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Abstract In this paper, we investigate the possibility of
obtaining bouncing-oscillating solution in modified Fried-
mann equations with logarithmic entropy corrected, S =
A

4G + α ln A
4G + β 4G

A , for positive, negative and zero val-
ues of (α, β) pre-factors and all kinds of curved universes.
The results are argued using the dynamical system techniques
and by employing the phase plane analysis for full classifi-
cation of the nonsingular evolutions. Our analysis indicates
that it is possible to have an oscillating universe as well as a
bounce universe for k = 1 and k = − 1 curvatures. In k = 1
case, both positive and negative values of α and β can make
bouncing-oscillating solution, while in k = − 1 case, only
the positive value of α with negative value of β can make a
bounce. Also the flat universe have no bounce solution.

1 Introduction

General relativity predicts a spacetime singularity for the
beginning of the universe [1–4], as it is no longer valid and
so there are some alternative theories to standard big bang
cosmology [5–13]. Many attempts have been done to resolve
this singularity problem through the modified general rela-
tivity theory [14–18], although it may be resolved via string
theory and/or loop quantum cosmology [19,20] as some can-
didates for a quantum theory of gravity [21–24]. In this right,
the scenario of an oscillating universe is to avoid the big bang
singularity and replace it with a cyclical evolution [25–38].

The quantum phenomenon of Hawking radiation [39]
indicates that black hole has a temperature proportional to
its surface gravity and an entropy proportional to its horizon
area [39–42]. This issue led people to consider a profound
connection between gravity and thermodynamics which was
first addressed by Jacobson [43] who disclosed that the Ein-
stein gravitational theory for the spacetime metric can be
derived from the horizon entropy–area realation by using the
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fundamental Clausius relation, δQ = T δS, which is as the
first law of thermodynamics for the cosmological horizon
[44,45]. The investigations on the relation between Einstein
field equations and first law of thermodynamics in the setup
of black hole spacetime have been generalized to the cos-
mological context to derive Friedmann equations with any
spatial curvature, by applying the Clausius relation to appar-
ent horizon of the FRW universe [46–49]. See [50,51] for
further studies of thermodynamical aspects of gravity, and
also [52–56] as to refer to a recent review on possible cyclic
models.

The so-called entropy–area formula which holds only in
Einstein gravity has to be modified when some higher order
curvature term appears in discussing the quantum correc-
tion to black hole entropy [57–62]. Therefore, the singularity
problem – that comes from a “shortage of time” in the early
universe – should be resolved and replaced by a quantum
bounce [63,64].

Inclusion of quantum effects, motivated from the loop
quantum gravity (LQG) due to thermal equilibrium and quan-
tum fluctuations [65–70], leads to the curvature correction in
the Einstein–Hilbert action [71,72] provided as logarithmic
entropy-corrected [66,73–76]

S = A

4G
+ α ln

A

4G
+ β

4G

A
(1)

in entropy–area relationship of black holes in classical grav-
ity, where A = 4π r̃2

A which r̃A = 1√
H2+ k

a2

is the radius of

apparent horizon, α and β are dimensionless constants. The
exact values of these constants are not yet determined and is
still in debate within the quantum geometry (LQG). Various
approaches to the black hole entropy yield the logarithmic
correction involving − 1

2 or − 3
2 as popular values of α coeffi-

cient [77,78]. In these treatments, there is no such consensus
with regard to how one might fix the value of the logarithmic
pre-factor α (e.g. with β = 0), as it appears to be a highly
model dependent parameter [77–80].
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Table 1 Number of critical
points and existing
bouncing-oscillating solutions
for positive, negative and zero
values of (α, β) pre-factors of
entropy-corrected Friedmann
equations describing the k = 1
and k = − 1 curved universes
(α2 > 12β)

