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Abstract To extend the BLMSSM, we not only add exotic
Higgs superfields (�NL , ϕNL) to make the exotic lepton
heavy, but also introduce the superfields (Y ,Y ′) having cou-
plings with lepton and exotic lepton at tree level. The obtained
model is called as EBLMSSM, which has difference from
BLMSSM especially for the exotic slepton (lepton) and
exotic sneutrino (neutrino). We deduce the mass matrices and
the needed couplings in this model. To confine the param-
eter space, the Higgs boson mass mh0 and the processes
h0 → γ γ , h0 → VV, V = (Z ,W ) are studied in the
EBLMSSM. With the assumed parameter space, we obtain
reasonable numerical results according to data on Higgs from
ATLAS and CMS. As a cold dark mater candidate, the relic
density for the lightest mass eigenstate of Y and Y ′ mixing
is also studied.

1 Introduction

The total lepton number (L) and baryon number (B) are good
symmetries because neutrinoless double beta decay or proton
decay has not been observed. In the standard model (SM), L
and B are global symmetries [1,2]. However, the individual
lepton numbers Li = Le, Lμ, Lτ are not exact symmetries
at the electroweak scale because of the neutrino oscillation
and the neutrinos with tiny masses [3,4]. In the Universe,
there is matter-antimatter asymmetry, then the baryon num-
ber must be broken.

With the detection of the light Higgsh0(m0
h = 125.1 GeV)

[5,6], the SM succeeds greatly and the Higgs mechanism is
compellent. Beyond the SM, supersymmetry [7,8] provides a
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possibility to understand the light Higgs. The minimal super-
symmetric extension of the SM (MSSM) [9] is one of the
favorite models, where the light Higgs mass at tree level is
mtree

h = mZ | cos 2β| [10–12]. The one loop corrections to
Higgs mass mainly come from fermions and sfermions, that
depend on the virtual particle masses and the couplings with
the Higgs.

There are many papers about the gauged B and L mod-
els, although most of them are non-supersymmetric [13,14].
Extending MSSM with the local gauged B and L, one obtains
the so called BLMSSM, which was proposed by the authors
in Refs. [10–12]. The proton remains stable, as B and L are
broken at the TeV scale. Therefore, a large desert between the
electroweak scale and grand unified scale is not necessary. In
BLMSSM, the baryon number is changed by one unit, at the
same time the lepton number is broken in an even number.
R-parity in BLMSSM is not conserved, and it can explain the
matter-antimatter asymmetry in the Universe. There are some
works for Higgs and dark matters [15–17] in the BLMSSM
[18,19]. In the framework of BLMSSM, the light Higgs mass
and the decays h0 → γ γ and h0 → VV, V = (Z ,W ) are
studied in our previous work [19]. Some lepton flavor vio-
lating processes and CP-violating processes are researched
with the new parameters in BLMSSM [20,21].

In BLMSSM, the exotic leptons are not heavy, because
their masses just have relation with the parameters Ye4υd ,

Ye5υu . Here υu and υd are the vacuum expectation values
(VEVs) of two Higgs doublets Hu and Hd . In general, the
Yukawa couplings Ye4 and Ye5 are not large parameters, so
the exotic lepton masses are around 100 GeV. The light
exotic leptons may lead to that the BLMSSM is excluded
by high energy physics experiments in the future. To obtain
heavy exotic leptons, we add two exotic Higgs superfields to
the BLMSSM, and they are SU(2) singlets �NL and ϕNL ,
whose VEVs are υNL and ῡNL [22]. The exotic leptons
and the superfields �NL , ϕNL have Yukawa couplings, then
υNL and ῡNL give contributions to the diagonal elements

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-5744-x&domain=pdf
mailto:zhaosm@hbu.edu.cn
mailto:fengtf@hbu.edu.cn
mailto:ninggz@hbu.edu.cn
mailto:chenjianbin@tyut.edu.cn
mailto:hbzhang@hbu.edu.cn


324 Page 2 of 13 Eur. Phys. J. C (2018) 78 :324

of the exotic lepton mass matrix. So the exotic leptons turn
heavy and should be unstable. In the end, the super fields
Y and Y ′ are also introduced. At tree level, there are cou-
plings for lepton-exotic lepton-Y (Y ′). It is appealing that
this extension of BLMSSM produces some new cold dark
matter candidates, such as the lightest mass eigenstate of Y
and Y ′ mixing. The four-component spinor Ỹ is made up
of the superpartners of Y and Y ′. In this extended BLMSSM
(EBLMSSM), we study the lightest CP even Higgs mass with
the one loop corrections. The Higgs decays h0 → γ γ and
h0 → VV, V = (Z ,W ) are also calculated here. Supposing
the lightest mass eigenstate of Y and Y ′ mixing as a cold dark
matter candidate, we study the relic density.

After this introduction, in Sect. 2, we introduce the
EBLMSSM in detail, including the mass matrices and the
couplings different from those in the BLMSSM. The mass
of the lightest CP-even Higgs h0 is deduced in the Sect. 3. The
Sect. 4 is used to give the formulation of the Higgs decays
h0 → γ γ , h0 → VV, V = (Z ,W ) and dark matter relic
density. The corresponding numerical results are computed
in Sect. 5. The last section is used for the discussion and
conclusion.

2 Extend the BLMSSM

The local gauge group of the BLMSSM [10–12] is SU (3)C⊗
SU (2)L ⊗U (1)Y ⊗U (1)B ⊗U (1)L . In the BLMSSM, the
exotic lepton masses are obtained from the Yukawa couplings
with the two Higgs doublets Hu and Hd . The VEVs of Hu

and Hd are υu and υd with the relation
√

υ2
u + υ2

d = υ ∼ 250
GeV. Therefore, the exotic lepton masses are not very heavy,
though they can satisfy the experiment bounds at present.
In the future, with the development of high energy experi-
ments, the experiment bounds for the exotic lepton masses
can improve in a great possibility. Therefore, we introduce the
exotic Higgs superfields �NL and ϕNL with nonzero VEVs
to make the exotic lepton heavy. The heavy exotic leptons
should be unstable, then the superfields Y,Y ′ are introduced
accordingly. These introduced superfields lead to tree level
couplings for lepton-exotic lepton-Y (Y ′).

In EBLMSSM, we show the superfields in the Table 1.
The superpotential of EBLMSSM is shown here

WEBLMSSM = WMSSM + WB + WL + WX + WY ,

WL = λL L̂4 L̂
c
5ϕ̂NL + λE Ê

c
4 Ê5�̂NL

+ λNL N̂
c
4 N̂5�̂NL + μNL�̂NL ϕ̂NL

+Ye4 L̂4 Ĥd Ê
c
4 + Yν4 L̂4 Ĥu N̂

c
4

+Ye5 L̂
c
5 Ĥu Ê5 + Yν5 L̂

c
5 Ĥd N̂5

+Yν L̂ Ĥu N̂
c + λNc N̂ c N̂ cϕ̂L + μL�̂L ϕ̂L ,

WY = λ4 L̂ L̂
c
5Ŷ + λ5 N̂

c N̂5Ŷ
′ + λ6 Ê

c Ê5Ŷ
′ + μY Ŷ Ŷ

′. (1)

WMSSM is the superpotential of MSSM. WB and WX are
same as the terms in BLMSSM [19]. WY includes the terms
beyond BLMSSM, and they include the couplings of lepton-
exotic lepton-Y (l I − L ′ − Y ). Therefore, the heavy exotic
leptons can decay to leptons and mass eigenstates of Y and
Y ′ mixing whose lighter one can be a dark matter candidate.
From WY , one can also obtain the coupling of lepton-exotic
slepton-Ỹ (l I − L̃ ′ − Ỹ ), where Ỹ is the four component
spinor composed by the superpartners of Y and Y ′. The new
couplings of l I −L ′−Y and l I − L̃ ′−Ỹ can give one loop cor-
rections to lepton anormal magnetic dipole moment (MDM).
They may compensate the deviation between the experiment
value and SM prediction for muon MDM. The parameter
μY can be complex number with non-zero imaginary part,
which is a new source of CP-violating. Therefore, the both
new couplings produce one loop diagrams contributing to the
lepton electric dipole moment (EDM). Further more, if λ4 in
λ4 L̂ L̂c

5Ŷ is a matrix and has non-zero elements relating with
lepton flavor, this term can enhance the lepton flavor violat-
ing effects. In the whole, WY enriches the lepton physics to
a certain degree, and these subjects will be researched in our
latter works.

