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Abstract We discuss the leptonic flavor structure gener-
ated by a brane shifted extra dimensional seesaw model with
a single right handed neutrino in the bulk. In contrast to previ-
ous works, no unitarity approximation for the 3×3 submatrix
has been employed. This allows to study phenomenological
signatures such as lepton flavor violating decays. A strong
prediction of the model, assuming CP conservation, are the
ratios of flavor violating charged lepton decay and Z decay
branching ratios which are correlated with the neutrino mix-
ing angles and the neutrino mass hierarchy. Furthermore, it is
possible to obtain branching ratios for μ → eγ close to the
experimental bounds even with Yukawa couplings of order
one.

1 Introduction

In the last decade compactified large extra dimensions (LED)
attracted a lot of attention [1,2], by providing an attrac-
tive possibility to solve the hierarchy problem. This can be
achieved by allowing Standard Model (SM) singlets, e.g.
gravitons, to propagate in spatial extra dimensions leading
to a suppression of the Planck scale by a volume factor of the
extra dimensions.

Since a right handed neutrino is a SM singlet it could also
be allowed to propagate in the extra dimension, resulting in
a suppression of the Yukawa coupling to the left handed neu-
trino, and thereby, suppressing the neutrino mass [3]. Addi-
tionally, if a right handed neutrino feels the extra dimensions,
an infinite tower of Kaluza–Klein excitations with masses
∼ R−1 appears when integrating out the extra dimensions,
resulting in an additional suppression of the neutrino mass
by an extra dimensional variant of the type I seesaw mecha-
nism, which was investigated e.g. in [4–6]. In this paper, we
explain the observed active neutrino mixing within a minimal
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extra dimensional extension of the SM, where only one right
handed neutrino field is introduced, which can propagate in
one extra dimension while gravity is allowed to feel a larger
number of extra dimensions. Furthermore, the brane where
the SM particles and interactions are located is shifted away
from the fix points of the S1/Z2 orbifold.

Without this brane shift the model is only capable of gener-
ating one neutrino mass difference. Consequently, the brane
shift is necessary to generate a realistic result. A similar setup
was discussed with only one generation of neutrinos and a
focus on neutrinoless double beta decay [5] or on leptoge-
nesis [7] while in [8] lower limits on the fundamental scale
of gravity were derived. A systematic study of right handed
neutrinos with a bulk mass term propagating within one flat
extra dimension is given in [9].

An important consequence of the active neutrino mixing
with sterile neutrinos is that the resulting effective three by
three mixing matrix of the active neutrinos is not unitary any-
more. This leads to some phenomenological consequences,
e.g. in rare lepton decays [8,10,11].

The paper is structured as follows: In Sect. 2 the general
setup is introduced and the complete mass matrix for the
active neutrinos and the Kaluza Klein excitations is derived.
In Sect. 3 this mass matrix is analyzed. By employing some
approximations, the mixing matrix for the neutrinos in a non-
unitarity violating limit is derived and used to constrain the
parameter space of the model. Finally, in Sect. 4, the unitarity
violation of the system is investigated in more detail and the
resulting effects on lepton flavor violating decays are studied.

2 Setup

In this section, we introduce the field content and general
properties of the model. A right handed neutrino is added to
the SM particle content. Since it is not charged under the SM
gauge groups it is allowed to propagate in the extra dimen-
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sion while all SM particles are confined to a (3 + 1) dimen-
sional subspace, called brane. The analysis assumes that the
neutrino experiences only one extra dimension, which is not
necessarily the case for gravity.1

The 5-dimensional bulk neutrino and the SM lepton fields
are described by:

N
(
xμ, y

) =
(

�1
(
xμ, y

)

�̄2
(
xμ, y

)
)

, L (x) =
(

νl
(
xμ
)

l
(
xμ
)
)

, lR
(
xμ
)
.

(2.1)

L (x) and lR (x) are the SM lepton fields with l = e, μ, τ .
The xμ, with μ running from 0 to 3, are the usual coordinates,
y is the extra dimensional coordinate and �1 and �2 are 5-
dimensional two component spinors.2 The extra dimension
is compactified on a S1/Z2 orbifold. �1 is chosen to be even
and �2 to be odd under a y → −y transformation.

The SM fields, including the left handed neutrinos, are
restricted to a brane at y = a. In order to secureZ2 invariance,
it is necessary to introduce another brane at y = 2πR − a,
which is not relevant for the problem and therefore is not
mentioned further in the following. For previous discussions
of extra dimensional models with branes shifted away from
the orbifold fixed points compare [4,5,7,8], while in [15] the
first string realization of low scale gravity and braneworlds
was given.

The Lagrangian of the model is given by [4,7]:

L =
2πR∫

0

dy
{
N̄
(
iγ μ∂μ + γ 5∂y

)
N

− M

2

(
NTC (5)−1N + h.c.

)

+ δ (y − a)

[
hl1

M1/2
F

L	̃∗�1 + hl2
M1/2

F

L	̃∗�2

]

+ δ (y − a)LSM } . (2.2)

Here 	̃ = iσ2	
∗ is the hypercharge conjugate of the SM

Higgs doublet 	 and LSM is the SM Lagrangian. The 5D
γ matrices and the charge conjugation operator are defined
as [7]:

1 This can be realized by embedding the SM 3-brane into a 4-brane
which itself is embedded into a 3 + n dimensional space. The right
handed neutrino is confined to the 4-brane while gravity feels the entire
4 + n dimensional spacetime. The realization of such scenarios is dis-
cussed e.g. in [12] or [13].
2 Here the notation, ψ̄2 for a particle transforming under the (0, 1

2 )

representation of the Lorentz algebra is chosen in analogy to earlier
works on this model. One might be more familiar with the ψ

†
2 notation

that is used in [14] which is a useful reference for the two component
spinor notation.

γ μ =
(

0 σμ

σ̄μ 0

)
γ 5 =

(−12 0
0 12

)

C5 = −γ1γ3 =
(−iσ2 0

0 −iσ2

)
,

where σμ = (12, σ ) and σ̄ μ = (12,−σ) with σ being the
usual 4D Pauli matrices and C5 is the 5-dimensional analog
to charge conjugation in 4 dimensions while, as discussed
in [7], the gauge invariant mass term NTC (5)−1N is not
a true Majorana mass term. However, after integrating out
the extra dimension a Majorana mass term in the effective
4-dimensional theory is obtained. The fundamental dimen-
sionless 5D Yukawa couplings are defined as hl1/2 and MF

is the fundamental higher dimensional scale of gravity.
In a further step, it is necessary to perform the y-integration

in the Lagrangian (2.2). The fields �1 and �2 are symmetric
and antisymmetric under the y to −y transformation. Con-
sequently, they can be expanded in a Fourier series:

�1
(
xμ, y

) = 1√
2πR

S0
(
xμ
)+ 1√

πR

∞∑

k=1

Sk
(
xμ
)

cos

(
ky

R

)

(2.3)

�2
(
xμ, y

) = 1√
πR

∞∑

k=1

Ak
(
xμ
)

sin

(
ky

R

)
. (2.4)

In the next step, the series expansion for �1 and �2 is sub-
stituted into the Lagrangian (2.2) and the y-Integration is
performed, yielding the following effective Lagrangian:

Le f f = LSM + S̄0(i σ̄μ∂μ)S0

+
(
hl(0)

1 L	̃∗S0 − M

2
S0S0 + h.c.

)

+
∞∑

k=1

[
S̄k(i σ̄μ∂μ)Sk + Āk(i σ̄μ∂μ)Ak

+ k

R

(
Āk S̄k + Sk Ak

)− M

2

(
Sk Sk + Āk Āk + h.c.