Model α β Number of critical points Bounce Oscillation

k = 1 Positive Positive 4 Exist Yes

k = 1 Positive Negative 2 Exist Yes

k = 1 Negative Positive 0 Exist No

k = 1 Negative Negative 2 Exist Yes

k = 1 0 0 1 Don’t exist No

k = 1 0 Negative 2 Exist Yes

k = 1 0 Positive 0 Exist No

k = 1 Positive 0 2 Exist Yes

k = 1 Negative 0 0 Exist No

k = − 1 Positive Negative 4 Exist Yes

k = − 1 Others Others 4 Don’t exist No

Accordingly, for the time being the aim of this paper is
twofold. The first is to see the importance of quantum effects
on modification of Friedmann equations as to investigate the
possibility of having solutions of the singularity-free cos-
mological model. The other is to evaluate the values of the
constant pre-factors of Eq. (1) at bouncing evolution, cor-
responding to occurrence of bounce and having oscillating
solutions, since they are not yet determined even within the
loop quantum gravity. For instance, some works lead to the
negative or positive α [77–86]; and the authour of [86] argued
that α should be equal to zero.

The paper is organized as follows. In the next section
we briefly discuss the modified Friedmann equations and
bouncing approach by the action of the corrected entropy–
area relation (1) to the apparent horizon of FRW universe. In
Sect. 3 we get a spacetime of cosmological perturbations by
studying the structure of the dynamical system via Jacobian
stability combined with phase plane analysis. Some realiza-
tions of cosmological bounces and oscillating behaviors are
discussed in Sect. 4. This situation, in general, is argued for
all values of debated parameters α and β by employing for
different curvatures, as shown in Table 1. We conclude in
Sect. 5 with a discussion of approach and some key results
for bouncing evolution of the entropy-corrected Friedmann
equations on the metric of FRW universe.

2 Modified Friedmann equations

The Friedmann equations was derived by applying the first
law of thermodynamics to the apparent horizon of the uni-
verse and assuming the geometric entropy given by a quar-
ter of the horizon area [47]. However, addition to thermo-
dynamical law of black hole’s entropy as a dominant term
given by a quarter of its horizon area, there is a quantum
correction involving the logarithmic of the area [87]. On this
basis, by tacking the corrected entropy–area relation (1) into

account, the modified Friedmann equations of a Friedmann–
Robertson–Walker (FRW) universe with any spatial curva-
ture, whose matter content constitutes a cold dark matter with
the density ρ, would be [48,49];

H2 + k

a2 + αG

2π

(
H2 + k

a2

)2

− βG2

3π2

(
H2 + k

a2

)3

= 8πG

3
ρ, (2)

2

(
Ḣ − k

a2

)(
1 + αG

π

(
H2 + k

a2

)
− βG2

π2

(
H2 + k

a2

)2
)

= −8πG(ρ + p), (3)

where we put G = 1; and k = 0, 1,− 1 represent a flat,
closed and open universe, respectively. We also get αG

π
as a

new α and βG2

π2 as a new β in the next sections of paper for
simplicity. It is of interest to point out that there are differ-
ent approaches to arrive at the same result, as the authors of
[88,89] have obtained the dynamical equations (1) and (2) by
using the corresponding corrected entropy expression on the
emergence spacetime that argued the accelerated expansion
of the universe can be derived due to the difference between
the surface degrees of freedom and the bulk ones in a region of
space. Note that, given the recent astrophysical data [90–92],
the universe is undergoing a state of accelerating expansion.
We will thus suppose that dark energy might play an impor-
tant role on the implications for the fate of the universe, and
it’s matter content is dominated by a dust matter (with the
pressure p = 0) at early time [55,56].