Because of the introduction of the superfields �NL , ϕNL ,

Y and Y ′, the soft breaking terms are written as

LEBLMSSM
sof t = LBLMSSM

sof t − m2
�NL

�∗
NL�NL

−m2
ϕNL

ϕ∗
NLϕNL +

(
ALLλL L̃4 L̃

c
5ϕNL

+ALEλE ẽ
c
4ẽ5�NL + ALNλNL ν̃c4 ν̃5�NL

+BNLμNL�NLϕNL + h.c.

)

+
(
A4λ4 L̃ L̃

c
5Y + A5λ5 Ñ

cν̃5Y
′

+ A6λ6ẽ
cẽ5Y

′ + BYμY YY
′ + h.c.

)
. (2)

Here LBLMSSM
sof t is the soft breaking terms of BLMSSM,

whose concrete form is in our previous work [19]. The
SU (2)L doublets Hu, Hd acquire the nonzero VEVs υu, υd .
The SU (2)L singlets �B, ϕB,�L , ϕL ,�NL , ϕNL obtain the
nonzero VEVs υB, υB, υL , υL , υNL , υNL respectively.

Hu =
(

H+
u

1√
2

(
υu + H0

u + i P0
u

)
)

,

Hd =
(

1√
2

(
υd + H0

d + i P0
d

)

H−
d

)
,

�B = 1√
2

(
υB + �0

B + i P0
B

)
,

ϕB = 1√
2

(
υB + ϕ0

B + i P
0
B

)
,
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Table 1 The super fields in the
extended BLMSSM
(EBLMSSM)

Superfields SU (3)C SU (2)L U (1)Y U (1)B U (1)L

Q̂i 3 2 1/6 1/3 0

ûci 3̄ 1 −2/3 −1/3 0

d̂ci 3̄ 1 1/3 −1/3 0

L̂i 1 2 −1/2 0 1

êci 1 1 1 0 −1

N̂ c
i 1 1 0 0 −1

Q̂4 3 2 1/6 B4 0

Û c
4 3̄ 1 −2/3 −B4 0

D̂c
4 3̄ 1 1/3 −B4 0

Q̂c
5 3̄ 2 −1/6 −(1 + B4) 0

Û5 3 1 2/3 1 + B4 0

D̂5 3 1 −1/3 1 + B4 0

L̂4 1 2 −1/2 0 L4

Êc
4 1 1 1 0 −L4

N̂ c
4 1 1 0 0 −L4

L̂c
5 1 2 1/2 0 −(3 + L4)

Ê5 1 1 −1 0 3 + L4

N̂5 1 1 0 0 3 + L4

Ĥu 1 2 1/2 0 0

Ĥd 1 2 −1/2 0 0

�̂B 1 1 0 1 0

ϕ̂B 1 1 0 −1 0

�̂L 1 1 0 0 −2

ϕ̂L 1 1 0 0 2

�̂NL 1 1 0 0 −3

ϕ̂NL 1 1 0 0 3

X̂ 1 1 0 2/3 + B4 0

X̂ ′ 1 1 0 −(2/3 + B4) 0

Y 1 1 0 0 2 + L4

Y ′ 1 1 0 0 −(2 + L4)

�L = 1√
2

(
υL + �0

L + i P0
L

)
,

ϕL = 1√
2

(
υL + ϕ0

L + i P
0
L

)
,

�NL = 1√
2

(
υNL + �0

NL + i P0
NL

)
,

ϕNL = 1√
2

(
υNL + ϕ0

NL + i P
0
NL

)
. (3)

Here, we define tan β = υu/υd , tan βB = ῡB/υB, tan βL =
ῡL/υL and tan βNL = ῡNL/υNL . The VEVs of the Higgs
satisfy the following equations

|μ|2 − g2
1 + g2

2

8
(υ2

u − υ2
d ) + m2

Hd
+ Re[Bμ] tan β = 0,

(4)

|μ|2 + g2
1 + g2

2

8
(υ2

u − υ2
d ) + m2

Hu
+ Re[Bμ] cot β = 0,

(5)

|μB |2 + g2
B

2
(υ2

B − ῡ2
B) + m2

�B
− Re[BBμB] tan βB = 0,

(6)

|μB |2 − g2
B

2
(υ2

B − ῡ2
B) + m2

ϕB
− Re[BBμB] cot βB = 0,

(7)

|μL |2 − 2g2
LV

2
L + m2

�L
− Re[BLμL ] tan βL = 0, (8)

|μL |2 + 2g2
LV

2
L + m2

ϕL
− Re[BLμL ] cot βL = 0, (9)

|μNL |2 − 3g2
LV

2
L + m2

�NL
− Re[BNLμNL ] tan βNL = 0,

(10)
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|μNL |2 + 3g2
LV

2
L + m2

ϕNL
− Re[BNLμNL ] cot βNL = 0,

(11)

with V 2
L = υ2

L −υ2
L + 3

2 (υ2
NL −υ2

NL). Here, the Eqs. (8) and
(9) are similar as the corresponding equations in BLMSSM,
but Eqs. (8) and (9) have relation with the new parameters
υNL and ῡNL . We obtain the new Eqs. (10) and (11) through

∂V
∂�NL

and ∂V
∂ϕNL

, with V denoting the Higgs scalar potential.

Here we deduce the mass matrices in the EBLMSSM.
Compared with BLMSSM, the superfields �NL and ϕNL are
introduced and they give corrections to the mass matrices of
the slepton, sneutrino, exotic lepton, exotic neutrino, exotic
slepton and exotic sneutrino. That is to say, in EBLMSSM,
the mass matrices of squark, exotic quark, exotic squark,
baryon neutralino, MSSM neutralino, X and X̃ are same as
those in the BLMSSM, and their concrete forms can be found
in our previous works [23–25]. Though the mass squared
matrices of slepton and sneutrino in EBLMSSM are differ-
ent from those in BLMSSM, we can obtain the slepton and
sneutrino mass squared matrices in EBLMSSM easily just
using the replacement υ2

L − υ2
L → V 2

L for the BLMSSM
results.

In the BLMSSM, the issue of Landau pole has been dis-
cussed in detail by the authors of Refs. [10–12]. Their con-
clusion is that there are no Landau poles at the low scale
due to the new families. In EBLMSSM, the parts of quark
(squark), exotic quark (exotic squark) are same as those in
BLMSSM. Therefore, the Landau pole conditions for the
Yukawa couplings of quark (squark), exotic quark (exotic
squark) have same behaviors of BLMSSM. The added super-
fields (�NL , ϕNL ,Y,Y ′) do not have couplings with the
gauge fields of SU (3)C , SU (2)L ,U (1)Y and U (1)B . So the
characters of gauge couplings g1, g2, g3 and gB in BLMSSM
and EBLMSSM are same.

