Eur. Phys. J. C (2018) 78:245
https://doi.org/10.1140/epjc/s10052-018-5741-0

THE EUROPEAN

) CrossMark
PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

Reconstructing warm inflation

Ramon Herrera?

Instituto de Fisica, Pontificia Universidad Catélica de Valparaiso, Casilla 4059, Valparaiso, Chile

Received: 16 January 2018 / Accepted: 15 March 2018 / Published online: 21 March 2018

© The Author(s) 2018

Abstract The reconstruction of a warm inflationary uni-
verse model from the scalar spectral index ng(N) and the
tensor to scalar ratio (V) as a function of the number of
e-folds N is studied. Under a general formalism we find the
effective potential and the dissipative coefficient in terms of
the cosmological parameters ng and r considering the weak
and strong dissipative stages under the slow roll approxima-
tion. As a specific example, we study the attractors for the
index ng given by ng — 1 o« N~! and for the ratio r o« N2,
in order to reconstruct the model of warm inflation. Here,
expressions for the effective potential V (¢) and the dissipa-
tion coefficient I"(¢) are obtained.

1 Introduction

It is well known that during the evolution of the early uni-
verse, it exhibited an accelerated expansion or an inflationary
scenario commonly called the inflationary universe [1,2]. A
crucial characteristic of the inflationary universe is that this
scenario explicates the Large-Scale Structure (LSS) of the
universe, and also the source of the anisotropies observed in
the Cosmic Microwave Background (CMB) radiation [3-6].
Although, inflation originally was proposed to solve some
problems of the standard hot bing-bang model such as; the
flatness, horizon, among other [1,2].

In the context of the different models that give account
of the inflationary universe and its early evolution, we can
distinguish the model of warm inflation. In the framework of
warm inflation, the universe is described by a self-interacting
radiation field and a field scalar or inflaton field. In contra-
diction to the standard cold inflation, the model of warm
inflation has the attractive feature that it avoids the reheat-
ing period, because the radiation production takes place con-
currently together with the inflationary expansion driven by
the scalar field [7-11]. This is possible through a friction
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term enclosed on the dynamical equations and this term
describes the processes of the scalar field dissipating into
a thermal bath with other fields. In this sense, the scenario
of warm inflation ends whenever the universe stops inflat-
ing and softly goes into the radiation epoch of the standard
big-bang model.

Another difference of warm inflation in relation to the
cold inflation are the initial fluctuations essential for the LSS
formation. In fact, during the development of warm inflation
the thermal fluctuations have a fundamental role in the LSS
formation and the density fluctuations from the scalar field
arise from thermal rather than quantum fluctuations [12—-16].
Thus, from the background dynamics and initial fluctuations,
the stage of warm inflation differs substantially from the cold
inflation (or the standard inflation) [17-27]. For a review of
models of warm inflation, see e.g. Refs. [11,17-36] and for
a list of recent articles, see [37-45].

On the other hand, the reconstruction of the effective
potential in the evolution of cold inflation from observa-
tional data such as the scalar spectrum, scalar spectral index
ng and the tensor to scalar ratio r, have been discussed by
several authors [46-56]. Here, we mentioned that the recon-
struction of inflationary potentials for the case of a single
scalar field assuming the primordial scalar spectrum was first
made in Ref. [46], in which the general slow-roll approx-
imation and without considering any specific form of the
scalar spectrum index were assumed. An interesting mech-
anism in order to construct the effective potential of infla-
tion assuming the slow roll approximation, is through the
parametrization of the cosmological parameters or attrac-
tors ng(N) and r(N), where N corresponds to the num-
ber of e-folds. The observational tests from Planck data
[57] are in good accord with the parametrization on the
scalar spectral index given by ng ~ 1 — 2/N and the ten-
sor to scalar ratio r o¢ N2, assuming that the number
N =~ 50 — 70 at the end of the inflationary epoch. For
large N (N > 1) the attractor ng(N) ~ 1 — 2/N together
with different expressions for the tensor to scalar ratio r(N)
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can be deduced from different models in the case of cold
inflation such as; the T-model [58], E-model [59], Staron-
bisky R?-model [1], the chaotic model [60], the model of
Higgs inflation with non minimal coupling [61-63] among
other.

On the other hand, it is also possible to consider the slow-
roll parameter € and its parametrization in terms of N, in
order to obtain the effective potential, scalar spectral index
and the tensor to scalar ratio in models of cold inflation [52,
64—66]. In particular in Ref. [52] was studied different types
of slow-roll parameter €(N) and thereby reconstructing the
effective potential. Also, from the two slow roll parameters
€(N) and n(N) the effective potential was reconstructed in
Ref. [67]. Analogously, in Refs. [68,69] related results are
obtained for the reconstruction.