Later on in the following sections within the dynamical
calculation of these equations we shall see that the stability
of nonsingular solutions occurs according to results summa-
rized in Table 1 and depicted in phase plane portraits corre-
sponding to particular regions/values of parameters α and β

for different curvatures of matter dominated universe.
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3 Stability analysis

In order to investigate bouncing evolution of universe, the
stability structure of dynamical systems can be studied com-
bined with phase plane analysis, by introducing the following
new variables:

χ = H, ζ = a, η = ρ (4)

From Eqs. (2) and (3), the evolution equations of these vari-
ables become,

χ̇ = − (1 + γ )η

2(1 + 2α
′
(χ2 + kζ−2) − 3β(χ2 + kζ−2)2)

+ k

ζ 2

(5)

ζ̇ = ζχ (6)

where a dot denotes a derivative with respect to the cosmic
time. From Eq. (2), η will be obtained as

η = 3(χ2 + kζ−2 + α(χ2 + kζ−2)2 − β(χ2 + kζ−2)3)

(7)

For next a bounce can also be defined locally. The minimal
conditions from a local point of view for a bounce to happen
in the case of a FLRW universe were analyzed in [93], where
a Tolman wormhole was defined as a universe that under-
goes a collapse, attains a minimum radius, and subsequently
expands. Thus, to have a bounce it is necessary that ȧb = 0
and äb > 0, or equivalently χb = 0 and dχ

dt |tb > 0 are sat-

isfied. For simplicity, we define hb = dχ
dt |tb ; as from Eq. (5)

hb = − k(ζ 4
b − αkζ 2

b + 3k2β)

2ζ 2
b (ζ 4

b + 2αkζ 2
b − 3k2β)

(8)

Remembering that at bounce H = 0, from Eq. (7), one
can obtain the energy density at bounce, as

ρb = 3k(ζ 4
b + kαζ 2

b − βk2)

ζ 6
b

(9)

It is important to note that to have a bounce without viola-
tion of null energy condition, the following conditions must
be satisfied.

hb > 0 and ρb > 0 (10)

Note that, although the satisfaction of conditions (10) is nec-
essary for a cyclic universe scenario in which the universe
oscillates through a series of expansions and contractions,
but it also needs more conditions from the dynamical system
techniques.

Here, we employ the dynamical system technique to inves-
tigate when the system can oscillate, displaying that how a
system behaves near a critical point. Under which condition
the system can oscillate near the critical points. The phase

plane analysis addresses the stability of solutions and tra-
jectories of dynamical systems under small perturbations of
initial conditions. Therefore, it can generally give us a full
picture of the dynamics combined with phase plane analysis,
especially in cosmology. Since such a study can be used to
circumvent the need for initial conditions which is as one of
the shortcomings of the standard cosmological model (SCM)
[25–38,94]. In this right, the phase plane analysis is an invalu-
able tool in studying and visualizing the behavior of dynam-
ical systems. The phase portraits in configuration space dis-
play the certain characteristics of system if the dynamics are
stable or not. Hence one can know how trajectories behave
near the critical points, e.g. whether they move toward or
away from the fixed points [95].

As a well-studied problem, therefore, the stability of an
orbit in phase space is reduced to a certain characteristics of
system associated with the eigenvalues of Jacobian. In this
case there are four critical points in the phase space, extreme
points to describe the asymptotic behavior of the system,
that are determined by simultaneously solving χ ′ = 0 and
ζ ′ = 0.

χ1c = 0, ζ1c =
√

k

2(1 + 3γ )
(− 3γα − α + (9γ 2α2

− 6γα2 + α2 − 24γβ − 12β + 36γ 2β)
1
2 )

1
2 (11)

χ2c = 0, ζ2c = −
√

k

2(1 + 3γ )
(− 3γα − α + (9γ 2α2

− 6γα2 + α2 − 24γβ − 12β + 36γ 2β)
1
2 )

1
2 (12)

χ3c = 0, ζ3c =
√

−k

2(1 + 3γ )
(− 3γα − α + (9γ 2α2

− 6γα2 + α2 − 24γβ − 12β + 36γ 2β)
1
2 )

1
2 (13)

χ4c = 0, ζ4c = −
√

−k

2(1 + 3γ )
(− 3γα − α + (9γ 2α2

− 6γα2 + α2 − 24γβ − 12β + 36γ 2β)
1
2 )

1
2 (14)

By virtue of this framework, we can study the stability
analysis of critical points to investigate the properties of the
dynamical system (Eqs. (5), (6)). Considering that a nonlin-
ear autonomous system may be approximated by a linear sys-
tem through its coefficient matrix (Jacobian), one can obtain
the eigenvalues of Jacobian to standard classification of the
different types of the fixed points [25–38]. In fact, the critical
points of a system can be almost completely classified based
on their eigenvalues, e.g. if they are complex, the point is
called a focus and if system have eigenvalues with real part
zero, the critical point is called center which is a neutrally
stable closed orbit.

