Rindler
method which makes connections between the thermal and
the entanglement entropies. The most important application
of the present work will reveal itself in the reconstruction of
the bulk dynamics beyond the classical regime. This recon-
struction has been done recently in the bulk AdS case through
the perturbation of the entanglement entropy [26,27]. After
generalizing the method of [26] for the flat-space hologra-
phy, we will be able to derive the quantum corrections to
the Einstein gravity without the cosmological constant field
equations using the results of the current paper.

Most of the works in the flat-space holography can be
performed by taking the flat space-limit from the AdS/CFT
calculations. One of the possible roads for finding the correc-
tions of the BMSFT entanglement entropy formula is taking

limit from the calculation of [37] which studies the one-loop
bulk corrections to the Ryu–Takayanagi formula.
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