)

+√
2
(
hl(k)1 L	̃∗Sk + hl(k)2 L	̃∗Ak + h.c.

)]
. (2.5)

The δ function in the Yukawa coupling terms leads to 4D
Yukawa couplings hl(k)1 and hl(k)2 , depending on the brane
shift a away from the fixed points:

hl(k)1 = hl1

(2πMF R)
1
2

cos

(
ka

R

)
,

hl(k)2 = hl2

(2πMF R)
1
2

sin

(
ka

R

)
. (2.6)

Note that hl(k)2 vanishes for a = 0 due to the Z2 invariance
and the fact that �2 is odd under y → −y. Using the relation
between the fundamental scale of gravity MF and the Planck
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scale MP in dependence of the number of extra dimension
n assuming extra dimensions with an equal radius R, MP =
(2πMF R)

n
2 MF , it is obtained:

hl(k)1 =
(
MF

MP

) 1
n

hl1 cos

(
ka

R

)
,

hl(k)2 =
(
MF

MP

) 1
n

hl2 sin

(
ka

R

)
. (2.7)

Thus, the 5D Yukawa couplings, expected to be of O (1), are

suppressed by h̄li =
(
MF
MP

) 1
n
hli .

Rewriting the fields S and A into a new basis, the so called
weak basis for Kaluza Klein Weyl Spinors, yields:

χ±k = 1√
2

(Sk ± Ak) . (2.8)

This leads to the following kinetic term in the Lagrangian
(for a more detailed calculation see [4,5,7] that use the same
setup):

L = χ̄ i σ̄ μ∂μχ −
(

1

2
χTMχ + h.c.

)
, (2.9)

where

M =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

0 0 0 me
0 me+1 me−1 · · ·

0 0 0 mμ
0 mμ

+1 mμ
−1 · · ·

0 0 0 mτ
0 mτ+1 mτ−1 · · ·

me
0 mμ

0 mτ
0 M 0 0 · · ·

me+1 mμ
+1 mτ+1 0 M + 1

R 0 · · ·
me−1 mμ

−1 mτ−1 0 0 M − 1
R · · ·

...
...

...
...

...
...

. . .

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

=
(

0 Y T

Y MKK

)
(2.10)

and χT = (νel , ν
μ
l , ντ

l , χ0, χ+1, χ−1, . . .) hold. The mk are

a combination of the Yukawas h(k)
1 and h(k)

2 :

ml
k = v√

2

[
h̄l1 cos

(
ka

R

)
+ h̄l2 sin

(
ka

R

)]

= Al cos

(
ka

R
+ 	l

)
. (2.11)

where Al = v√
2

√(
h̄l1
)2 + (h̄l2

)2
, 	l = − arctan

(
hl2
hl1

)
and

v is the VEV of the Higgs.
Now the χk are rearranged in a way, that χ0 corresponds

to the smallest diagonal entry |M0| = min|M ± k
R | in the

mass matrix [4], with |M0| < 1
2R . Therefore, the mass scale

M is irrelevant for the neutrino masses and replaced by R−1.

Assuming the minimum to lie at k = k0 the phases in the ml
k

need to be changed:

	l = − arctan

(
hl2
hl1

)

− k0a

R
. (2.12)

Then, the four component spinor vector �ν is defined:

�T
ν =

((
νl
ν̄l

)
,

(
χk0

χ̄k0

)
,

(
χk0+1

χ̄k0+1

)
,

(
χk0−1

χ̄k0−1

)
, . . .

)
. (2.13)

Hence, the kinetic term can be written as:

Lkin = 1

2
�̄ν

(
i /∂ − M)

�ν. (2.14)

At this point, the dimensionless product Al R has to be ana-
lyzed since only for the case that Al R � 1 holds a seesaw
kind of behavior is possible. By using Eq. (2.6), the relation
between the new scale of gravity MF and the inverse Radius
R−1

R−1 = 2π

(
MF

MP

) 2
n

MF , (2.15)

and assuming hli to be of O (1), we obtain:

Al R =
(
MP

MF

) n+1
n v

MP

1

2π
. (2.16)

The value of log10
(
Al R

)
is shown in Fig. 1. For a small MF

MP
,

which is necessary to solve the hierarchy problem, a larger
number of extra dimensions is needed to obtain a seesaw kind
of behavior. Note that in principle even in the red regions of
the plot it is possible to obtain a seesaw kind of behavior by
choosing a small value for the 5D Yukawa coupling.

3 Neutrino masses and mixing

To obtain the neutrino masses the eigenvalues of (2.10)
have to be found. Calculating the characteristic polynomial
results in:

0 = P
[
K3λ

3 + K2λ
2 + K1λ + K0

]
, (3.1)

where

K3 = 1 (3.2)

K2 =
∞∑

k=−∞

∑

F

(
mF

k

)2

M0 + k
R − λ

(3.3)

K1 =
∞∑

k, j=−∞

∑

F1>F2

(
mF1

k

)2 (
mF2

j

)2 − mF1
k mF1

j mF2
k mF2

j
(
M0 + k

R − λ
) (

M0 + j
R − λ

) (3.4)
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Fig. 1 log10
(
Al R

)
in dependence of the number of extra dimensions

n and the new fundamental scale of gravity MF with hli = 1. The black
line corresponds to the values, where Al R = 1 is obtained. Above
this line a seesaw like scenario will take place, whereas below this line
Al R � 1 could hold and thus generate a scenario similar to pseudo
Dirac neutrinos

K0 =
∞∑

k, j,l=−∞

∑

F1,F2,F3

−me
km

μ
j m

τ
l εF1F2F3m

F1
k mF2

j mF3
l

(
M0 + k

R − λ
) (

M0 + j
R − λ

) (
M0 + l

R − λ
)

(3.5)

P =
∞∏

k=−∞
M0 + k

R
− λ. (3.6)

The sums over F run over the flavors and F1 > F2 has to
be understood according to the mass ordering of the charged
SU (2) partners. Firstly, we find that M0 ± k

R is not a solution
of the equation, since the term in the brackets of Eq. (3.1) is
divergent for λ → M0 ± k

R .
Secondly, if the mF

k (2.6) factorize into a k and into a F
dependent part, mF

k = mkmF , the factors K0 and K1 are
vanishing, resulting in two mass eigenvalues equal to zero.
Since for Al R � 1 the three lightest eigenvalues should
correspond to the three active neutrinos, this would lead to
only one mass difference.