The objective of this article is to reconstruct the model
of the warm inflation, considering the parametrization of
the cosmological parameters as the scalar spectral index
and the tensor to scalar ratio in terms of the number of
e-folds. In this context, we analyze how the background
dynamics in which there is a self-interacting scalar field
and radiation affects the reconstruction of the effective
potential and the dissipative coefficient from the attrac-
tors. Under a general formalism, we will build the poten-
tial and dissipative coefficient during the scenario of the
weak and strong dissipative regimes from the attractors
ns(N) and r(N). Also, for the reconstruction the model
of warm inflation we will consider the weak and strong
dissipative regimes assuming the slow roll approxima-
tion.

In order to reconstruct analytical quantities for the poten-
tial and dissipative coefficient, we will study a concrete exam-
ple for the cosmological parameters ng(N) and r(N). Here,
we will consider the attractors ng — 1 o< 1/N and r o< 1/N?2,
for two regimes during the stages of warm inflation. In both
scenarios, we will find the potential and dissipative coeffi-
cient together with the constraints on the different parameters
assuming the condition for the weak regime and the strong
regime, respectively.

The outline of the article is a follows: the next section
presents a short review of the basic equations during the stage
of warm inflation. In the Sect. 3 we discuss the reconstruc-
tion in the framework of warm inflation. In Sects. 4 and 5 we
obtain under a general formalism, explicit expressions for
the effective potential and dissipative coefficient in terms of
the number of e-folds N during the weak and strong dissipa-
tive regimens, respectively. In Sect. 6 we discuss a concrete
example for our model, in which we consider the specific
attractors for ng(N) and r(N), in order to find the potential
V(¢) and the coefficient I"(¢). Here, we analyze the recon-
struction in the weak and strong dissipative regimes, respec-
tively. Finally, our conclusions are presented in Sect. 7. We
chose units sothatc =7 =87G = 1.

@ Springer

2 Warm inflation: basic relations

We start by writing down the Friedmann equation in the
framework of the warm inflation, by considering a spatially
flat Friedmann—Robertson—Walker (FRW) metric, together
with a scalar field homogeneous and radiation. In this sense,
the Friedmann equation is given by

, 1 1
H =§p=§[p¢+py], (1)

where H = a/a denotes the Hubble parameter and the quan-
tity a corresponds to the scale factor. During the scenario of
warm inflation we assume a two-component system, a scalar
field homogeneous ¢ = ¢ (¢) with an energy density ps and
aradiation field of energy density p,, . Here, the total energy
density p = pg + p,, where the energy density oy in terms
of the scalar field is defined by py = d>2/2 + V, where V
denotes the effective potential. In the following, we will con-
sider that the dots correspond to differentiation with respect
to the time.

As previously mentioned in the framework of the warm
inflation, the universe is filled with a self-interacting scalar
field and radiation, and the basic equations for the densities
p¢ and p,, are given by [7,8]

0y +3H (pp + py) =—T q'bz, or equivalently

.. . 2
¢+[3H+F]¢=—§—;=—V,¢, @)

and
py +4Hp, =T¢". 3)

Here, we mention that the continuity equation for the total
energy density p satisfies the standard relation p + 3H (p +
p) =0.

In this context, the quantity I' refers to the dissipation
coefficient and considering the second law of thermodynam-
ics the coefficient I is defined as positive [7,8, 12—14]. In this
sense, from Egs. (2) and (3) we interpret that the coefficient
I gives origin to the decay of the scalar field into radiation
during the inflationary epoch of the universe. The parameter
I' can be considered to be a constant or a function of the
scalar field ¢, or the temperature of the thermal bath T, or
bothie., I' =T(¢, T) [7,8].

In the following we will analyze the reconstruction of the
model of warm inflation, assuming that the dissipation coef-
ficient and the effective potential depend only of the scalar
field, i.e., ' =T'(¢) and V = V(¢), respectively.

During the inflationary epoch, the energy density of the
scalar field predominates over the energy density associated
to the radiation field in warm inflation, wherewith pg > p, .
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Also, considering the set of slow-roll approximations in
which ¢? <« V and ¢ « (3H + I')¢, then the Friedmann
equation (1) can be rewritten as [7,8,12—14]

1 1

H>>~ = p,~=V, 4
3P0 =3 (4)

and from the equation of the scalar field (2) we have

Ve

= T SHA+R) ®)

Here, the quantity R corresponds to the ratio between the
coefficient I' and the Hubble parameter and is defined as

r

=35 (6)

Typically, during the scenario of warm inflation we can iden-
tify two regimes; called the weak dissipative regime, in which
R < 1 (or equivalently I' <« 3H) and the strong dissipative
regime where the ratio R > 1 (I' > 3H).