The different parts between BLMSSM and EBLMSSM
are the terms including �NL , ϕNL ,Y and Y ′. The new terms
in the superpotential WL are λL L̂4 L̂c

5ϕ̂NL +λE Êc
4 Ê5�̂NL +

λNL N̂ c
4 N̂5�̂NL + μNL�̂NL ϕ̂NL and they have correspond-

ing relations withλQ Q̂4 Q̂c
5�̂B+λUÛc

4 Û5ϕ̂B+λD D̂c
4 D̂5ϕ̂B+

μB�̂B ϕ̂B in WB by the replacements L̂4 ↔ Q̂4, L̂c
5 ↔

Q̂c
5, Ê

c
4 ↔ Û c

4 , Ê5 ↔ Û5, N̂ c
4 ↔ D̂c

4, N̂5 ↔ D̂5, �̂NL ↔
ϕ̂B, ϕ̂NL ↔ �̂B . The corresponding relations for WY =
λ4 L̂ L̂c

5Ŷ + λ5 N̂ c N̂5Ŷ ′ + λ6 Êc Ê5Ŷ ′ + μY Ŷ Ŷ ′ and WX =
λ1 Q̂ Q̂c

5 X̂ + λ2Û cÛ5 X̂ ′ + λ3 D̂c D̂5 X̂ ′ + μX X̂ X̂ ′ are obvi-
ous with L̂ ↔ Q̂, L̂c

5 ↔ Q̂c
5, Ê

c ↔ Û c, Ê5 ↔ Û5, N̂ c ↔
D̂c, N̂5 ↔ D̂5, X̂ ↔ Ŷ , X̂ ′ ↔ Ŷ ′. From this analysis, the
Landau pole conditions of gauge coupling gL and Yukawa
couplings of exotic leptons should possess similar peculiar-
ities of gauge coupling gB and Yukawa couplings of exotic
quarks. In conclusion, similar as BLMSSM, there are no Lan-
dau poles in EBLMSSM at the low scale because of the new
families. The concrete study of Landau poles for the cou-

plings should use renormalization group equation which is
tedious, and we shall research this issue in our future work.

2.1 The mass matrices of exotic lepton (slepton) and exotic
neutrino (sneutrino) in EBLMSSM

In BLMSSM, the exotic lepton masses are not heavy, because
they obtain masses only from Hu and Hd . The VEVs of �NL

and ϕNL are υNL and ῡNL , that can be large parameters.
So, the EBLMSSM exotic leptons are heavier than those in
BLMSSM.

The mass matrix for the exotic leptons reads as

− Lmass
e′ = (

ē′
4R, ē′

5R

)
(− 1√

2
λLυNL , 1√

2
Ye5υu

− 1√
2
Ye4υd ,

1√
2
λEυNL

)

×
(
e′

4L
e′

5L

)
+ h.c. (12)

Obviously, υNL and υNL are the diagonal elements of the
mass matrix in the Eq. (12). It is easy to obtain heavy exotic
lepton masses with large υNL and υNL . If we take υNL and
υNL as zero, the mass matrix is same as that in BLMSSM.
In fact, our used values of υNL and υNL are at TeV order,
which produce TeV scale exotic leptons. Heavy exotic lep-
tons have strong adaptive capacity to the experiment bounds.
The exotic neutrinos are four-component spinors, whose
mass matrix is

− Lmass
ν′ = (

ν̄′
4R, ν̄′

5R

)
(

1√
2
λLυNL , − 1√

2
Yν5υd

1√
2
Yν4υu,

1√
2
λNLυNL

)

×
(

ν′
4L

ν′
5L

)
+ h.c. (13)

Similar as the exotic lepton condition, heavy exotic neutrinos
are also gotten.

In BLMSSM, the exotic sleptons of 4 generation and 5
generation do not mix, and their mass matrices are both 2×2.
In EBLMSSM, the exotic sleptons of 4 generation and 5
generation mix together, and their mass matrix is 4×4. With
the base (ẽ4, ẽc∗4 , ẽ5, ẽc∗5 ), we show the elements of exotic
slepton mass matrix M2

Ẽ
in the following form.

M2
Ẽ
(ẽc∗5 ẽc5) = λ2

L
ῡ2
NL

2
+ υ2

u

2
|Ye5 |2 + M2

L̃5

−g2
1 − g2

2

8
(υ2

d − υ2
u ) − g2

L(3 + L4)V
2
L ,

M2
Ẽ
(ẽ∗

5 ẽ5) = λ2
E

υ2
NL

2
+ υ2

u

2
|Ye5 |2 + M2

ẽ5

+g2
1

4
(υ2

d − υ2
u ) + g2

L(3 + L4)V
2
L ,

M2
Ẽ
(ẽ∗

4 ẽ4) = λ2
L
ῡ2
NL

2
+ g2

1 − g2
2

8
(υ2

d − υ2
u )
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+υ2
d

2
|Ye4 |2 + M2

L̃4
+ g2

L L4V
2
L ,

M2
Ẽ
(ẽc∗4 ẽc4) = λ2

E
υ2
NL

2
− g2

1

4
(υ2

d − υ2
u )

+υ2
d

2
|Ye4 |2 + M2

ẽ4
− g2

L L4V
2
L ,

M2
Ẽ
(ẽ∗

4 ẽ5) = υdY
∗
e4

λE
υNL

2
+ λLYe5

ῡNLvu

2
,

M2
Ẽ
(ẽ5ẽ

c
5) = μ∗ υd√

2
Ye5 + Ae5Ye5

υu√
2
,

M2
Ẽ
(ẽc4ẽ5) = μ∗

NLλE
ῡNL√

2
− ALEλE

υNL√
2

,

M2
Ẽ
(ẽ4ẽ

c
5) = −μ∗

NL
υNL√

2
λL + ALLλL

ῡNL√
2

,

M2
Ẽ
(ẽ4ẽ

c
4) = μ∗ υu√

2
Ye4 + Ae4Ye4

υd√
2
,

M2
Ẽ
(ẽc5ẽ

c∗
4 ) = −Ye5λE

υuυNL

2
− λLY

∗
e4

ῡNLvd

2
. (14)

In Eq. (14), the non-zero terms M2
Ẽ
(ẽ4ẽc5),M2

Ẽ
(ẽ∗

4 ẽ5),

M2
Ẽ
(ẽc5ẽ

c∗
4 ) andM2

Ẽ
(ẽc4ẽ5) are the reason for the exotic slep-

ton mixing of generations 4 and 5. These mixing terms all
include the parameters υNL and ῡNL . It shows that this mix-
ing is caused basically by the added Higgs superfields �NL

and ϕNL . Using the matrix ZẼ , we obtain mass eigenstates

with the formula Z†
Ẽ
M2

Ẽ
Z Ẽ = diag(m2

Ẽ1,m
2
Ẽ2 ,m

2
Ẽ3 ,m

2
Ẽ4).