The mF
k are factorizable if 	e = 	μ = 	τ and/or

a = 0, πR
2 , πR. Consequently, it is not possible to gener-

ate two mass differences without a brane shift away from the
orbifold fixed points, which means a 	= 0, πR. Addition-
ally, a = πR

2 is also forbidden, since this localization of the
brane leads to a vanishing contribution of �1 instead of a
vanishing contribution of �2 as for a = 0, πR, resulting in
a factorizable mF

k .
Next, the infinite sums in the Ki are solved. This is

done explicitly in Appendix A and the following result is
obtained:

S (F1, F2, λ)

πRAF1 AF2
=
[
cot (πR [M0 − λ]) cos

(
	F1 − a [M0 − λ]

)

× cos
(
	F2 − a [M0 − λ]

)

−1

2
sin
(
	F1 + 	F2 − 2a [M0 − λ]

)]
. (3.7)

Therewith, the coefficients take the form:

K2 =
∑

F

S (F, F, λ)

K1 =
∑

F1>F2

S (F1, F1, λ) S (F2, F2, λ) − S (F1, F2, λ)2

K3 = 1

K0 = −
∑

F1,F2,F3

εF1F2F3 S (e, F1, λ) S (μ, F2, λ) S (τ, F3, λ) = 0.

Since K0 = 0, one eigenvalue is always zero, meaning the
lightest neutrino mass eigenvalue vanishes.

3.1 Neutrino masses for AF R � 1

In the following, the neutrino mass generation for Al R � 1
is discussed in more detail.3 We are mostly interested in the
masses of the active neutrinos and to obtain analytic expres-
sions for them. For that reason, it is assumed that the three
lowest eigenvalues correspond to the three active neutrino
masses. Consequently, they should be found by performing
a series expansion for λ around zero up to third order in Eq.
(3.1). The expansion results in

∑3
i=0 Ciλ

i = 0 with:

C1 = π2R2

8

⎡

⎣
∑

F1>F2

(
AF1
)2 (

AF2
)2

×
(

cos
(

2
[
	F1 − 	F2

])
− 1
)]

C2 = πR

2 sin (M0πR)

[
∑

F

(
AF
)2

×
(

cos (M0πR) + cos
(
M0 [2a − πR] − 2	F

))]

3 The opposite case Al R � 1 is more similar to pseudo Dirac Neu-
trinos. Nevertheless, there is a major difference, since for some k the
masses of the KK excitations, ±kR−1, become larger than the Dirac
Masses Al . In contrast to the considerations for Al R � 1, where three
mostly left handed neutrinos are obtained, for this scenario a large num-

ber of
(
Al R

)2
neutrino mass eigenstates with an 1

10

(
Al R

)−2
fraction

being left handed is generated. All other eigenstates have a signifi-
cantly lower left handed contribution. A quick calculation shows that
the mass eigenstates are almost equidistant separated by R−1. At this
point one could study whether it is possible to explain the observed neu-
trino oscillation phenomena with such a large number of neutrino states
with nearly the same left handed part and almost equal mass differences.
However, this is not further discussed here.
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C3 = 1

2 sin (M0πR)2

[

1 − cos (2M0πR) +
∑

F

(
AF
)2

×
(
π2R2 + (πR − a) πR cos

(
2M0a − 2	F

)

+ aπR cos
(

2M0πR − 2	F − 2M0a
))]

. (3.8)

In a first approach, it is assumed that the 	F are all equal.
As shown before, equal 	F are leading to two zero mass
eigenvalues. The remaining nonzero eigenvalue is calculated
to show the behavior of the neutrino mass for different regions
of the dimensionless parameter M0πR. Later, the second
mass difference is generated by small differences in the 	F ,
δ	.

By setting 	e = 	μ = 	τ = 	, the nonzero eigenvalue
results in λ3 = −C2

C3
:

– AF R � 1
The eigenvalue results in:

λ3 ≈ πR
∑

F

(
AF
)2

× cos (aM0 − 	) cos (aM0 − M0πR − 	)

sin (M0πR)

= πR
∑

F

(
AF
)2

f (a, M0, R,	) . (3.9)

The result splits into two products. The first one πR
∑

F(
AF
)2

is similar to the well known seesaw mass term

(m
2

M ). The mass of the heavy right handed neutrino is
replaced by R−1. The mass of the introduced right handed
bulk neutrino no longer has to be very large, instead
a small extra dimension in comparison to the AF is
required.
The second factor is a function f (a, M0, R,	) of the
‘form’ of the extra dimension described by the placement
of the brane in the extra dimension a, the lowest diagonal
entry in the mass matrix for the KK states M0, the radius
of the extra dimension R and the phase 	. This allows to
lower the neutrino mass by the function f .
Furthermore, if we assume the 5D Yukawa couplings to
be of O (1) and substitute Eqs. (2.15) and (2.6) for R and

AF , respectively, the product πR
∑

F

(
AF
)2

yields:

πR
∑

F

(
AF
)2 ∼ v2

MF
. (3.10)

Here, v is the Higgs VEV and MF is the new funda-
mental scale of gravity. Thus, the first factor in λ3 can
be interpret as the typical type I seesaw formula with
MF playing the roll of the heavy right handed neutrino

× ×

×
νF1 χk

mF1
k mF2

k

νF2

Fig. 2 Tree level diagram to generate the entries of a effective 3 × 3
mass matrix

mass. However, if MF is of O (10 TeV), the first factor
in λ3 is of O (1 GeV). Consequently, the second factor
f (a, M0, R,	) is required to be small in order to achieve
a neutrino mass of O (10−2 eV

)
.

Another possibility to realize mν ∼ 10−2 eV is to
allow for larger scales MF . Within this setup the cor-
rect neutrino mass could also be obtained with a larger
f (a, M0, R,	). Moreover, for MF ≥ 1011 GeV a see-
saw like scenario (compare with Fig. 1) can be realized
within a symmetric setup, i.e. gravity is propagating in
same number of extra dimensions as the right handed
neutrino does.
It should be noticed that expression (3.9) in the limit of
a → 0 does not coincide with the result obtained for
AF R � 1 with a vanishing brane shift,

λ3 = −πR cot (πM0R)
∑

F

(
h̄F

1

)2
. (3.11)

This issue can be resolved by assuming that new physics
enters above the scale MF , leading to an exponential sup-
pression of KK-excitations with masses greater than MF .
For a more detailed discussion see chapter 4 of [5]. How-
ever, the presented formula for the eigenvalue is valid as
long as a � M−1

F holds. If in the following a small a is
considered, it is important to keep in mind that a � M−1

F
still holds.

– M0πR → 0 and M0 � AF ⇒ λ3 = − (AF
)2

M−1
0

cos (	)2

Here the assumption M0 � R−1 is added. Thus, the
important scale for the seesaw mechanism is M0 instead
of R−1. Within this limit, only the lightest KK excitation
is relevant for the neutrino mass generation.

Another advantage of the limit AF R � 1 is that the KK
excitation can be integrated out. As a consequence, it is pos-
sible to obtain an effective three by three mass matrix for
the active neutrinos by calculating the diagrams presented in
Fig. 2.

Meff
F1,F2

=
∞∑

k=−∞

mF1
k mF2

k

M0 + k
R

= Y TM−1
KKY = S (F1, F2, 0) ,

(3.12)
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where S is the solution of the infinite sum (A.3). Calculating
the eigenvalues of MF1,F2 with equal 	F yields the same
eigenvalue as presented in the approximation AF R � 1
(3.9).