On the other hand, following Refs. [7,8,12—-14], we
assume that during the inflationary expansion of the uni-
verse the radiation production is quasi-stable, in which p, <«
4Hp, and p, < I'$2. In this form, from Eq. (3) we find that
the energy density of the radiation field becomes

: 2
s T RV .
T 4H 40+ R?2 V'’

oy =C,T
where C,, is a constant and is defined as C,, = 72 g./30,
in which g, denotes the number of relativistic degrees of
freedom [7,8,11]. Here, we have used Eq. (5).

Also, from Eq. (7), we find that temperature of the thermal
bath can be written as

2 q1/4
ro| R Vel (8)
4C, (14+R)? V

In order to have a measure of the inflationary expansion of
the universe, we define the number of e-folding N between
two different values of cosmological times ¢ and #,, where the
time 7, corresponds to the end of inflation. Thus, the number
of e-folds N assuming the slow roll approximation can be
written as

N C)

te be / ¢ 1 R
N=/ Hdt = Hdi:/ ud
t ¢

¢ e Vo
Here, we have considered Eqgs. (4) and (5).

On the other hand, due to the presence of the radiation
field in the dynamics of warm inflation, the source of the den-
sity fluctuations correspond to thermal fluctuations [7-11].

In this sense, during the evolution of the expansion inflation-
ary, the fluctuations of the scalar field are dominantly ther-
mal rather than quantum [7,8,12-16]. Thus, in the scenario
of warm inflation, the curvature and entropy perturbations
coexist, since the mixture of the scalar field and radiation are
generate at the perturbative levels. This happens because the
model of warm inflation can be viewed as a model of two
basic fields [70]. However, as was demonstrated in Ref. [11],
during warm inflation the entropy perturbations on the large
scales decay and only the curvature (adiabatic modes) sur-
vives [7,8,11-16]. In this context, the power spectrum of the
curvature perturbations Pg during warm inflation, assum-
ing I' = I'(¢) and V = V(¢) together with the slow roll
approximations becomes [11,72-74]

H3T
Pg ~ pe V(1 + R). (10)

The scalar spectralindex ngisdefinedasng = d In Ps/d Ink
and in terms of the slow roll parameters is given by [73]

OR+17)
40+R?2° 4(1+R

OR+1) 3
P TR

ng—1=— n, (11)

where the slow roll parameters €, n and g are given by

1 (V) Voo Volg
6—5<7>, 7]—7, andﬂ_?. (12)
Here, we mention that in the case in which I' = I'(¢, T)
and V = V(¢, T), we should add two new parameters in
Eq. (11) for the scalar spectral index ng, see Ref. [73].

On the other hand, since the tensor perturbation do not
couple to the thermal background, then this suggests that the
tensor modes have an equivalent amplitude to the model of
cold inflation, where the tensor spectrum Pz is defined as
Pr=8H 2 Thus, the tensor to scalar ratio r in the scenario
of warm inflation can be written as

Pr 8¢ 16e H
"TPs THTVITR (+RAT

13)

Here, we have used Eq. (5). We note that the tensor to scalar
ratio r in the model of warm inflation, see Eq. (13), cannot
be written only in terms of the slow-roll parameter € as it
occurs in cold inflation, in which r = 16¢. Also, we observe
that Eq. (13) coincides with the ratio r obtained in Ref. [74].

In the following we will study the reconstruction of the
effective potential V and the dissipative coefficient I" in the
scenario of warm inflation, considering an attractor point
from scalar spectral index ng(N) and the tensor to scalar
ratio 7 (N) in the r—ng plane.
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3 Reconstruction

In this section and following Ref. [53], we explicate the pro-
cedure to follow in the reconstruction of the effective poten-
tial and the dissipation coefficient as a function of the scalar
field ¢ in the framework of warm inflation, considering the
scalar spectral index ng(N) and the tensor to scalar ratio
r(N) as attractors. Since we have two quantities V (¢) and
['(¢) in the reconstruction, we need first of all to express the
scalar spectral index and the tensor to scalar ratio in terms of
the number of e-folds N. For this it is necessary to rewrite
Egs. (11) and (13) in terms of the potential and the dissi-
pation coefficient as a function of the number of e-folds N
and its derivatives. Thus, from these equations and giving
ns = ng(N) and r = r(N) we should obtain the effective
potential and the dissipation coefficient as a function of the
number N. Posteriorly, from Eq. (9) we should find the e-
folds N in terms of the scalar field in order to reconstruct the
potential V (¢) and the coefficient I' (¢), respectively.