In the same way, the exotic sneutrino mass squared matrix
is also obtained

M2
Ñ
(ν̃c∗5 ν̃c5) = λ2

L
ῡ2
NL

2
− g2

1 + g2
2

8
(υ2

d − υ2
u )

+υ2
d

2
|Yν5 |2 + M2

L̃5
− g2

L(3 + L4)V
2
L ,

M2
Ñ
(ν̃∗

4 ν̃4) = λ2
L
ῡ2
NL

2
+ g2

1 + g2
2

8
(υ2

d − υ2
u )

+υ2
u

2
|Yν4 |2 + M2

L̃4
+ g2

L L4V
2
L ,

M2
Ñ
(ν̃∗

5 ν̃5) = λ2
NL

υ2
NL

2
+ g2

L(3 + L4)V
2
L

+υ2
d

2
|Yν5 |2 + M2

ν̃5
,

M2
Ñ
(ν̃c∗4 ν̃c4) = λ2

NL
υ2
NL

2
− g2

L L4V
2
L

+υ2
u

2
|Yν4 |2 + M2

ν̃4
,

M2
Ñ
(ν̃c5 ν̃

c∗
4 ) = λNLYν5

υNLυd

2
− λLY

∗
ν4

ῡNLυu

2
,

M2
Ñ
(ν̃5ν̃

c
5) = μ∗ υu√

2
Yν5 + Aν5Yν5

υd√
2
,

M2
Ñ
(ν̃c4 ν̃5) = μ∗

NLλNL
ῡNL√

2
− ALNλN

υNL√
2

,

M2
Ñ
(ν̃4ν̃

c
5) = μ∗

NL
υNL√

2
λL − ALLλL

ῡNL√
2

,

M2
Ñ
(ν̃∗

4 ν̃5) = λLYν5

ῡNLυd

2
− υuυNL

2
λNLY

∗
ν4

,

M2
Ñ
(ν̃4ν̃

c
4) = μ∗ υd√

2
Yν4 + Aν4Yν4

υu√
2
. (15)

For the exotic sneutrino, the mixing of generations 4 and 5 is
similar as that of exotic slepton. In the base (ν̃4, ν̃

c∗
4 , ν̃5, ν̃

c∗
5 ),

we get the mass squared matrix of the exotic sneutrino, and
obtain the mass eigenstates by the matrix ZÑ through the

formula Z†
Ñ
M2

Ñ
Z Ñ = diag(m2

Ñ1,m
2
Ñ2 ,m

2
Ñ3 ,m

2
Ñ4).

2.2 The lepton neutralino mass matrix in EBLMSSM

In EBLMSSM, the superfields (�L , ϕL ,�NL , ϕNL ) have
their SUSY superpartners (ψ�L , ψϕL , ψ�NL , ψϕNL ). They
mix with λL , which is the superpartner of the new lepton type
gauge boson Zμ

L . Therefore, we deduce their mass matrix in
the base (iλL , ψ�L , ψϕL , ψ�NL , ψϕNL )

ML =

⎛
⎜⎜⎜⎜⎝

2ML 2υLgL −2ῡLgL 3υNLgL −3ῡNLgL
2υLgL 0 −μL 0 0

−2ῡLgL −μL 0 0 0
3υNLgL 0 0 0 −μNL

−3ῡNLgL 0 0 −μNL 0

⎞
⎟⎟⎟⎟⎠

.

(16)

The lepton neutralino mass eigenstates are four-component
spinors X0

Li
= (K 0

Li
, K̄ 0

Li
)T , and their mass matrix is diag-

onalized by the rotation matrix ZNL . The relations for the
components are

iλL = Z1i
N L K

0
Li

, ψ�L = Z2i
N L K

0
Li

, ψϕL = Z3i
N L K

0
Li

,

ψ�NL = Z4i
N L K

0
Li

, ψϕNL = Z5i
N L K

0
Li

. (17)

In BLMSSM, there are noψ�NL , ψϕNL , and the base of lepton
neutralino is (iλL , ψ�L , ψϕL ), whose mass matrix is 3 ×
3. EBLMSSM extends this matrix to 5 × 5 including the
BLMSSM results.

2.3 The Higgs superfields and Y in EBLMSSM

The superfields �L , ϕL ,�NL , ϕNL mix together and form
4 × 4 mass squared matrix, which is larger than the corre-
sponding 2 × 2 mass matrix in the BLMSSM. Diagonaliz-
ing the mass squared matrix, four CP even exotic Higgs are
obtained.

M2
φ(�0

L�0
L) = 1

2
g2
L

(
6υ2

L − 2ῡ2
L + 3(υ2

NL − ῡ2
NL)

)

+1

2
μ2
L + 1

2
m2

�L
,

M2
φ(ϕ0

Lϕ0
L) = 1

2
g2
L

(
6ῡ2

L − 2υ2
L + 3(ῡ2

NL − υ2
NL)

)
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+ 1

2
μ2
L + 1

2
m2

ϕL
,

M2
φ(�0

NL�0
NL) = 1

2
g2
L

(27

2
υ2
NL − 9

2
ῡ2
NL + 3(υ2

L − ῡ2
L)

)

+ 1

2
μ2
NL + 1

2
m2

�NL
,

M2
φ(ϕ0

NLϕ0
NL) = 1

2
g2
L

(27

2
ῡ2
NL − 9

2
υ2
NL + 3(ῡ2

L − υ2
L)

)

+ 1

2
μ2
NL + 1

2
m2

ϕNL
,

M2
φ(�0

Lϕ0
L) = −4g2

LυL ῡL − BLμL

2
,

M2
φ(�0

L�0
NL) = 6g2

LυLυNL ,

M2
φ(�0

NLϕ0
NL) = −9g2

LυNL ῡNL − BNLμNL

2
,

M2
φ(ϕ0

Lϕ0
NL) = 6g2

L ῡL ῡNL ,

M2
φ(ϕ0

L�0
NL) = −6g2

L ῡLυNL ,

M2
φ(�0

Lϕ0
NL) = −6g2

LυL ῡNL . (18)

We use Zφ̃L
to diagonalize the mass squared matrix in

Eq. (18), and the relation between mass eigenstates and the
comments are

�0
L = Z1i

φ̃L
H0
Li

, ϕ0
L = Z2i

φ̃L
H0
Li

,

�0
NL = Z3i

φ̃L
H0
Li

, ϕ0
NL = Z4i

φ̃L
H0
Li

. (19)

In EBLMSSM, the conditions for the exotic CP odd Higgs
P0
L , P̄0

L are same as those in BLMSSM, and they do not mix
with the added exotic CP odd Higgs P0

NL , P̄0
NL . Here, we

show the mass squared matrix for the added exotic CP odd
Higgs P0

NL , P̄0
NL .

M2
p(P

0
NL P

0
NL) = 1

2
g2
L

(9

2
υ2
NL − 9

2
ῡ2
NL + 3(υ2

L − ῡ2
L)

)

+1

2
μ2
NL + 1

2
m2

�NL
,

M2
p(P̄

0
NL P̄

0
NL) = 1

2
g2
L

(9

2
ῡ2
NL − 9

2
υ2
NL + 3(ῡ2

L − υ2
L)

)

+1

2
μ2
NL + 1

2
m2

ϕNL
,

M2
p(P

0
NL P̄

0
NL) = BNLμNL

2
. (20)

The scalar superfields Y and Y ′ mix, and their mass
squared matrix is deduced here. This condition is simi-
lar as that of X and X ′, then the lightest mass eigenstate
of Y and Y ′ can be a candidate of the dark matter. With
SY = g2

L(2+ L4)V 2
L , the concrete form for the mass squared

matrix is shown here. To obtain mass eigenstates, the matrix
ZY is used through the following formula, with the supposi-
tion m2

Y1
< m2

Y2
.

Z†
Y

( |μY |2 + SY −μY BY

−μ∗
Y B

∗
Y |μY |2 − SY

)
ZY =

(
m2

Y1
0

0 m2
Y2

)
,

(
Y1

Y2

)
= Z†

Y

(
Y
Y ′∗

)
. (21)

The superpartners of Y and Y ′ form four-component Dirac
spinors, and the mass term for superfields Ỹ is shown as

− Lmass
Ỹ

= μY
¯̃Y Ỹ , Ỹ =

(
ψY ′
ψ̄Y

)
. (22)

The spinor Ỹ and the mixing of superfields Y,Y ′ are all new
terms beyond BLMSSM, that add abundant contents to lepton
physics and dark matter physics.