The next step is to analyze the influence of slightly differ-
ent 	F . For that it is defined:

	e = 	 	μ = 	 + δ	 	τ = 	 + rδ	 (3.13)

To simplify the expressions for the neutrino masses, a series
expansion in δ	 up to leading order is performed. The expan-
sion results in (3.9) for λ3 and in

λ2 =
πR sin (M0πR)

[
(Ae Aμ)2 + (Ae Aτ )2 r2 + (AμAτ )2 (r − 1)2

]

4 [cos (aM0 − 	) cos (aM0 − M0πR − 	)]
[
(Ae)2 + (Aμ)2 + (Aτ )2]δ	

2. (3.14)

Moreover, we define: AF = cFY , with ce = 1, and

s
(
cμ, cτ

) = 1 + c2
μ + c2

τ (3.15)

w
(
cμ, cτ , r

) = c2
μ + c2

τ r
2 + c2

μc
2
τ (r − 1)2 . (3.16)

With these definitions, the eigenvalues of Meff
F1,F2

are given
by:

λ1 = 0 (3.17)

λ2 = −πRY 2

4

w
(
cμ, cτ , r

)

s
(
cμ, cτ

)
f (a, M0, R,	)

δ	2 (3.18)

λ3 = πRY 2s
(
cμ, cτ

)
f (a, M0, R,	) . (3.19)

Eventually, we want to comment on current collider bounds
on large extra dimensions [16]. The ATLAS collaboration
found an lower limit on the fundamental scale of grav-
ity MF of MF

TeV ≥ (5.25, 4.11, 3.57, 3.27, 3.06) for n =
(2, 3, 4, 5, 6) extra dimensions. These limits can be trans-
lated into upper bounds on the radius of the extra dimension
by applying formula (2.15). The limits are compatible with
the observed neutrino masses within the presented frame-
work. The correct neutrino mass scale can be achieved by
either choosing a small R (corresponding to a larger MF ) or
a small δφ since λ2λ3 ∼ πRY 2δφ2, while the correct ratio
for the eigenvalues can be accommodated for by choosing a

suitable f (a, M0, R,	) since λ2
λ3

∼
(

δφ
f (a,M0,R,	)

)2
.

3.2 Neutrino mixing in leading order in δ	 for Al R � 1

In the following considerations only the case Al R � 1
is considered, which was capable of generating a seesaw
like scenario. Furthermore, it is also possible to obtain a
good approximation for the mixing matrix by diagonalizing
Meff

F1,F2
(3.12), by UTMeff

F1,F2
U = Mdiag. The obtained U

will be unitary, while the exact three by three PMNS matrix
is not. The deviation from unitary, ∼ Y TM−2

KKY , is analyzed
in more detail in Sect. 4.

Calculating the entries of the mixing matrix U up to lead-
ing order in δ	 with the assumption of a normal mass hier-
archy |λ3| > |λ2|, yields:

U =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

cμcτ (r−1)√
w(cμ,cτ ,r)

c2
μ+rc2

τ√
s(cμ,cτ )w(cμ,cτ ,r)

1√
s(cμ,cτ )

− cτ r√
w(cμ,cτ ,r)

cμc2
τ (r−1)−c2

μ√
s(cμ,cτ )w(cμ,cτ ,r)

cμ√
s(cμ,cτ )

cμ√
w(cμ,cτ ,r)

− cτ
(
c2
μ(r−1)+r

)

√
s(cμ,cτ )w(cμ,cτ ,r)

cτ√
s(cμ,cτ )

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

.

(3.20)

Every entry contains a zeroth order contribution in δ	.
Remarkably, this approximated result only depends on three
parameters of the model: cμ, cτ and r . Thus, comparing this
form of U with the standard parametrization of the neutrino
mixing matrix excluding the Majorana phases, which are
irrelevant for neutrino oscillations,

⎛

⎝
c12c13 s12c13 s13e−iδ

−c23s12 − s23s13c12eiδ c23c12 − s23s13s12eiδ s23c13

s23s12 − c23s13c12eiδ −s23c12 − c23s13s12eiδ c23c13

⎞

⎠ ,

(3.21)

allows to identify these three parameters with the mixing
angles and results in a predictive framework. The CP vio-
lating phase δ is zero in our scenario,4 since real Yukawa
couplings were assumed. Consequently, cμ, cτ and r are
given by:

c2
μ = cot2 (�13) sin2 (�23) c2

τ = cot2 (�13) cos2 (�23)

(3.22)

r =
tan(�12)
sin(�13)

+ tan (�23)

tan(�12)
sin(�13)

− cot (�23)
, for r > 1 (3.23)

r =
tan(�12)
sin(�13)

− tan (�23)

tan(�12)
sin(�13)

+ cot (�23)
, for r < 1 (3.24)

Present neutrino oscillation data for the mixing angles (see
Table 1) [17] is used to obtain regions for the parameters cμ,
cτ and r .

4 Considering complex Yukawa couplings would allow for a nonzero
δ. In the light of the hint for a non-vanishing δ ≈ − π

2 , it might be
interesting to investigate the influence of a nonzero CP phase on the
parameter space of the model and therefore on the LFV observables
discussed in Sect. 4. For example, in the case of δ = − π

2 the ratios

given in the Eq. (3.22) result in c2
μ = − sin2 (�23)

√
1 + sin (�13)

−2

and c2
τ = − cos2 (�23)

√
1 + sin (�13)

−2.
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Table 1 Three-flavor
oscillation parameters from [17]

Param. NO best fit NO 3σ IO best fit IO 3σ

sin2 (�12) 0.304 0.270 → 0.344 0.304 0.270 → 0.344

sin2 (�23) 0.452 0.382 → 0.643 0.579 0.389 → 0.644

sin2 (�13) 0.0218 0.0186 → 0.0250 0.0219 0.0188 → 0.0251

�m2
21/10−5 eV2 7.50 7.02 → 8.09 7.50 7.02 → 8.09

�m2
31/10−3 eV2 2.457 2.317 → 2.607 −2.449 −2.590 → −2.307

Table 2 Allowed Parameter
regions which reproduce the
observed neutrino mixing for
the different possible orderings
of the mass eigenvalues. The
first to cases correspond to the
NO and the last two to the IO.
The values are obtained by
using the Best Fit values (BF)
for the mixing angles and the 3σ

regions, respectively

Case c2
μ BF c2

μ 3σ c2
τ BF c2

τ 3σ r BF r 3σ

I 20.3 14.9 → 33.9 24.6 13.9 → 32.6 1.6 1.45 → 1.80

I 20.3 14.9 → 33.9 24.6 13.9 → 32.6 0.64 0.55 → 0.69

II 0.59 0.31 → 0.74 1.78 1.52 → 2.28 −0.12 −0.14 → −0.04

II 0.46 0.16 → 0.62 1.91 1.64 → 2.48 −0.48 −0.59 → −0.20

II 1.08 0.41 → 1.33 1.29 1.10 → 2.09 −1.62 −1.84 → −0.52

II 1.63 0.86 → 1.97 0.73 0.61 → 1.51 −1.17 −1.18 → −0.41

III 1.22 0.89 → 1.97 1.14 0.55 → 1.62 1.22 1.18 → 1.28

III 1.22 0.89 → 1.97 1.14 0.55 → 1.62 0.82 0.78 → 0.85

IV 0.30 0.23 → 0.45 0.17 0.07 → 0.25 1.56 1.45 → 1.80

IV 0.30 0.23 → 0.45 0.17 0.07 → 0.25 0.62 0.45 → 0.68

The possible values for r are obtained from the Eqs. (3.23)
and (3.24) while the values for cμ and cτ are obtained from
the Eq. (3.22).