Here, the stability analysis is carried out for matter dom-
inated model γ = 0. Evaluating the Jacobian at the critical
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points gives us the eigenvalues of system to each of them as
follows,

λ± = ± k
√

3

3ζc(αζ 2
c − 2βk)

�
1
2 (15)

where

� = − α3ζ 2
c + 3kα2β + 8αζ 2

c β − 12kβ2 (16)

The parameter � is an important characteristic which its
sign determines the nature of critical points and consequently
explains the behavior of system near them. We shall obtain
more insight into its dynamics in the next section.

4 Oscillating evolution of curved universes

In the following, we focus on matter dominated models to
represent the oscillating evolution of different curved uni-
verses. The phase plane diagram of pertinent systems and in
some cases the cyclic behavior of the scale factor are illus-
trated in the field plots of phase space, that gives us the oppor-
tunity to study all of the evolution paths admissible for all
initial conditions. Therefore, the bouncing trajectories are
shown in some detail and different oscillating solutions are
obtained by tacking a certain condition for each portrait in
the configuration space of this bouncing cosmology scenario.

4.1 Case of spatially flat (k = 0) universe

In the case of the cold dark matter dominated model, the
system has an infinite number of critical points on χ = 0-
axis. Also, there is four critical points on ζ = 0 line in phase
space as follows:

ζ1c = 0, χ1c =
√

2

2β

√
β(α +

√
α2 + 4β (17)

ζ2c = 0, χ2c = −
√

2

2β

√
β(α +

√
α2 + 4β (18)

ζ3c = 0, χ3c =
√

2

2β

√
β(α −

√
α2 + 4β (19)

ζ4c = 0, χ4c = −
√

2

2β

√
β(α −

√
α2 + 4β (20)

All of the critical points on χ = 0 line, have the same
eigenvalue as λ± = (0, 0). However, each of the critical
points on ζ = 0 line, have the eigenvalue λ± = (−3χc, χc)

in the phase space. Since the eigenvalues are real, the universe
does not oscillate. Considering that the minimal conditions
require a bounce with (Hb = 0, Ḣb > 0) that are evaluated
at the bounce, the Eq. (3) implies that the bounce condition
can not be satisfied. In fact, even if bounce occurs the null

energy condition will be violated (ρ + p) < 0 [96,97], so
that in this case there is no bouncing solution.

4.2 Case of hyperspherical (k = 1) universe

In this case there are in general four critical points in the
phase space as follows:

P1 = χc = 0, ζc =
√

2

2

√
α +

√
α2 − 12β,

P2 = χc = 0, ζc = −
√

2

2

√
α +

√
α2 − 12β,

P3 = χc = 0, ζc =
√

2

2

√
α −

√
α2 − 12β,

P4 = χc = 0, ζc = −
√

2

2

√
α −

√
α2 − 12β,

where they are mirror images of each other along the ζ = 0
line, considering that the condition α2 > 12β must be sat-
isfied. The number of critical points and their properties are
based on their eigenvalues, that they depend on the value of
α and β parameters. In the following, the respective classifi-
cation of critical points in the phase space and corresponding
eigenvalues are obtained for oscillating solutions accompa-
nied by phase plane trajectories of system. Also, from Eqs.
(8) and (9), hb and ρb would be

hb = − (ζ 4
b − αζ 2

b + 3β)

2ζ 2
b (ζ 4

b + 2αζ 2
b − 3β)

, ρb = 3(ζ 4
b + αζ 2

b − β)

ζ 6
b

(21)