2.4 Some couplings with h0 in EBLMSSM

In EBLMSSM, the exotic slepton(sneutrino) of generations
4 and 5 mix. So the couplings with exotic slepton(sneutrino)
are different from the corresponding results in BLMSSM.
We deduce the couplings of h0 and exotic sleptons

4∑
i, j=1

Ẽ i∗ Ẽ j h0
[(

e2υ sin β
1 − 4s2

W

4s2
Wc2

W

(Z4i∗
Ẽ

Z4 j
Ẽ

− Z1i∗
Ẽ

Z1 j
Ẽ

)

− μ∗
√

2
Ye4 Z

2i∗
Ẽ

Z1 j
Ẽ

− υ sin β|Ye5 |2δi j − AE5√
2
Z4i∗
Ẽ

Z3 j
Ẽ

+1

2
λLYe5 Z

3 j
Ẽ
Z3i∗
Ẽ

ῡNL − 1

2
Y ∗
e5
Z4 j
Ẽ

λE Z
2i∗
Ẽ

υNL

)
cos α

−
(
e2υ cos β

1 − 4s2
W

4s2
Wc2

W

(Z1i∗
Ẽ

Z1 j
Ẽ

− Z4i∗
Ẽ

Z4 j
Ẽ

)

−υ cos β|Ye4 |2δi j − AE4√
2
Z2i∗
Ẽ

Z1 j
Ẽ

− μ∗
√

2
Ye5 Z

4i∗
Ẽ

Z3 j
Ẽ

−1

2
Y ∗
e4
Z2 j
Ẽ

λL Z
4i∗
Ẽ

ῡNL + 1

2
Z1i∗
Ẽ

Y ∗
e4

λE Z
3 j
Ẽ

υNL

)
sin α

]
.

(23)

In Eq. (23), different from BLMSSM, there are new terms
( 1

2λLYe5 Z
3 j
Ẽ
Z3i∗
Ẽ

ῡNL− 1
2Y

∗
e5
Z4 j
Ẽ

λE Z2i∗
Ẽ

υNL) cos α−( 1
2 Z

1i∗
Ẽ

Y ∗
e4

λE Z
3 j
Ẽ

υNL− 1
2Y

∗
e4
Z2 j
Ẽ

λL Z4i∗
Ẽ

ῡNL) sin α besides the mix-
ing of generations 4 and 5 slepton. Obviously, these new
terms include υNL and ῡNL , which are the VEVs of added
Higgs superfields �NL and ϕNL . In the same way, the cou-
plings of h0 and exotic sneutrinos are also calculated

4∑
i, j=1

Ñ i∗ Ñ j h0
[(

e2

4s2
Wc2

W

υ sin β(Z1i∗
Ñ

Z1 j
Ñ

− Z4i∗
Ñ

Z4 j
Ñ

)

−1

2
Z1i∗
Ñ

Y ∗
ν4

λNL Z
3i
Ñ

υNL − υ sin β|Yν4 |2δi j − AN4√
2
Z2i∗
Ñ

Z1 j
Ñ

− μ∗
√

2
Yν5 Z

4i∗
Ñ

Z3 j
Ñ

− 1

2
Y ∗

ν4
Z2 j
Ñ

λL Z
4i∗
Ñ

ῡNL

)
cos α

−
(

e2

4s2
Wc2

W

υ cos β[Z4i∗
Ñ

Z4 j
Ñ

− Z1i∗
Ñ

Z1 j
Ñ

]

− μ∗
√

2
Yν4 Z

2i∗
Ñ

Z1 j
Ñ

− υ cos β|Yν5 |2δi j − AN5√
2
Z4i∗
Ñ

Z3 j
Ñ
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+1

2
Yν5 Z

3 j
Ñ

λL Z
1i∗
Ñ

ῡNL + 1

2
Yν5 Z

4i∗
Ñ

λNc Z2 j
Ñ

υNL

)
sin α

]
.

(24)

In this coupling, the new terms beyond BLMSSM are
−( 1

2 Z
1i∗
Ñ

Y ∗
ν4

λNL Z3i
Ñ

υNL + 1
2Y

∗
ν4
Z2 j
Ñ

λL Z4i∗
Ñ

ῡNL) cos α − ( 1
2

Yν5 Z
3 j
Ñ

λL Z1i∗
Ñ

ῡNL + 1
2Yν5 Z

4i∗
Ñ

λNc Z2 j
Ñ

υNL) sin α.

The h0 − L̃ − L̃ coupling has the same form as that in
BLMSSM. While, the h0 − ν̃ − ν̃ coupling gets corrected
terms, but these terms are suppressed by the tiny neutrino
Yukawa coupling Yν .

6∑
i, j=1

ν̃i∗ν̃ j h0
[

sin α
μ∗
√

2
Y ∗

ν Z
I i∗
ν̃ Z (I+3) j

ν̃

− e2

4s2
Wc2

W

B2
R Z

I i∗
ν̃ Z I j

ν̃

+ cos α

((
λNc ῡL − AN√

2

)
Y ∗

ν Z
I i∗
ν̃ Z (I+3) j

ν̃

−υ sin β|Yν |2δi j
)]

. (25)

Here, sW (cW ) denotes sin θW (cos θW ), with θW representing
the weak-mixing angle. The concrete form of B2

R is in Ref.
[9].

2.5 The couplings with Y

For the dark matter candidate Y1, the necessary tree level
couplings are deduced in EBLMSSM. We show the couplings
(lepton-exotic lepton-Y ) and (neutrino-exotic neutrino-Y )

L =
2∑

i, j=1

ē I
(
λ4W

1i
L Z1 j∗

Y PR − λ6U
2i
L Z2 j∗

Y PL
)
L ′
i+3Y

∗
j

−
6∑

α=1

2∑
i, j=1

X̄0
Nα

(
λ4Z

Iα∗
Nν

W 1i
N Z1 j∗

Y PR

+ λ5Z
(I+3)α
Nν

U 2i
N Z2 j∗

Y PL
)
N ′
i+3Y

∗
j + h.c. (26)

The new gauge boson ZL couples with leptons, neutrinos and
Y , whose concrete forms are

L = −
3∑

I=1

gL Z
μ
L ē

Iγμe
I −

2∑
i, j=1

gL(2 + L4)Z
μ
L Y

∗
i i∂μY j

−
3∑

I=1

6∑
α,β=1

gL Z
μ
L χ̄0

Nα
(Z Iα∗

Nν
Z Iβ
Nν

γμPL

+Z (I+3)α∗
Nν

Z (I+3)β
Nν

γμPR)χ0
Nβ

+ h.c. (27)

ϕL gives masses to the light neutrinos trough the see-saw
mechanism and �L , ϕL ,�NL , ϕNL mix together produc-

ing lepton Higgs H0
L . Then the couplings of H0

LYY
∗ and

χ̄0
Nχ0

N H0
L are needed

L =
2∑

i, j=1

4∑
k=1

g2
L (2 + L4)

(
Z1i∗
Y Z1 j

Y − Z2i∗
Y Z2 j

Y

)

×
(

vL Z
1k
φ̃L

− v̄L Z
2k
φ̃L

+ 3

2
vNL Z

3k
φ̃NL

−3

2
v̄NL Z

4k
φ̃NL

)
H0
Lk
Y ∗
i Y j .

−
4∑

k=1

6∑
α,β=1

λNc Z (I+3)α
Nν

Z (I+3)β
Nν

Z2k
φL

χ̄0
Nα

PLχ0
Nβ

H0
Lk

+ h.c.