The ordering m1 = |λ1| < m2 = |λ2| < m3 = |λ3| is
not the only possible ordering for the mass eigenvalues λi .
There are three other cases left to discuss (two additional
cases are already excluded since λ1 = 0 and m2

2 > m2
1 has

to be satisfied). The other three cases are:

– Case II: m1 = |λ1| < m2 = |λ3| < m3 = |λ2| (NO)
– Case III: m1 = |λ2| < m2 = |λ3| > m3 = |λ1| (IO)
– Case IV: m1 = |λ3| < m2 = |λ2| > m3 = |λ1| (IO).

The procedure to obtain expressions for the parameters is the
same as presented for case I and is repeated for the other
cases. The possible 3σ regions for the parameters are pre-
sented in Table 2. Note that for case II it is not possible to
find an analytic expression for the parameters in dependence
of the mixing angles.

4 Unitarity violation and lepton flavor violation

In the previous section, an approximated non unitary violat-
ing mixing matrix for the SM neutrinos was calculated. In
this section the unitarity violation of the system is analyzed.
The deviation of unitarity is given by (calculated in Appendix
B):

(E)F1F2
= −

(
Y TM−2

KKY
)

F1F2

= −
∞∑

k=−∞

mF1
k mF2

k
(
M0 + k

R

)2 =: −S2 (F1, F2)

= d

dM0
S1 (F1, F2, 0) . (4.1)

Noteworthy is the influence of the unitarity violation on e.g.
rare lepton decays or lepton flavor violating Z decays. These
influences are discussed in the following. Note that unitarity
violation also has an influence on neutrino oscillation. These
influences are not further discussed here but e.g. the effect of
large extra dimensions on the DUNE experiment is discussed
in [18].

As has been pointed out in [11,19], the decay width of
rare lepton decays lα → lβγ , mediated at one loop level as
shown in Fig. 3, strongly depends on the unitarity violation.
Furthermore, the ratio of its decay width to the decay width
of lα → vαν̄βlβ is given by: [11,19]

�
(
lα → lβγ

)

�
(
lα → lβ ν̄βνα

) = 3α

32π

|∑∞
k=1 UαkU

†
kβF (xk) |2

(
UU †

)
αα

(
UU †

)
ββ

. (4.2)

The matrix U is the mixing matrix as defined in Appendix
B. In the sum over k, k = 1, 2, 3 correspond to the mass
eigenvalues of the active neutrinos. The ones corresponding
to k > 3 are the ones close to the masses of the KK excita-

tions. The function F (xk) is a loop function with xk = m2
νk

m2
W

,
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lα lβ

γ

νiUαi U †
iβ

W−

·

Fig. 3 Lepton flavor violating decay at one loop

where mνk is the mass of the kth neutrino mass eigenstate
and the F (xk) is given by:

F (x) = 10 − 43x + 78x2 − 49x3 + 4x4 + 18x3 ln (x)

3 (x − 1)4

(4.3)

If the sum
∑∞

k=1 UαkU
†
kβF (xk) is split into

∑3
k=1 UαkU

†
kβ

F (xk) + ∑∞
k=4 UαkU

†
kβF (xk) it is reasonable to assume

F (xk) ≈ 10
3 for k = 1, 2, 3, since then mνk � mW holds,

what allows to simplify the first sum:

3∑

k=1

UαkU
†
kβF (xk) ≈ 10

3

(
UPU

T
P

)

αβ
≈ 10

3
(E)αβ . (4.4)

Since the complete mixing matrix is unitary,
∑∞

k=4 UαkU
†
kβ =

− (E)αβ is valid. For x ≥ 0 the function F (x) is always
decreasing starting from the value F (0) = 10

3 and reach-
ing its minimal value for F (∞) = 4

3 . Assuming Eαβ � 1
and F (xk) = 4

3 for k ≥ 4, what is equivalent to assuming
M0 � mW , allows to find an upper bound for the decay rate
or a good approximation for the case M0 � mW , respec-
tively.

�
(
lα → lβγ

)

�
(
lα → lβ ν̄βνα

) ≈ 3α

32π
|

3∑

k=1

UαkU
†
kβF (xk)

+
∞∑

k=4

UαkU
†
kβF (xk) |2 ≤ 3α

8π
(E)2

αβ

(4.5)

Next, we derive lower bounds on the decay rate for M0 ≈ mW

and M0 � mW . To this end we assume F (xk) = F (M0)

for k ≥ 4. This is justified since the Loop function F

(
m2
i

m2
W

)

is decreasing with an increasing mi and the decay rate is

proportional to
∑

i>3

(
A − F

(
m2
i

m2
W

))
. Thus, by choosing

mi = M0, which is the lowest KK mass, for all i a lower
bound on the decay rate is obtained. We discuss the following
cases:

– M0 ≈ mW

With F (1) = 17
6 , the lower bound results in:

�
(
lα → lβγ

)

�
(
lα → lβ ν̄βνα

) ≥ 3α

128π
(E)2

αβ (4.6)

In comparison with the upper bound, a factor 1
16 is mul-

tiplied to the upper bound.
– M0 � mW

A series expansion for small arguments of F (x) up to

first order yields F

(
M2

0
m2

W

)
≈ 10

3 − M2
0

m2
W

. Thus, the lower

bound results in:

�
(
lα → lβγ

)

�
(
lα → lβ ν̄βνα

) ≥ 3α

32π

M2
0

m2
W

(E)2
αβ (4.7)

In this case, the lower bound is additionally suppressed

by the small factor
M2

0
m2

W
.

Using the experimental values for the branching ratios
of the processes lα → lβ ν̄βνβ , see e.g. [20], it is found an
expression for the branching ratios of the three processes:

Brμe ≤ 3α

8π
(E)2

μe , Brτe ≤ 1

5.6

3α

8π
(E)2

τe and

Brτμ ≤ 1

5.9

3α

8π
(E)2

τμ (4.8)

In the limit of a small δ	, Eαβ is given in leading order in
δ	 by:

Eαβ

cαcβ

= (πRY )2

2 sin (y)2 [1 − (q − 1) cos (2yq − 2	)

+ q cos (2 [y − qy + 	])] (4.9)

= (πRY )2 h (q, y,	) , (4.10)

whereq = a
πR and y = πM0R. Remarkably, the only depen-

dence on the flavor is given by the factors cα , cβ . Thus, the
ratio of two different branching ratios of rare lepton decays

is to leading order in δ	 given by Brαβ

Brγ δ
= c2

αc
2
β

c2
γ c

2
δ

.