4.2.1 k = 1, α = posi tive, β = posi tive

In this case α >
√

α2 − 12β is preserved, so that through
the condition α2 > 12β, all of the four critical points exist.
The eigenvalues of P3 and P4 are real with positive sign
thus their nature is saddle-like, however the corresponding
eigenvalues of P1 and P2 are purely imaginary. Therefore,
the relation ζ 2

c = 1
2 (α + √

α2 − 12β) holds for P1 and P2

points, and by substituting it in the Eq. (16), the parameter
� will be

� =
(

−1

2
α4−1

2
α3

√
α2 − 12β+4αβ

√
α2 − 12β+7α2β−12β2

)

(22)

which is simplified as

� =
(

− 1

2

{
(α2−12β)(α2−2β)+(α2−8β)

√
α2 − 12β

})

(23)
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Fig. 1 (Left) dynamical behavior of the system around the critical points. (Right) time evolution of the scale factor a corresponding to the
trajectories in phase space for the case of γ = 0, k = 1, α = 1 and β = 0.05

Fig. 2 Time evolution of the scale factor a and energy density ρ, corresponding to the different initial conditions in phase space for the case of
γ = 0, k = 1, α = 1 and β = 0.05

For positive values of α and β and via the condition
(α2 − 12β > 0), automatically the terms of (α2 − 2β)

and (α2 − 8β) are positive. Therefore, � is negative and the
eigenvalues are imaginary with zero real parts. This implies
that the nature of the critical points P1 and P2 is center and
marginally stable. The curves in the phase space are closed
trajectories around the center. Interestingly, this behavior in
phase space indicates that the scale factor of the universe
undergoes contracting and expanding phases periodically, so
that the universe can possess an exactly cyclic evolution. Also
from Eq. (9), it directly follows that for positive values of α

and β, the energy density would be positive at bounce only
if

ζb >
1

2

√
−2α + 2

√
α2 + 4β (24)

Thus, from all bouncing-oscillating trajectories of the phase
space, those trajectories which satisfy the condition (24) are
admissible solutions. To clarify this, we have plotted the
phase space a − H for α = 1 and β = 0.05 (Fig. 1). Also,
the evolution of scale factor and energy density as a function
of time for important trajectories have been shown in Fig. 2.
By assuming α = 1 and β = 0.05, the four critical points
would be

P1 = (χ = 0, ζ = 0.9), P2 = (χ = 0, ζ = −0.9),

P3 = (χ = 0, ζ = 0.4), P4 : (χ = 0, ζ = −0.4)
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Fig. 3 (Left) dynamical behavior of the system around the critical points. (Right) time evolution of the scale factor a corresponding to the
trajectories in phase space for the case of γ = 0, k = 1, α = 1 and β = −1

By evaluating the Jacobian at the critical points, we get

λ1 = (0.5I, ζ = − 0.5I ), λ2 = (0.5I, ζ = − 0.5I ),

λ3 = (1.6,− 1.6), λ4 = (1.6,− 1.6)

These are corresponding eigenvalues, as the stable criti-
cal points P1 and P2 are called center while P3 and P4 are
unstable fixed points or singular saddle points. It would be
interesting to see whether the initial conditions are impor-
tant in cosmological dynamics systems. From Eq. (24) for
α = 1 and β = 0.05, if ab = ζb > 0.23, one can see that
the energy density will then be positive. Figure 2 also illus-
trates the point that the two curves (red and blue), where both
have approximately the same bounce but a little difference in
initial conditions, have made completely different evolution
in their energy density. The red curve, with positive energy
density which ab = ζb > 0.23, satisfies the condition (24),
while the blue curve ab = ζb < 0.23 does not.

4.2.2 k = 1, α = posi tive, β = negative

For positive α and negative β, α <
√

α2 − 12β is preserved,
and the terms of (α2 − 12β), (α2 − 2β) and (α2 − 8β) are
positive. Therefore, there are only two of the above critical
points, P1 and P2, which again are center. The correspond-
ing eigenvalues are also purely imaginary and the universe
has an oscillating behavior in the phase space. As shown
in Fig. 3, for example, by setting α = 1 and β = − 1,
the two critical points would be P1 = (χ = 0, ζ = 1.5)

and P2 = (χ = 0, ζ = −1.5) with the same eigenvalue
λ1,2 = (0.5I,− 0.5I )

One may note that from Eq. (24), the energy density at
bounce point in this case is positive.