(28)

3 The mass of h0

Similar as BLMSSM, in EBLMSSM the mass squared matrix
for the neutral CP even Higgs are studied, and in the basis
(H0

d , H0
u ) it is written as

M2
even =

(
M2

11 + �11 M2
12 + �12

M2
12 + �12 M2

22 + �22

)
, (29)

where M2
11, M

2
12, M

2
22 are the tree level results, whose con-

crete forms can be found in Ref. [19]

�11 = �MSSM
11 + �B

11 + �L
11,

�12 = �MSSM
12 + �B

12 + �L
12,

�22 = �MSSM
22 + �B

22 + �L
22. (30)

The MSSM contributions are represented by �MSSM
11 ,

�MSSM
12 and �MSSM

22 . The exotic quark (squark) contribu-
tions denoted by �B

11,�
B
12 and �B

22 are the same as those
in BLMSSM [19]. However, the corrections �L

11,�
L
12 and

�L
22 from exotic lepton (slepton) are different from those in

BLMSSM, because the mass squared matrices of exotic slep-
ton and exotic sneutrino are both 4 × 4 and they relate with
υNL and ῡNL . Furthermore, the exotic leptons and exotic
neutrinos are heavier than those in BLMSSM, due to the
introduction of �NL and ϕNL .

�L
11 = GFY 4

ν4
υ4

4
√

2π2 sin2 β
· μ2(Aν4 − μ cot β)2

(m2
Ñ1 − m2

Ñ2 )
2

g(mÑ1 ,mÑ2 )

+ GFY 4
ν5

υ4

4
√

2π2 cos2 β

{
ln

mÑ3mÑ4

m2
ν5

+ Aν5(Aν5 − μ tan β)

m2
Ñ3 − m2

Ñ4

× ln
m2

Ñ3

m2
Ñ4

+ A2
ν5

(Aν5 − μ tan β)2

(m2
Ñ3 − m2

Ñ4)
2

g(mÑ3 ,mÑ4)

}

+ GFY 4
e4

υ4

4
√

2π2 cos2 β

{
Ae4(Ae4 − μ tan β)

m2
Ẽ1 − m2

Ẽ2

ln
m2

Ẽ1

m2
Ẽ2

+ A2
e4

(Ae4 − μ tan β)2

(m2
Ẽ1 − m2

Ẽ2 )
2

g(mẼ1 ,mẼ2 ) + ln
mẼ1mẼ2

m2
e4

}
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+ GFY 4
e5

υ4

4
√

2π2 sin2 β
· μ2(Ae5 − μ cot β)2

(m2
Ẽ3 − m2

Ẽ4)
2

g(mẼ3 ,mẼ4 ),

�L
12 = GFY 4

ν4
υ4

4
√

2π2 sin2 β
· μ(μ cot β − Aν4)

m2
Ñ1 − m2

Ñ2

×
{

ln
mÑ1

mÑ2
+ Aν4 (Aν4 − μ cot β)

m2
Ñ1 − m2

Ñ2

g(mÑ1 ,mÑ2 )

}

+ GFY 4
e4

υ4

4
√

2π2 cos2 β
· μ(μ tan β − Ae4 )

m2
Ẽ1 − m2

Ẽ2

×
{

ln
mẼ1

mẼ2
+ Ae4(Ae4 − μ tan β)

m2
Ẽ1 − m2

Ẽ2

g(mẼ1 ,mẼ2 )

}

+ GFY 4
ν5

υ4

4
√

2π2 cos2 β
· μ(μ tan β − Aν5)

m2
Ñ3 − m2

Ñ3

×
{

ln
mÑ3

mÑ4
+ Aν5(Aν5 − μ tan β)

m2
Ñ3 − m2

Ñ4

g(mÑ3 ,mÑ4)

}

+ GFY 4
e5

υ4

4
√

2π2 sin2 β
· μ(μ cot β − Ae5)

m2
Ẽ3 − m2

Ẽ4

×
{

ln
mẼ3

mẼ4
+ Ae5(Ae5 − μ cot β)

m2
Ẽ3 − m2

Ẽ4

g(mẼ3 ,mẼ4)

}
,

�L
22 = GFY 4

ν4
υ4

4
√

2π2 sin2 β

{
Aν4(Aν4 − μ cot β)

m2
Ñ1 − m2

Ñ2

ln
m2

Ñ1

m2
Ñ2

+ A2
ν4

(Aν4 − μ cot β)2

(m2
Ñ1 − m2

Ñ2)
2

g(mÑ1,mÑ2)

+ ln
mÑ1mÑ2

m2
ν4

}
+ GFY 4

e4
υ4

4
√

2π2 cos2 β

·μ
2(Ae4 − μ tan β)2

(m2
Ẽ1 − m2

Ẽ2)
2

g(mẼ1,mẼ2)

+ GFY 4
e5

υ4

4
√

2π2 sin2 β

{
Ae5(Ae5 − μ cot β)

m2
Ẽ3 − m2

Ẽ4

ln
m2

Ẽ3

m2
Ẽ4

+ A2
e5

(Ae5 − μ cot β)2

(m2
Ẽ3 − m2

Ẽ4)
2

g(mẼ3,mẼ4)

+ ln
mẼ3mẼ4

m2
e5

}
+ GFY 4

ν5
υ4

4
√

2π2 cos2 β

·μ
2(Aν5 − μ tan β)2

(m2
Ñ3 − m2

Ñ4)
2

g(mÑ3,mÑ4). (31)

4 The processes h0 → γ γ, h0 → VV, V = (Z,W)

and dark matter Y1

4.1 h0 decays

At the LHC, h0 is produced chiefly from the gluon fusion
(gg → h0). The one loop diagrams are the leading order

(LO) contributions. The virtual t quark loop is the dominate
contribution because of the large Yukawa coupling. There-
fore, when the couplings of new particles and Higgs are large,
they can influence the results obviously. For h0 → gg, the
EBLMSSM results are same as those in BLMSSM, and are
shown as [26–28]

�N P (h0 → gg) = GFα2
s m

3
h0

64
√

2π3

∣∣∣∣
∑
q,q ′

gh0qq A1/2(xq)

+
∑
q̃,q̃ ′

gh0q̃q̃
m2

Z

m2
q̃

A0(xq̃)

∣∣∣∣
2

, (32)

with xa = m2
h0/(4m

2
a). Here, q and q ′ are quark and exotic

quark. While, q̃ and q̃ ′ denote squark and exotic squark. The
concrete expressions for gh0qq , gh0q ′q ′ , gh0q̃q̃ , gh0q̃ ′q̃ ′ (i =
1, 2) are in literature [19]. The functions A1/2(x) and A0(x)
are[28]

A1/2(x) = 2
[
x + (x − 1)g(x)

]
/x2,

A0(x) = −(x − g(x))/x2,

g(x) =
{

arcsin2 √
x, x ≤ 1

− 1
4

[
ln 1+√

1−1/x
1−√

1−1/x
− iπ

]2
, x > 1.

(33)

The decay h0 → γ γ obtains contributions from loop dia-
grams, and the leading order contributions are from the one
loop diagrams. In the EBLMSSM, the exotic quark (squark)
and exotic lepton (slepton) give new corrections to the decay
width of h0 → γ γ . Different from BLMSSM, the exotic lep-
tons in EBLMSSM are more heavy and the exotic sleptons
of the 4 and 5 generations mix together. These parts should
influence the numerical results of the EBLMSSM theoretical
prediction to the process h0 → γ γ to some extent.

The decay width of h0 → γ γ can be expressed as [29]

�N P (h0 → γ γ ) = GFα2m3
h0

128
√

2π3

∣∣∣∣
∑
f

NcQ
2
f gh0 f f A1/2(x f )

+ gh0H+H−
m2

W

m2
H±

A0(xH±)

+ gh0WW A1(xW) +
2∑

i=1

gh0χ+
i χ−

i

× mW

mχi

A1/2(xχi ) +
∑

f̃

NcQ
2
f gh0 f̃ f̃

× m2
Z

m2
f̃

A0(x f̃ )

∣∣∣∣
2

, (34)

where gh0WW = sin(β − α) and A1(x) = −
[
2x2 + 3x +

3(2x − 1)g(x)
]
/x2.
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The formulae for h0 → Z Z ,WW are

�(h0 → WW ) = 3e4mh0

512π3s4
W

|gh0WW |2F
(
mW

mh0

)
,

�(h0 → Z Z) = e4mh0

2048π3s4
Wc4

W

|gh0Z Z |2

×
(

7 − 40

3
s2
W + 160

9
s4
W

)
F

(
mZ

m
h0

)
,

(35)

with gh0Z Z = gh0WW and F(x) is given out in Refs. [30–
32]. The observed signals for the diphoton and Z Z , WW
channels are quantified by the ratios Rγ γ and RVV , V =
(Z ,W ), whose current values are Rγ γ = 1.16 ± 0.18 and
RVV = 1.19+0.22

−0.20 [33].