Note that the ratios of the LFV decays in leading order δφ

are independent of any simplifications of the loop function,
e.g. F(xk) = F(M0) for k ≥ 4. This is the case since, as
shown in Appendix C, UαkU

†
kβ = Kcαcβ + O (δφ) holds.

Consequently, the only flavor dependent terms, the factors
cαcβ , can be pulled out of the sum in Eq. (4.2) and therefore
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the ratios of the decay rates in leading order δφ are indepen-
dent of the approximations adopted in the loop functions.

The results for all four cases for the ratios Brτμ

Brμe
= c2

τ

5.9 and

Brτe
Brμe

= c2
τ

5.6c2
μ

are presented in Table 3. According to this,

there is no reason to expect larger rates for the LFV τ decays
than for the LFV μ decays. For the IO Brτμ and Brτe can
even be expected to be one to two orders of magnitude smaller
than Brμe.

Furthermore, the same ratios can be expected for lep-
ton flavor violating Z decays, as well, since any one loop
diagram contributing to Z → lαlβ includes a factor of
|∑∞

k=1 UαkU
†
kβFZ (xk) |2, where FZ (xk) is the loop func-

tion of the respective diagram. As for the rare lepton decays,
the only dependence on the flavor originates from the mixing
matrix elements, which are in leading order in δ	 propor-
tional to cαcβ .

If Eq. (4.9) is combined with Eq. (3.19) and λ3 ≈√
�m2

atm ≡ mν is assumed, for the branching ratio one
obtains:

3α (mνπR)2 c2
μ

32π s
(
cμ, cτ

)2

[
10

3
− F

(
M2

0

m2
W

)]2
h (q, y,	)2

f (q, y,	)2

≤ Brμe ≤ 3α (mνπR)2 c2
μ

8π s
(
cμ, cτ

)2
h (q, y,	)2

f (q, y,	)2 . (4.11)

In Fig. 4, the upper and the lower bound are presented for
two configurations of the parameters q, y and 	 as well as
a numerically obtained value for Brμe. For M0 � mW the
lower bound approaches the upper bound and the numerical
value is almost exact. The numerical value for Brμe differs
significantly from the bounds for M0 � mW . It reaches its
maximum at roughly M0 = mW and decreases slowly after-
wards. The maximum value can be estimated by evaluating
the lower bound at M0 = mW :

Brμe ≈ 3α

128π

c2
μ

s
(
cμ, cτ

)2

(
mν

mW

)2

y2 h (q, y,	)2

f (q, y,	)2

≈ 2 × 10−31y2 h (q, y,	)2

f (q, y,	)2 . (4.12)

In the last step, we adopted the best fit values for scenario
I for cμ and cτ (see Table 2). If the branching ratio Brμe
is analyzed for different values of q, y and 	, it is found
that Brμe lies far below the experimental bounds for most

of these values since the ratio h(q,y,	)2

f (q,y,	)2 is not much larger

than one. This case is illustrated on the left panel of Fig. 4.
However, there are configurations of q, y and 	 where the
factor h2 f −2 can enhance the branching ratio for this process
significantly.

Table 3 Analytic expressions (LO in δ	) for the ratios of the branching ratios of the rare lepton decays in terms of the mixing angles and their 3σ

regions for the different cases. Case I and II correspond to NO and Case III and IV to IO

Case Brτμ

Brμe
analytic 3σ Brτe

Brμe
analytic 3σ

I cot(�13)2 cos(�23)2

5.9 [2.36, 5.53] cot(�23)2

5.6 [0.10, 0.29]
II No analytic expression [0.10, 0.42] No analytic expression [0.06, 2.77]
III cos(�23)2[sin(�13) tan(�13)−tan(�23)]

5.9cos(�13)2 tan(�12)2 [0.09, 0.27] 1
5.6

(
tan(�23)−sin(�13) tan(�12)

1+sin(�13) tan(�12) tan(�23)

)2 [0.07, 0.23]

IV cos(�23)2[sin(�13)−tan(�12) tan(�23)]2

5.9 cos(�13)2 [0.01, 0.04] 1
5.6

(
sin(�13)−tan(�12) tan(�23)
tan(�12)+sin(�13) tan(�23)

)2 [0.03, 0.15]

Fig. 4 Upper bound (upper line), lower bound (lower line) and numer-
ically obtained value (intermediate line) for Brμe are plotted against M0
for two different configurations of (q, y,	): the left panel shows the
branching ratio for (0.1, π

3 , π
6 ) and the right panel for (ε, π

3 , π
6 ) with

ε = 10−9. For the configuration in the right panel the branching ratio
is close to the experimental bound (dotted line). The numerically esti-
mated value lies always between the two bounds, has a maximum near
M0 = mW and seems to approach a constant value for M0 < mW
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Table 4 Dependence of h2 f −2 and δ	 on the deviation ε of the pre-
sented configurations. Since h2 f −2 is always ∼ ε−2, ε ≈ 10−7 is
required to generate Brμe ≈ 10−13 − 10−14. Consequently, this would
lead to a large δ	 for the first case, which is not desirable since δ	 � 1
was assumed before. Note that it could be rescued by 	 ≈ π

2 . The
remaining two cases have δ	 ∼ ε, thus leading to a very small δ	 for
a large Brμe. The ε dependence of δ	 is calculated by taking the ratio
of λ2 and λ3, leading to δ	 ∼ f

Configuration h2 f −2 δ	

y = 0 ε−2 cos (	)2 ε−1

	 = 2n+1
2 π + qy q2ε−2 ε

	 = 2n+1
2 π + qy − y (q − 1)2 ε−2 ε

In order to generate a Brμe close to the experimental
bounds, the factor h2 f −2 is required to be roughly 1017.

The factor is divergent for three different configurations of
the parameters q, y and 	. Concerning a large Brμe, a small
deviation from these divergent configurations ε is needed and
the dependence on ε is shown in Table 4. Additionally, the
influence of these configurations on the value for the phase
shift δ	 is presented, which was required to be small. It can
be estimated by the ratio of the non-vanishing eigenvalues
λ2 (3.19) and λ3 (3.19), which has to be ∼ 1 for the IO and
∼ 5 or ∼ 0.2 for the NO, respectively.

To conclude, the extra dimensional setup allows for Brμe
close to experimental limits even with 5D Yukawa couplings
of O (1), if the phases of the Yukawa couplings are close to
	F ≈ 2n+1

2 π + qy or 	 = 2n+1
2 π + qy − y.

Furthermore, it is possible to extract some information
about the fundamental scale of gravity MF . As we figured
out in Sect. 3, for 5D Yukawa couplings ofO (1) the neutrino
mass scale is given by (3.9), (3.10):

mν = s
(
cμ, cτ

)
v2

4MF
f (q, y,	) . (4.13)

In case of a large Brμe, it is f (q, y,	) ≈ ε and h(q,y,	)2

f (q,y,	)2 ≈
ε−2, with ε � 1. Assuming M0 > mW and combining the
expressions for the neutrino mass scale with the expression
for Brμe (4.11) yields:

mν =
√

3α

8π

cμ

s
(
cμ, cτ

)
mνπR
√
Brμe

s
(
cμ, cτ

)

4

v2

MF
. (4.14)

Rewriting the radius R in terms of the fundamental scale of
gravity MF and the number of extra dimensions n, that are
experienced by gravity, and using Eq. (2.15) one finds a lower
bound on MF in terms of n:

Table 5 Lower Limits for the fundamental scale of gravity MF for
different number of extra dimensions n

n 2 6 10 20 50

Lower limit on MF 1.5 EeV 3.4 PeV 660 TeV 166 TeV 68 TeV

Lower limit on R−1 5.6 GeV 2.4 GeV 12.7 TeV 50.3 TeV 123 TeV

MF =
⎛

⎝

√
3αc2

μ

512πBrμe
v2M

2
n
P

⎞

⎠

n
2(n+1)

≥
(

1.33 × 109GeV2M
2
n
P

) n
2(n+1)

(4.15)

For some values of n, the lower limit of MF is presented in
Table 5. Note that for n → ∞ the limit approaches MF ≥
36.5 TeV.