We start by rewriting the index and ratio given by Eqs. (11)
and (13) in terms of the number of e-folding N. In fact, the
slow roll parameters can be rewritten in terms of the number
of e-folds N, considering that

dv. V(I +R
V¢=_=$\/N’
: dp Vs .
then we get

dv
Vi =V({+R)V y, wherewith V y = N 0. (14)

In the following, we will consider the subscript V. y =
dV/dN,V yytoV.yy =d*>V/dN?, T y =dT'/dN etc.
Analogously for V44 we have

1
Vo = 3y [(1 +RIVY +VV NI+ VVy R,N]’

(15)
and for the quantity I" 4 we have
Vi +R)7"?
Fy= [g} L n. (16)
V.n
Thus, the slow roll parameters can be rewritten as
VN 1Y
=——(14+R), =——({1+R), 17
€=y 1+Rr), B T (1+R) (17)
and
- L+ RVE +VV VVaRN].
n WV y [( +R[Vy+VVNNI+VVNRN

(18)
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respectively.
Equally, the temperature of the thermal bath 7 from Eq. (8)
results

1/4
T — [&} ) (19)
4C, (1 +R)

Here, we have used Eq. (14).
The relation between the e-folding N and the scalar field
can be written as

VN 1/2 B
[lraim) o=l .

In this form, the scalar spectral index ng can be rewritten
in terms of the e-folds N, considering the Egs. (11), (17) and
(18) such that

[__OR+I1D VN  OR+D Iy
n e —
5 S81+R) V 4(1+R) T
3 1 1
4(1+R)VV N
x [(1+R)[V?N+ VV,NN]+VV,NR,N].
(2D
For the tensor to scalar ratio we have
8V 1
_Pr N (22)

T Ps (A+REZ [V

where the temperature of the thermal bath T is given by
Eq. (19). Here, we have considered Eqgs. (13) and (17).

In the following, we will restrict ourselves to the weak
and strong dissipation regimes in order to reconstruct under
a general formalism the model of warm inflation from the
cosmological parameters ng(N) and r(N).

4 The weak dissipative regime

We begin by considering the reconstruction for the case in
which the model of warm inflation evolves in the weak sce-
nario in which the dissipation coefficient I' < 3 H (or equiv-
alently R <« 1). During this regime and considering Eq. (20),
the relation between the e-folding N and the scalar field, is
given by

1/2
f[%} dN:/dgb. (23)

On the other, from Eq. (11) the spectral index ng when R < 1
becomes

17 1 3
—l=—le—-pg4+2y, 2%
ns 7€ 4,3+277 24)
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and by considering the slow roll parameters given by
Egs. (17) and (18), then the scalar spectral index in this regime
can be rewritten as

L[ 1V
me—1=1]_
§ 4l 2v Vy T

1 V]\/3
=7\ viiar :
4 \% r N

From Eq. (13) the tensor to scalar ratio r during this sce-
nario can be written as

Vv r
NATE ,N:|

(25)

1/4
4/3C, V3
r:S[‘/_ r N } . (26)

9 v32r

Here, we have used that the temperature of the thermal bath
I'V.y
43¢, Vi

On the other hand, by combining Egs. (25) and (26) we
find that the effective potential in terms of the e-folds N can
be written as

1/4
is givenby T = i| , during this scenario.

V(N)=V = % exp[f(l — n5)dN], 27)
CV

and the coefficient dissipation I"(N) becomes

C, TVvaT
F(V)=r=-7¢ [W}

~1/4 5/2
c 3
= |:Li| [V’—N—i—(l—ns)]
r r

X exp [; /(1 — ns)dN] , (28)

where the constant C,, is defined as C,, = 8°+/3C, /18.

Here, we mention that the Egs. (23), (27) and (28) are the
fundamental equations in order to reconstruct of the effective
potential V (¢) and of the dissipation coefficient I' (¢), during
this regime from the attractors ng(N) and r(N).

5 The strong dissipative regime

Now, we assume that the model of warm inflation evolves in
the strong dissipative regime in which the coefficient I' >
3H. Thus, from Eq. (20) the relation between the e-folding
N and the scalar field during this regime, is given by

12 1/2
[[F] o= f [ D] av=[ oo o0

By considering Eq. (11) the spectral index in this regime
becomes

9 9 3
ns—l=— e Bt oo, (30)

4R 2R
and taking into account the slow roll parameters in this sce-
nario (R > 1), then the scalar spectral index ng can be
rewritten as

3 Vi V NN R N '~
ng—1=2>]|-=N4 = GSELAN ST

41 2V VN R r

3T VNR

=3 _ln (—V]/2 F3)i| . 3D

o equivalently

3T Vo
ng — 1= Z _ln <W>i|‘N . (32)

Here, we have considered Egs. (4) and (6).
During this regime, the tensor to scalar ratio r results

LS S N R A AR 33
"T R ,/3VT_F3/2[V ’N] ' (33)

Here, we have used that the temperature of the thermal bath
T in the strong regime is given by T = (V. N/4C),)1/4 and
the constant C_’), is defined as C_’y =8 3C, /2.