4.2 Dark matter Y

In BLMSSM, there are some dark matter candidates such
as: the lightest mass eigenstate of XX ′ mixing, X̃ the four-
component spinor composed by the super partners of X and
X ′. They are studied in Ref. [18]. In EBLMSSM, the dark
matter candidates are more than those in BLMSSM, because
the lightest mass eigenstate of YY ′ mixing and Ỹ are dark
matter candidates. After U (1)L is broken by �L and �NL ,
Z2 symmetry is left, which guarantees the stability of the dark
matters. There are only two elements (1,−1) in Z2 group.
This symmetry eliminates the coupling for the mass eigen-
states of YY ′ mixing with two SM particles. The condition
for X is similar as that of Y , and it is also guaranteed by the
Z2 symmetry.

In this subsection, we suppose the lightest mass eigen-
state of YY ′ mixing in Eq. (21) as a dark matter candidate,
and calculate the relic density. So we summarize the relic
density constraints that any WIMP candidate has to satisfy.
The interactions of the WIMP with SM particles are deduced
from the EBLMSSM, then we study its annihilation rate and
its relic density �D by the thermal dynamics of the Universe.
The annihilation cross section σ(Y1Y ∗

1 → anything) should
be calculated and can be written as σvrel = a + bv2

rel in the
Y1Y ∗

1 center of mass frame. vrel is the twice velocity of Y1

in the Y1Y ∗
1 c.m. system frame. To a good approximation,

the freeze-out temperature (TF ) can be iteratively computed
from[15–17]

xF = mD

TF

 ln

[
0.038MPlmD(a + 6b/xF )√

g∗xF

]
, (36)

with xF ≡ mD/TF and mD = mY1 representing the WIMP
mass. MPl = 1.22 × 1019 GeV is the Planck mass and g∗ is
the number of the relativistic degrees of freedom with mass
less than TF . The density of cold non-baryonic matter is
�Dh2 = 0.1186 ± 0.0020 [33], whose formula is simpli-
fied as

�Dh
2 
 1.07 × 109xF√

g∗MPL(a + 3b/xF )GeV
. (37)

To obtain a and b in the σvrel , we study the Y1Y ∗
1 dominate

decay channels whose final states are leptons and light neu-
trinos: (1) Y1Y ∗

1 → ZL → l̄ I l I ; (2) Y1Y ∗
1 → ZL → ν̄ I ν I ;

(3) Y1Y ∗
1 → ϕL → ν̄ I ν I ; (4) Y1Y ∗

1 → L ′ → l̄ I l I ; (5)
Y1Y ∗

1 → N ′ → ν̄ I ν I .
Using the couplings in Eqs. (26), (27), (28), we deduce

the results of a and b

a =
∑

l=e,μ,τ

1

π
|

2∑
i=1

mL ′
i

(m2
D + m2

L ′
i
)
λ4W

1i
L Z11∗

Y λ6U
2i
L Z21∗

Y |2

+
∑

χ0
Nα=νe ,νμ,ντ

{
g4
L(2 + L4)

2

8π

∣∣∣∣(Z11∗
Y Z11

Y − Z21∗
Y Z21

Y )

×
3∑

I=1

4∑
i=1

1

(4m2
D − m2

�i
)

×
(
λNc Z (I+3)α

Nν
Z (I+3)α
Nν

Z2i
φL

)

×
(

vL Z
1i
φ̃L

− v̄L Z
2i
φ̃L

+ 3

2
vNL Z

3i
φ̃L

− 3

2
v̄NL Z

4i
φ̃L

) ∣∣∣∣
2

+ 1

π

∣∣∣∣
2∑

i=1

3∑
I=1

mN ′
i

(m2
D + m2

N ′
i
)

×λ4Z
Iα∗
Nν

W 1i
N Z11∗

Y λ5Z
(I+3)α
Nν

U 2i
N Z21∗

Y

∣∣∣∣
2}

,

b =
∑

l=e,μ,τ

7m2
D

24π

g4
L(2 + L4)

2

(4m2
D − m2

ZL
)

+
∑

χ0
Nα=νe ,νμ,ντ

1

96π

g4
L(2 + L4)

2m2
D

(4m2
D − m2

ZL
)2

×
(

7 +
∣∣∣∣

3∑
I=1

(
Z Iα∗
Nν

Z Iα
Nν

− Z (I+3)α∗
Nν

Z (I+3)α
Nν

)∣∣∣∣
2)

.

(38)

5 Numerical results

5.1 h0 decays and mA0 ,mH0

In this section, we research the numerical results. For the
parameter space, the most strict constraint is that the mass of
the lightest eigenvector for the mass squared matrix in Eq.
(29) is around 125.1 GeV. To satisfy this constraint, we use
mh0 = 125.1 GeV as an input parameter. Therefore, the CP
odd Higgs mass should meet the following relation.

m2
A0 = m2

h0 (m
2
Z − m2

h0 + �11 + �22) − m2
Z�A + �2

12 − �11�22

−m2
h0 + m2

Z cos2 2β + �B
,

(39)
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Fig. 1 The results versus Au5 are shown. Rγ γ (solid line) and RVV (dashed line) are in the left diagram. mA0 (dot-dashed line) and mH0 (dotted
line) are in the right diagram

where

�A = sin2 β�11 + cos2 β�22 + sin 2β�12,

�B = cos2 β�11 + sin2 β�22 + sin 2β�12 . (40)

To obtain the numerical results, we adopt the following
parameters as

Yu4 = 1.2Yt , Yu5 = 0.6Yt , Yd4 = Yd5 = 2Yb,

gB = 1/3, λu = λd = 0.5,

Au4 = Ad4 = Ad5 = Ae4 = Ae5 = Aν4 = Aν5 = 1 TeV,

λQ = 0.4, gL = 1/6,

mQ̃4
= mQ̃5

= mŨ4
= mŨ5

= mD̃4

= mD̃5
= m ν̃4 = m ν̃5 = 1 TeV,

Ye5 = 0.6, υNL = υL = Ab = 3 TeV,

tan βNL = tan βL = 2,

λL = λNL = λE = 1, mL̃ = mẽ = 1.4δi j TeV,

AL̃ = AL̃ ′ = 0.5δi j TeV (i, j = 1, 2, 3), μB = 0.5 TeV,

ABQ = ABU = ABD = μNL = ALL

= ALE = ALN = 1 TeV, Yν4 = Yν5 = 0.1,

mL̃4
= mL̃5

= mẼ4
= mẼ5

= m2 = 1.5 TeV,

mD̃3
= 1.2 TeV, B4 = L4 = 1.5. (41)

Here Yt and Yb are the Yukawa coupling constants of top
quark and bottom quark, whose concrete forms are Yt =√

2mt/(υ sin β) and Yb = √
2mb/(υ cos β) respectively.