Likewise, one finds a lower limit on the inverse radius R−1

in terms of the number of extra dimensions, which results in
R−1 ≥ 5.6 GeV for n = 2. Since the KK neutrino mass is
to a good approximation given by Mk = y (πR)−1 + kR1

with |y| ≤ π
2 the heavier mass eigenstates corresponding to

the KK neutrinos, in most cases, cannot be produced in kaon
or muon decays. Note that at least the lightest one could be
produced for y � 1.

5 Summary and conclusions

In this paper, we have studied an extra dimensional seesaw
mechanism with a single right handed bulk neutrino. The SM
particles are confined to a 4D brane. Shifting the brane away
from the orbifold fixed points allows to generate two non-
vanishing mass-squared differences as required by neutrino
oscillation experiments.

In particular, we have worked out the flavor structure with-
out adopting a non-unitarity approximation of the 3 × 3 sub-
matrix. This allows us to study the phenomenological con-
sequences of the right handed bulk neutrino.

In a first step, we studied the neutrino mass generation
and mixing. We further simplified the analysis by assuming
CP conversation and that the ratios of the Yukawa coupling
of the Z2 even component and Z2 odd component of the

right handed neutrino to the SM neutrinos
hl2
hl1

are almost the

same for all three generations. The allowed parameter space
is presented in Table 2. Additionally, the model predicts one
massless neutrino which can be probed in large scale struc-
ture surveys in cosmology.

It is pointed out that the model is capable of generating
Brμe close to the experimental bounds even with Yukawa
couplings close to one. As discussed in Sect. 4, the contribu-
tion to li → l jγ is maximized if the lightest KK excitation
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has roughly the W-Boson mass. Due to the suppression of
the Yukawa coupling by the extra dimension it is still pos-
sible to generate the observed neutrino mass with a Yukawa
coupling of order one in this case. However, this effect is not
strong enough to produce Brμe close to 10−13. Therefore,
some fine tuning of the brane shift, the ratio of the lowest

KK mass to R−1 and
hl2
hl1

is necessary. Note that this behavior

is not an exclusive feature of the brane shifted model and
is also possible without a brane shift. In this case, M0 close
to 1

2 R
−1 is required to generate a sizable Brμe. However,

the brane shift is necessary to generate two neutrino mass
squared differences.

A strong prediction of the model within the approxi-
mations mentioned above are the ratios of flavor violating
charged lepton decay and Z decay branching ratios which
are correlated with the neutrino mixing angles and the neu-
trino mass hierarchy. Thus, the model could be tested by the
next generation of experiments looking for charged lepton
flavor violation. Furthermore, it could allow for a distinc-
tion of the neutrino mass hierarchies by the measurement of
lepton flavor violating processes.

Finally, note that the model might also be probed in neu-
trino oscillation experiments due to effects of non-unitarity
[21], although these effects are not further investigated within
this work.
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Appendix A: Solution of the infinite sums

In Eq. (3.1) sums as e.g.

AF1 AF2

∞∑

k=−∞

cos
( ka
R + 	F1

)
cos
( ka
R + 	F2

)

M0 + k
R − λ

≡ S (F1, F2) = S (F2, F1) . (A.1)

have to be solved. To solve the sum a method is used similar
to that in [5]. The key point is to write the brane shift a in a
way that a

πR becomes a rational number.

a = rπR

q
r, q ∈ N and q > r (A.2)

For the following calculation r = 1 is chosen, but the calcu-
lation works in a similar way with r 	= 1. The periodicity of

the Yukawa couplings to the KK modes is used to split the
infinite sum over k into two sums, one infinite sum of n and
one finite sum of l.

The relation between the old and new summation variables
is k = qn + l. Since a step in n causes a step of q in k, the
second sum over l has to be introduced. This sum has to fill
the gaps between a given k and k + q. Hence, this sum has
to run from l = 0 to l = q − 1. Thus results in:

S (F1, F2)

AF1 AF2
=

q−1∑

l=0

×
∞∑

n=−∞

cos
(
nπ + l

q π + 	F1

)
cos
(
nπ + l

q π + 	F2

)

M0 + qn
R + l

R − λ

⇒ S (F1, F2)

AF1 AF2
=

q−1∑

l=0

∞∑

n=−∞

cos
(
l
q π + 	F1

)
cos
(
l
q π + 	F2

)

M0 + qn
R + l

R − λ

⇒ S (F1, F2)

AF1 AF2
=

q−1∑

l=0

cos

(
l

q
π + 	F1

)
cos

(
l

q
π + 	F2

)

×
∞∑

n=−∞

1

M0 + qn
R + l

R − λ
.

In the calculation above ka
R = qn+l

R a = nπ + l
qπ is used. In

the next step, profit is made of the periodicity of the cosine
function. By using the periodicity the dependence of the
numerator of n is eliminated. Consequently, the numerator
can be pulled out of the sum over n.

With this it is possible to solve the infinite sum of n:

∞∑

n=−∞

1

B + qn
R

= 1

B
+

∞∑

n=1

(
1

B + qn
R

+ 1

B − qn
R

)

= 1

B
+

∞∑

n=1

2B

B2 − q2

R2 n2

where B = M0 + l
R − λ holds.

Comparing the result with the series representation of
cot (x) leads to the following result:

1

B
+

∞∑

n=1

2B

B2 − q2

R2 n2
= R

q
π cot

(
R

q
πB

)
.

Thus it is possible to write the sum as:

S (F1, F2)

AF1 AF2
=

q−1∑

l=0

cos

(
l

q
π + 	F1

)
cos

(
l

q
π + 	F2

)

× R

q
π cot

(
πR [M0 − λ]

q
+ l

q
π

)

= R

q
π

q−1∑

l=0

cos

(
l

q
π + 	F1

)
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× cos

(
l

q
π + 	F2

) cos
(

�
q + l

qπ
)

sin
(

�
q + l

qπ
) ,

where � = πR (M0 − λ) holds. The finite sum of l remains:

Rπ

q

q−1∑

l=0

[
cos

(
2
l

q
π + 	F1 + 	F2

)
+ cos

(
	F1 − 	F2

)]

× cos

(
�

q
+ l

q
π

) ∏q−1
m 	=l sin

(
�
q + m

q π
)

∏q−1
k=0 sin

(
�
q + k

qπ
) .