By combining Egs. (32) and (33) we find that the effective
potential V (N) can be written as

’
V(N) = ————3 exp [/(1 — ng)dN} . (34)
33/8 C}l,/4

Curiously, we find that the potentials V(N) in the weak
and strong dissipative regime have the same structure, i.e.,
V(N)~r exp[f(l —ng)dN], see Egs. (27) and (34).

The dissipative coefficient I in terms of the e-folds N can
be expressed as

=1/6

CV
r) = 5 (

1 1/2 2
~ 314 [FYTN—HI_”S)] exp [g /(1 —ns)i| dN.

35)

VIR Yy )2

Thus, we find that the dissipation coefficient given by Eq. (35)
is different from the obtained in the weak regime, see
Eq. (28). Also, we observe that the coefficient I'(N) does
not depend of the constant C,,, during the strong dissipative
regime.

Again, we refer to that the Eqgs. (29), (34) and (35) are
the fundamental expressions in order to reconstruct of the
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effective potential V (¢) and I'(¢) from the quantities ng(N)
and r(N), during the strong dissipative regime.

6 An example

In this section we apply the formalism of above to the two dis-
sipative regimes (weak and strong) in the scenario of warm
inflation, considering the simplest example for the cosmo-
logical quantities ng(N) and r(N), in order to reconstruct
analytically the effective potential V (¢) and dissipative coef-
ficient I'(¢). Following, Refs. [1,53,58] we consider that the
spectral index is given by

2
ns—1l=--, (36)

and the tensor to scalar ratio as

1

"IN +EN) ©7
where £ corresponds to a constant. In this sense, if we con-
sider that in particular the number N before the end of infla-
tionary epoch at the horizon exit corresponds to N =~ 60, then
the scalar spectral index and the tensor to scalar ratio given
by relations (36) and (37) are well corroborate by observa-
tional dataif £ > —1/72 forr < 0.1 [57] and & > —4/315
for the ratio r < 0.07 [75]. In particular from Ref. [76] in
which the ratio r < 0.04 (at 1 — o confidence level) we have
& > —0.0096. Recently, in Ref. [77] was obtained different
constraints on the parameter £ from observational data. In
the following we will assume that the number of e-folds N
is large, for values of N ~ O(10?).

As we mentioned before, the attractors given by Egs. (36)
and (37) in the limit £N >> 1 (such that r o« 1/N?) in
the framework of cold inflation can be obtained in the E-
model [59] and also in the model of the Higgs inflation with
the nonminimal coupling [61,62], see also Ref. [63]. A gen-
eralization of the attractors (/N) and ng(N) are given by
r=120/N?and ng — 1 = —2/N or also called o attractor
(or usually called « attractor) which was proposed in Ref.
[78], see also Ref. [79].

6.1 The weak regime

By considering the spectral index given by Eq. (36) we find
that exp[ [ (1 — ng)|dN = NTZ, where the quantity « corre-
sponds to the integration constant. From Eq. (27) we obtain
that the effective potential in terms of the e-folding becomes

V(N) = (38)

1
o« [s+1/zv]‘

@ Springer

Thus, we find that V. y = oz_ld,,_l/4($N + 1)72, and

then the quantity V. /V? = aéy /N? suggests that the inte-
gration constant o > 0, since 67}, and V y are positives,
see Eq. (14). Also, we mention that the potential given by
Eq. (38), is similar to that found in Ref. [53] for cold infla-
tion, where the reconstruction of V (N) is only obtained from
ns(N). In this sense, from the potential (38) we identify that
o éy i corresponds to « and the parameter £ — S/« from
cold inflation [53].

By considering Eq. (28), we find that the dissipation coef-
ficient in terms of the number N becomes

~5/8
[(N) =ToN?(14+&N)"Y2 where Ty=

o032
(39)

From Eqs. (38) and (39) we find that the rate R as a func-
tion of the number of e-folds in this regime is given by

cor gt

R(N) = S .
™) 3H 3V 3«

(40)

Here, we note that during the weak regime the ratio R(N)
does not depend of the constant &, when it is expressed in
terms of the number of e-folds N. Also, in order to obtain
a scenario of weak dissipation in which R < 1, we}/ﬁmd a

lower bound for the parameter «, given by o > % N2,

In particular for large N in which N = 60, we obtain the
lower limit & > 83 x 41.338 ~ O(107). Here, we have
used C,, =70[7,8,11].