To embody the exotic squark corrections, we calculate
the results versus Au5 which has relation with the mass
squared matrix of exotic squark. In the left diagram of
Fig. 1, Rγ γ and RVV versus Au5 are plotted by the solid
line and dashed line respectively with mQ̃3

= mŨ3
=

1.2 TeV, tan β = 1.4, At = 1.7 TeV, υB = 3.6 TeV, μ =
−2.4 TeV, tan βB = 1.5 and Ye4 = 0.5. In the left diagram
of Fig. 1, the solid line (Rγ γ ) and dashed line (RVV ) change
weakly with the Au5 . When Au5 enlarges, Rγ γ is the increas-

ing function and RVV is the decreasing function. During the
Au5 region (−1700 to 1000) GeV, both Rγ γ and RVV satisfy
the experiment limits. The dot-dashed line(dotted line) in the
right diagram denotes the Higgs mass m0

A(m0
H ) varying with

Au5 . The dot-dashed line and dotted line increase mildly with
Au5 . The value of m0

A is a little bigger than 500 GeV, while
the value of m0

H is very near 500 GeV.
For the squark, we assume the first and second generations

are heavy, so they are neglected. The scalar top quarks are
not heavy, and their contributions are considerable. At is in
the mass squared matrix of scalar top quark influencing the
mass and mixing. The effects from At to the ratios Rγ γ ,
RVV , Higgs masses mA0 and mH0 are of interest. As mQ̃3

=
2.4 TeV, mŨ3

= 1.2 TeV, tan β = tan βB = 2.15, υB =
4.1 TeV, μ = −2.05 TeV, Ye4 = 0.5 and Au5 = 1 TeV.
Rγ γ (solid line) and RVV (dashed line) versus At are shown
in the left diagram of Fig. 2. While the right diagram of Fig.
2 gives out the Higgs masses mA0 (dot-dashed line) and mH0

(dotted line). In the At region (2–4.8) TeV, the Rγ γ varies
from 1.25 to 1.34. At the same time, the RVV is in the range
(1.2–1.38). The dot-dashed line and dotted line are very near.
In the At region (3000–4000) GeV, the masses of Higgs A0

and H0 are around 1000 GeV. In this parameter space, the
allowed biggest values of A0 and H0 masses can almost reach
1350 GeV.

Ye4 is the Yukawa coupling constant that can influence
the mass matrix of exotic lepton and exotic slepton. We
use mQ̃3

= mŨ3
= 1.2 TeV, tan β = 2.3, tan βB =

1.77, At = 1.7 TeV, υB = 5.43 TeV, μ = −2.64 TeV,

Au5 = 1 TeV and obtain the results versus Ye4 in the Fig. 3.
In the left diagram, the Rγ γ (solid line) and RVV (dashed
line) are around 1.3 and their changes are small during the
Ye4 range (0.05–1). One can see that in the right diagram
mA0 (dot-dashed line) and mH0 (dotted line) possess same
behavior versus Ye4 . They are both decreasing functions of
Ye4 and vary from 1500 to 500 GeV. In general, Ye4 effect to
the Higgs masses mA0 and mH0 is obvious.
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Fig. 2 The results versus At are shown. Rγ γ (solid line) and RVV (dashed line) are in the left diagram. mA0 (dot-dashed line) and mH0 (dotted
line) are in the right diagram

0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0

Ye4

R
an
d
R V

V

0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

500

1000

1500

2000

Ye4

m
A0
an
d
m

H
0
G
eV

Fig. 3 The results versus Ye4 are shown. Rγ γ (solid line) and RVV (dashed line) are in the left diagram. mA0 (dot-dashed line) and mH0 (dotted
line) are in the right diagram

mQ̃3
andmŨ3

are the diagonal elements of the squark mass
squared matrix, and they should affect the results. Supposing
mQ̃3

= mŨ3
= MQ, tan β = 2.1, tan βB = 2.24, At =

1.7 TeV, υB = 3.95 TeV, μ = −1.9 TeV, Ye4 =
0.6, Au5 = 1 TeV, we calculate the results versus MQ and
plot the diagrams in the Fig. 4. It shows that in this figure the
solid line, dashed line, dotted line and dot-dashed line are all
stable. Rγ γ and RVV are around 1.2. At the same time mA0

and mH0 are about 1 TeV.

5.2 Scalar dark matter Y1

Here, we suppose Y1 as a scalar dark matter candidate.
In Ref. [33] the density of cold non-baryonic matter is
�Dh2 = 0.1186 ± 0.0020. To obtain the numerical results
of dark matter relic density, for consistency the used param-
eters in this subsection are of the same values as in Eq. (41)
if they are supposed. Therefore, we just show the values of
the parameters beyond Eq. (41). These parameters are taken
as

μY = 1500 GeV, λ5 = 1,

μL = BL = BNL = 1 TeV, tan β = 1.4,

BY = 940 GeV, m2
�L

= m2
ϕL

= m2
�NL

= m2
ϕNL

= 3 TeV2, Ye4 = 0.5. (42)

With the relation λ4 = λ6 = Lm, we study relic density �D

and xF versus Lm in the Fig. 5. In the right diagram of Fig. 5,
the grey area is the experimental results in 3 σ and the solid
line representing �Dh2 turns small with the increasing Lm.
During the Lm region (0.7–1.4), �Dh2 satisfies the experi-
ment bounds of dark matter relic density. xF is stable and in
the region (23.5–24).

Taking Ye4 = 1.3, λ4 = λ6 = 1 and the other param-
eters being same as Eq. (42) condition, we plot the relic
density(xF ) versus Ye5 in the left (right) diagram of the Fig.
6. In this parameter space, during Ye5 region (0.1–2.5), our
theoretical results satisfy the relic density bounds of dark
matter, and xF is very near 23.55. Generally speaking, both
the solid line and dashed line are very stable.

6 Discussion and conclusion

Considering the light exotic lepton in BLMSSM, we add
exotic Higgs superfields �NL and ϕNL to BLMSSM in order
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Fig. 4 The results versus MQ are shown. Rγ γ (solid line) and RVV (dashed line) are in the left diagram. mA0 (dot-dashed line) and mH0 (dotted
line) are in the right diagram
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to make the exotic leptons heavy. Light exotic leptons may be
excluded by the experiment in the future. On the other hand,
heavy exotic leptons should not be stable. So we also intro-
duce the superfields Y and Y ′ to make exotic leptons decay
quickly. The lightest mass eigenstate ofY andY ′ mixing mass
matrix can be a dark matter candidate. Therefore, the exotic
leptons are heavy enough to decay to SM leptons and Y at tree
level. We call this extended BLMSSM as EBLMSSM, where
the mass matrices for the particles are deduced and compared
with those in BLMSSM. Different from BLMSSM, the exotic

sleptons of 4 and 5 generations mix together forming 4 × 4
mass squared matrix. EBLMSSM has more abundant content
than BLMSSM for the lepton physics.

To confine the parameter space of EBLMSSM, we study
the decays h0 → γ γ and h0 → VV, V = (Z ,W ). The
CP even Higgs masses mh0 ,mH0 and CP odd Higgs mass
m0

A are researched. In the numerical calculation, to keep
mh0 = 125.1 GeV, we use it as an input parameter. In
our used parameter space, the values of Rγ γ and RVV both
meet the experiment limits. The CP odd Higgs mass mA0
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is a little heavier than the CP even Higgs mass mH0 . Gen-
erally speaking, both mA0 and mH0 are in the region (500–
1500) GeV. Based on the supposition that the lightest mass
eigenstate Y1 of Y and Y ′ mixing possesses the character of
cold dark matter, we research the relic density of Y1. In our
used parameter space, �Dh2 of Y1 can match the experiment
bounds. EBLMSSM has a bit more particles and parame-
ters than those in BLMSSM. Therefore, EBLMSSM pos-
sesses stronger adaptive capacity to explain the experiment
results and some problems in the theory. In our later work, we
shall study the EBLMSSM and confine its parameter space
to move forward a single step.
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