In this form it is possible to exploit the following relations,
which are similarly used in [5]. It is made reference to the fact
that the proof is long and mainly relies on some properties
of the unit roots zq = 1 like

∑
all roots z = 0 and that their

total product is (−1)q−1:

q−1∏

k=0

sin

(
�

q
+ k

q
π

)
= 21−q sin �

q−1∑

l=0

cos

(
�

q
+ l

q
π

) q−1∏

m 	=l

sin

(
�

q
+ m

q
π

)
= 21−qq cos �

q−1∑

l=0

cos

(
2
l

q
π + 	F1 + 	F2

)
cos

(
�

q
+ l

q
π

)

×
q−1∏

m 	=l

sin

(
�

q
+ m

q
π

)
= 21−qq cos

(
	F1 + 	F2 + q − 2

q
�

)
.

This relations lead to:

S (F1, F2)

AF1 AF2
= πR

2

⎡

⎣
cos
(
	F1 + 	F2 + q−2

q �
)

sin �

+ cos
(
	F1 − 	F2

)
cot �

]
.

q = πR
a is resubstituted what leads to the final result:

S (F1, F2)

πRAF1 AF2
=
[
cot (πR [M0 − λ]) cos

(
	F1 − a [M0 − λ]

)

× cos
(
	F2 − a [M0 − λ]

)

−1

2
sin
(
	F1 + 	F2 − 2a [M0 − λ]

)]
. (A.3)

The second sum, which is to solve, is:

AF1 AF2

∞∑

k=−∞

cos
( ka
R + 	F1

)
cos
( ka
R + 	F2

)

(
M0 + k

R − λ
)2 = S2 (F1, F2) .

(A.4)

The solution is obtained by differentiating S (F1, F2) with
respect to �.

d

d�
S (F1, F2) = d

d�
AF1 AF2

×
∞∑

k=−∞

cos
( ka
R + 	F1

)
cos
( ka
R + 	F2

)

k
R + �

πR

= − AF1 AF2

πR

∞∑

k=−∞

cos
( ka
R + 	F1

)
cos
( ka
R + 	F2

)

( k
R + �

πR

)2

= − 1

πR
S2 (F1, F2) ⇒ S2 (F1, F2) = −πR

d

d�
S (F1, F2) .

The derivative with respect to � is performed. This leads to
the following result:

S2 (F1, F2)

π2 ∗ R2AF1 AF2

=
cos
(
	F1 − a [M0 − λ]

)
cos
(
	F2 − a [M0 − λ]

)

sin (πR [M0 − λ])2

− a

πR
cot (πR [M0 − λ])

×
⎛

⎝
cos
(
	F1 − a [M0 − λ]

)

sin
(
	F2 − a [M0 − λ]

) +
cos
(
	F2 − a [M0 − λ]

)

sin
(
	F1 − a [M0 − λ]

)

⎞

⎠

× a

πR
cos
(
	F1 + 	F2 − 2a [M0 − λ]

)
. (A.5)

Appendix B: PMNS matrix

In this section, the relations for the mixing matrix and its
unitarity violation are quickly derived. It is assumed that
AR � 1 holds, what leads to YM−1 � 1. Additionally,
all Yukawa couplings are considered to be real. In this limit,
it can be assumed that the mass matrix is diagonalized by:

U =
(UP A

B 1

)
(B.1)

Since the overall mixing matrix U should be unitary, i.e.
UUT = UTU = 1, BT = −UT

P A and UPUT
P = 1 − AAT

hold. It is obtained:

UT
(

0 Y T

Y M
)
U

=
(UT

P Y
T B + BT YUP + BTMB UT

P Y
T + BT Y A + BTM

YUP + AT Y T B + MB AT Y T + Y A + M
)

.

(B.2)

Since U should diagonalize the mass matrix the off diagonal
components have to vanish. Substituting BT = −UT

P A into
the off diagonal components yields the following condition:

A (M + Y A) = Y T . (B.3)

123
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For the case YM−1 � 1, the mixing is expected to be small
and therefore, the lower right component of (B.2) is approx-
imately M, leading to a small Y A compared to M. Employ-
ing Y A � M in Eq. (B.3), results in:

A = Y TM−1. (B.4)

Consequently, the upper left component of the matrix in Eq.
(B.2) simplifies to:

UT
P

(
−Y TM−1Y

)
UP . (B.5)

Therefore, if UP diagonalizes the matrix −Y TM−1Y , its
deviation of unitarity is given by:

UPUT
P = 1 − Y TM−2Y. (B.6)

The combination UPUT
P is of greater interest than UT

PUP

since the influence on lepton flavor violation is our main
interest and for that an expression for

∑
i (UP )Fi (UP )i F ′ =

UPUT
P is needed.

Appendix C: Flavor ratios

In this section, we will show that the ratios of two different
LFV decays, e.g. lα → lβγ , is given by the ratio of the
corresponding product cαcβ . Neglecting phase space effects,
the flavor dependence originates from the following factor:

|∑∞
k=1 UαkU

†
kβF (xk) |2

(
UU †

)
αα

(
UU †

)
ββ

. (C.1)

Here, F(x) is some loop function and x is a function of the
masses of the particles propagating in the loop. In Sect. 4,
a lower bound was derived by assuming that all KK parti-
cles have the same mass. However, this approximation is not
necessary in order to obtain the flavor ratios in leading order
δφ. For that, it is inevitable to calculate the mixing matrix
elements Uαk explicitly. Therefor, we have to find the eigen-
vectors of (2.10). For the components of the kth eigenvector
it is obtained:

vik = −
∑

F mF
i vF

k

M0 + i R−1 − λk
and vF

k = 1

λk

∞∑

i=−∞
mF

i vik .

(C.2)

The lower index represents the kth mass eigenstate and
|λk | < |λk+1| holds. Consequently, v1,2,3 correspond to the
active neutrino mass eigenstates. The upper index represents

the flavor eigenstates with F = e, μ, τ and i ∈ [−∞,∞].
Therewith, the mixing matrix elements are given by:

Uαk = vα
k√∑

F

(
vF
k

)2 +∑i

(
vik

)2
. (C.3)

Combining the equations above allows to write the product
UαkU

†
βk as:

UαkU
†
βk = vα

k v
β
k

∑
F

(
vF
k

)2 +∑
i

(
vik

)2 (C.4)

= 1

λ2
k

1
∑

F

(
vF
k

)2 +∑
i

(
vik

)2

×
∑

F1,F2

S (α, F1, λk) S (β, F2, λk) v
F1
k v

F2
k . (C.5)

Note that the sums S (α, β) (A.3) are in leading order δφ

given by:

S (α, β, λk) = cαcβKk + O (δφ) , (C.6)

where Kk is a function of parameters of the model which
do not depend on the Flavor. Consequently, the only flavor
dependence is given by:

UαkU
†
βk = 1

λ2
k

K 2
k cαcβ

∑
F

(
vF
k

)2 +∑
i

(
vik

)2

×
∑

F1,F2

cF1cF2v
F1
k v

F2
k = K ′cαcβ. (C.7)

Moreover, we can approximate
(
UU †

)
αα

with 1 since the
deviation from unitarity is expected to be small and x(1 −
x)−2 ≈ x holds for x � 1.
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