4.2.3 k = 1, α = negative, β = posi tive

Since α is negative and β is positive, the expressions α −√
α2 − 12β < 0 and α+√

α2 − 12β < 0 are established; so
that the system does not have any real critical point and con-
sequently the oscillating solutions do not exist. However, a
single bounce without oscillation can occur under the appro-
priate conditions. This is possible to make by satisfaction
of minimal requirement of bounce condition (Hb = 0 and
Ḣb > 0), and it can also follow equivalently at the bounce
as dχ

dt |tb > 0 in terms of new variables.
In order to explain this more fully, it is useful to obtain the

energy density and
( dχ
dt

)
at bounce. From Eq. (7), the energy

density would be

ρb = 3(ζ 4
b + αζ 2

b − β)

ζ 6
b

(25)

This relation indicates that only under the condition(
ζb >

√
2

2

√
−α + √

α2 + 4β

)
, the energy density will be

positive. Also, from Eq. (5)

hb = dχ

dt
|tb = − (ζ 4

b − αζ 2
b + 3β)

2ζ 2
b (ζ 4

b + 2αζ 2
b − 3β)

(26)

Since the positive energy density automatically implies
the positive (ζ 4

b + αζ 2
b − β), the following inequality holds

for this case

ζ 4
b − αζ 2

b + 3β > (ζ 4
b + αζ 2

b − β) (27)
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Fig. 4 (Left) dynamical behavior of the system around the critical points (Middle) time evolution of the scale factor corresponding to the red and
blue trajectories. (Right) time evolution of the energy density corresponding to these trajectories

Therefore, the positive energy density naturally implies
the positive ζ 4

b − αζ 2
b + 3β, as from Eq. (26), the bounce

would be occur only for negative ζ 4
b + 2αζ 2

b − 3β or equiv-

alently when
(
ζb <

√
−α + √

α2 + 3β
)

. We can conclude

that under following condition

(√
2

2

√
−α +

√
α2 + 4β

)
< ζb <

(√
−α +

√
α2 + 3β

)

(28)

the bounce has occurred and energy density will be positive.
The phase plane diagrams for the case of α = − 1 and β = 1
have been plotted in Fig. 4 for clarifying this point, as the
evolution of scale factor and energy density have also been
shown for different initial conditions ζb. In this right, we have√

2
2

√
1 + √

5 � 1.27 < ζb <
√

3 � 1.7 to avoid a negative
energy density at bounce, as there exists bouncing solution
with positive energy density. Note that, it is possible to have
a bounce while the energy density is negative only when the
r.h.s of above inequality (28) is preserved.

4.2.4 k = 1, α = negative, β = negative

For this case as in the case of α > 0, β < 0, there are only
two critical points, P1 and P2. The three dimensional plot of
� as a function of α and β has been drawn in Fig. 5, which in
some regions is positive and (in other parts) negative. Hence
the eigenvalues of the system can be real or complex, as in
those regions that � is negative the universe has oscillating
solution and trajectories are closed orbits in the phase space.

For instance, let us get α = − 0.1 and β = − 0.1 in
accordance with Fig. 6. Hence, the value of � is negative and
pertinent eigenvalues are purely imaginary, as the trajectories
in phase plane are closed curves near the critical points. These
points have the characteristics of a center fixed point and

Fig. 5 The three dimensional plot of � as a function of α and β for
k = 1

system oscillates around them. The energy density would be

positive if the condition
(
ζb >

√
2

2

√
−α + √

α2 + 4β
)

is

satisfied, similar to what was found for the case of positive
α and positive β.