In this form, during the stage of warm inflation we obtain
a lower bound for the integration constant ¢, considering the
condition of the weak dissipative regime I' <« 3H. Also, we

mention that this lower bound for the integration constant
=3/4
C . .

o > % N2, can not be obtained in the case of the recon-

struction of the standard cold inflation from the background
level, and it is only possible to say that o > 0 [53].

On the other hand, from Eq. (23) we obtain that the relation
between N and ¢ is given by the integral

1
/\/ N(+&N) dN:/‘M" “D

Analogously as it occurs in the model of cold inflation, this
integral depends on the sign of the constant £. In the case
in which & > 0, we find that the integral given by Eq. (41)
becomes

N =g sinh? [%g(qs - ¢0)i| , (42)
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where ¢ denotes an integration constant. In this form, con-
sidering Eq. (42) the potential given by Eq. (38) can be written
in terms of the scalar field as
VE
V(¢) = Vo tanh? [7«1) —0) |,
1

s C

where Vg = 43)

This effective potential corresponds to the potential studied
in the T-model [58], see also Ref. [53] from the reconstruc-
tion. From the point of view of the reconstruction, we noted
that in the case of the weak dissipative regime, the equa-
tion that relates N = N(¢) (see Eq. (23)) is equivalent to
the model of cold inflation, since during the weak dissipa-
tive regime (3H > I') the expression to find N = N(¢) is
the same, however, the initial fluctuations are of a different
nature (thermal and quantum) and hence ng and the ratio r.
In this sense, we notice that utilizing the specific attractors
for ng and r given by Eqgs. (36) and (37), the reconstruc-
tion in the model of warm inflation during the stage of weak
dissipative regime coincides with the stage of cold inflation
and it is a mere coincidence. Besides, we mention that this
potential can also adapted to provide the Starobinsky model
and «—attractor model, see Ref. [53].

From Egs. (39) and (42) we obtain that the dissipation
coefficient in terms of the scalar field is given by

= & tanh|:\/g

VE
[(@) = 572 > i|

(¢ — ¢0)] sinh* [7@ — o)
(44)

This suggests that, in order to obtain during the weak dissipa-
tive regime the associated effective potential to the T-model
or classes of inflationary models, with an attractor point given
by Eqgs. (36) and (37), then necessarily the dissipative coef-
ficient should be given by expression (44). The dissipation
coefficient for large +/&¢ can be approximated to

~ Lo 2 k—a — JE(¢—0)
L)~ je5m @ (1 — 4e )

~ 62«/§(¢—¢0)’

(45)

and the effective potential (43) to the Starobinsky model or
the a-attractor model [53].

On the other hand, an important situation occurs when
the integration constant £ is negative, since in particular for
N = 60 and & = —1/72, the tensor to scalar ratio r takes
the upper bound from Planck r = 0.1 [57] and £ = —4/315
for r = 0.07 [75]. In this sense, assuming the case in which
the constant £ < 0 and considering that | £~! |> N, then

the integration given by Eq. (41) becomes

N = —&" sin? [?w - ¢0):| , (46)

and we find that the effective potential in terms of the scalar
field is similar to the found in Ref. [53] and becomes

V=&
V($) = —Vp tan’ [7@ — o) |- (47)
However, the dissipative coefficient I" as a function of the
scalar field can be written as
Iy V=&
tan
(—5)772 2

x sin* [?(qﬁ - ¢0)i| . (48)

Finally in the situation in which the constant & = 0, the
relation between the number of e-folds and the scalar field
results N = (¢ — ¢1)?/4 and the potential is given by

['(¢) =

(¢ — ¢0)}

1
V(§) = ——177 (0 — $0)°, (49)
4a Cy

corresponding to chaotic potential [53]. The dissipation coef-
ficient as a function of ¢ in this case becomes

I
I'(¢) = 3—3 @ — ¢0)°, (50)

with a dependency power-law in which I' o ¢°. Here, we
have used Eq. (39).

We emphasize that the reconstruction of the effective
potentials given by Egs. (43), (47) and (49) in the weak dis-
sipative regime are the same as those found in Ref. [53] for
the case of cold inflation only assuming the scalar spectral
index ng(N) =1—-2/N.

InFig. 1 we show the evolution of the ratio R = % versus
the number of e-folds N (left panel) and the dependence of
the dissipative coefficient I on the scalar field (right panel)
during the weak dissipative regime R < 1. The left panel
shows the condition of the weak dissipative regime in which
I' <« 3H, for three different values of «. In order to write
down the rate R = I'/3H in terms of the e-folding N during
this regime, we consider Eq. (40). The right panel shows the
evolution of the dissipation coefficient I" as a function of the
scalar field. Also, in order to write down the coefficient I
in terms of the scalar field, we consider Eqgs. (44), (48) and
(50) for three different values of & % 0, in which we have
fixed 8 3a = 413.380 ~ O(10°). In both panels we have
considered C,, = 70. From the left panel, we observe that the
condition for the weak dissipative regime (R < 1) is satisfied
for the values of the integration constant 8 3« >> 41.338 ~

@ Springer
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Fig. 1 The dependence of the ratio R = 3LH versus the number of
e-folds N (left panel) and the dependence of the dissipation coeffi-
cient I' versus the scalar field (right panel) during the weak dissipative
regime. From Eq. (40) we plot R = R(N) in which the dotted solid and

O(10%). Also, we consider in this plot the limit case of the
weak scenario in which the rate R = 1, corresponding to
the values N = 60 and 8 3o = 41.338, respectively (dotted
line).

From right panel, we note that the behaviors of the differ-
ent parameters I' = I"(¢) for the values of & % 0 are similar.
Also, we mention that from the relation given by Eq. (37)
and considering values £ > 0 together with large N i.e.,
N ~ (O(10?), the tensor to scalar ratio r ~ 0.

6.2 The strong regime

By assuming the strong dissipative scenario in which I" >
3H and from Eq. (34) we obtain that the effective potential
in terms of the e-folds N results

V(N) (5D

1
38 ¢ [s + 1/N}’

and this potential is similar to Eq. (38) for the weak regime.
We emphasize that the integration constant « > 0. From
Eq. (35), we obtain that the dissipation coefficient in terms
of the e-folds is given by

1
31/452/3"
(52)

I(N) =To N (1 +£6N)""/2, where 'y =

As, we mentioned before this coefficient does not depend of
the parameter C, during the strong regime.

Now, from Egs. (34) and (35) we obtain that the ratio R
during the strong dissipative regime is given by

@ Springer
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dashed lines correspond to three different values of « (left panel). From
Egs. (44), (48) and (50) we plot I' = I'(¢) for three different values
of & % 0, in which we have fixed @« = 413.380 (right panel). Also, in
these plots we have used C,, = 70

r r c,'®

= — = = 173
R=3g V3V 3%/161/6 N

(53)

and this ratio does not depend of the parameter £, in analogy
to the weak regime. From the condition of the strong regime

in which R > 1, we find an upper bound for the parameter
T 3/4 2

a given by 22—7/;\] > «. For the case in which N = 60,
we obtain that the upper limit for « is given by 7 x 106 ~
010"y > a.

Nevertheless, from these solutions we find a transcenden-
tal equation from Eq. (29) to express the number of e-folds in
function of the scalar field. Hence, in order to obtain analyt-
ical expressions for V (¢) and I'(¢) and therefore the recon-
structions, we can study the potential and the dissipation coef-
ficient in the limits N > 1/§ and N « 1/§.

We start with the limit § N > 1. For large N and in par-
ticular for N = 60, we find a lower bound for the constant &
given by £ > 1/60 ~ 0.017. On the other hand, the tensor
to scalar ratio (V) given by Eq. (37) in this limit is approx-
imately

1 1
T N +EN) ENZ

r(N) (54)
with & a positive quantity. Here, we note that the attractor
given by Eq. (54) corresponds to the o —attractor, in which
& = (120)~! [78,79] or also to T-model when & takes the
value £ = 1/12incold inflation [58]. Also, we note that from
Egs. (36) and (37) we get 2& = (1 +ng)[(1 + ngs)/2r — 1]
and considering the limit €N > 1, we have (1 — ng) > 4r
and then the ratio » < 0.008 in this limit.

In this context, in which €N > 1, the effective potential
V(N) given by Eq. (51) results
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VIN) " ———
33/8¢ C,/ ¢

= Cte. (55)

Thus, the universe presents an exponential expansion, since
H o V12 = constant and from Eq. (29) we find ¢ = ¢9 =
Cte.,becausedp/d N = 0. This suggests that the reconstruc-
tion does not work during the strong regime when r oc N2
andng — 1 o« N~1.

On the other hand, now we consider the limit in which
EN <« 1 where r(N) ~ 1/N. We note this the attractor for
large N and in particular for N = 60 results r(N = 60) =~
1/60 =~ 0.02, wherewith still this attractor is well supported
by the Planck data.

From Eq. (51) we find that the effective potential V (V)
becomes

V(N) ~ (56)

— = N
/e C)?

Considering that the integration constant o« < 7 x 10°, we
find a lower bound for the effective potential for large N (in
particular N = 60) given by V(N = 60) > 10~ (in units
of m‘l‘,, with m, the Planck mass).

The dissipation coefficient from Eq. (52) is given by

I['(N)~ Ty N/° . (57)

Here, we observe that the potential V (N) and the dissipation
coefficient I'(N) do not depend on the parameter &, since
r(N)=~1/N.

From Eq. (29) we find that the relation between the number
of e-folds and the scalar field in the limit EN <« 1 can be
written as

~1/16
1 -2/3 ~ 14
E/N dN:/d¢, where o = W (58)

Integrating we have

N ~ No (¢ — $o)°, (59)

where Ny = (&/3)> and ¢y corresponds to an integration
constant. Thus, the reconstruction of the effective potential
as a function of the scalar field results

No

V(g)~ Vo(p —do)’, where Vo= ———r.
33/80,C 1/

(60)

Therefore, in this limit (§N < 1) the effective potential
corresponds to a cubic potential.

Similarly, the dissipation coefficient from Eqs. (56) and
(59) in this limit becomes

T(¢) ~ To (¢ — d0)*/, where To=ToN)®,  (61)

resulting in a power law dissipative coefficient in which I'
¢5 /2.

In this sense, we observed that considering the attractor
r(N) =~ 1/N (together withng — 1 = —2/N), the effective
potential and the dissipation coefficient present a power law
behavior during the strong regime, and its dependencies with
the scalar field (reconstruction) are given by V (¢) ~ ¢ and
I'(¢) ~ ¢>/2, respectively.

7 Conclusions

In this paper we have studied the reconstruction from recent
cosmological observations in the framework of the warm
inflation. Under a general formalism of reconstruction, we
have found expressions for the effective potential and dissi-
pative coefficient in the context of the slow roll approxima-
tion, motivated by the cosmological observations of the scalar
spectral index ng and tensor to scalar ratio r. In this general
analysis we have obtained from the cosmological quantities
ns(N) and r(N) (where N corresponds to the number of e-
folds), integrable expressions for the effective potential and
dissipative coefficient. For warm inflation and its reconstruc-
tion, we have considered two different regimes, called the
weak and strong dissipative regimes.

As a concrete example and in order to obtain the recon-
structions for the effective potential V (¢) and dissipation
coefficient I' (¢), we have considered the attractors ng — 1 =
—2/N and r = (N[1 4+ £N])~!. Here, we have applied our
general results considering the weak and strong dissipative
regimes for these attractors.

For the weak regime in which I' <« 3H (or equivalently
R « 1) and considering the example or the attractors given
by Egs. (36) and (37), we have obtained a gﬁwer bound for

the integration constant & given by o > % N2, from the

condition of weak dissipative regime i.e., R(N) < 1. In par-
ticular for the case in which N = 60 (large N ), we have found
that the lower bound for the integration constant « given by
a > 2 x 107 ~ O(107). Also, we have obtained that during
the weak regime the reconstruction on the effective potentials
are given by Egs. (43), (47) and (49), and it coincides with
the obtained in the case of cold inflation [53]. Similarly, we
have obtained that the construction of the dissipative coeffi-
cients I'(¢) depends on the sign of the parameter & % 0.In
particular for the case £ = 0 where the potential corresponds
to the chaotic potential, we have found that the dissipative
coefficient I'(¢) o ¢°.

For the case of the strong dissipative regime (R > 1)
we have obtained the potential and dissipative coefficient in
terms of the number of e-folds. During this regime, we have
found that the potential V (/N) has the same structure that
in the weak regime. However, we could not find analytical
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solutions in order to obtain the number of e-fold in terms
of the scalar field in form to obtain the reconstruction of
V(¢) and I'(¢). In this sense, we have analyzed the potential
and the dissipation coefficient in the limits N > 1/§ and
N « 1/&, in order to obtain analytical solutions. In the case
in which r o« N2 (limit N >> 1/&), we have obtained that
the potential V (N) = constant, and the reconstruction does
not work. For the case in whichr o« N~! (limit N < 1/&) we
have obtained that the potential and the dissipative coefficient
in terms of the scalar field are given by V(¢) o ¢3 and
I'(¢) o ¢7/2, respectively.

Finally in this paper, we have not addressed the recon-
breakstruction of warm inflation in which the effective poten-
tial and dissipative coefficient also depend of the temperature
of the thermal bath T',i.e., V(¢, T) and I'(¢p, T) [17-32,37—
45,73]. We hope to return to this point in the near future.
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