4.2.5 k = 1, α = 0, β = 0

The system has one critical point (χc = 0, ζc = 0) and
its eigenvalues are λ± = 0, so that the universe does not
oscillate. Applying Eq. (2) into the (3) yields

2Ḣ + 3H2 = − k

a2 (29)

So Ḣ is negative, meaning that the universe does not
oscillate and bounce never occurs. In this case the universe
expands and reaches to its maximum size and then collapses.
Consequently, the energy density decreases during the expan-
sion and it reaches to its minimum values then increases. The
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Fig. 6 Phase plane of parameters (a, H) for the case of k = 1,α =
− 0.1, and β = − 0.1

two dimensional phase space of (a, H) and time evolution
of scale factor have been shown in Fig. 7.

4.2.6 k = 1, α = posi tive, β = 0

For this case the system has two critical points (χc = 0, ζc =√
α) and

(
χc = 0, ζc = −√

α
)
, and corresponding eigenval-

ues are λ1 = ( i
√

3
3
√

α
, −i

√
3

3
√

α
) and λ2 = ( i

√
3

3
√

α
, −i

√
3

3α
) which are

the same. The eigenvalues are purely imaginary and conju-
gated, as the critical points are centers (nonhyperbolic crit-
ical points) with closed curves that are turned around them.
This evolution predicts a cyclic universe, with positive energy

Fig. 8 Phase space of the dynamical system for the case of k = 1, α =
0.001, β = 0. The dynamical behavior of the scale factor for an arbitrary
trajectory of phase space (red trajectory) has been plotted

density at bounce from the Eq. (9), where the minimal and
maximal values of the scale factor remain the same in every
cycle (see Fig. 8).

4.2.7 k = 1, α = negative, β = 0

In this case, the system doesn’t have any real critical point and
it doesn’t oscillate. However, minimal condition for a bounce
χb = 0 and dχ

dt |tb > 0 may be satisfied. If we put χ = 0

in the r.h.s of Eq. (5), the expression dχ
dt = − ζ 2−α

ζ 2(ζ 2+2α)
is

obtained. This condition denotes that for ζb = ab <
√− 2α,

Fig. 7 (Left) phase plane of parameters (a, H) for the case of k = 1, α = 0, β = 0. (Right) time evolution of the scale factor corresponding to
the highlighted trajectories of the phase space
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Fig. 9 Phase space of the dynamical system for the case of k = 1, α = − 2, β = 0

the bounce can occur and from Eq. (9) the energy density
will be positive. In order to illustrate this matter in phase
space configuration, by setting α = − 2 as shown in Fig. 9,
the bounce take places for ab < 2 whereas for ab > 2 the
bounce backs or collapses.

4.2.8 k = 1, α = 0, β = posi tive

In this case, the system does not have any real critical point
and does not oscillate. However, minimal condition for a
bounce may be satisfied. In this regard, given the positive

ρb = 3(ζ 4
b −β)

ζ 6
b

and dχ
dt |tb = − (ζ 4

b +3β)

2ζ 2
b (ζ 4

b − 3β)
, and hence β

1
4 <

ζb < (3β)
1
4 , which may be obtained by setting α = 0 in Eq.

(28), there is a single bounce with positive energy density.

4.2.9 k = 1, α = 0, β = negative

In this case, the system has two real critical points as (χc =
0, ζc = (− 3β)

1
4 ) and (χc = 0, ζc = −(− 3β)

1
4 ). The corre-

sponding eigenvalues are λ1 =
(

i
ζc

, −i
ζc

)
and λ2 =

(
i
ζc

, −i
ζc

)

which are the same. Since the eigenvalues are purely imagi-
nary and conjugated, the closed trajectories of configuration
space turn around the nonhyperbolic critical points (centers).
The phase plane diagram in Fig. 10 is to illustrate the situation
which simplifies the understanding of system as describing
the dynamics of cosmological parameters (scale factor and
Hubble parameter) to provide a more meaningful insight on
the setting of initial conditions.

4.3 Case of hyperbolic (k = − 1) universe

By inclusion of a negative curvature index k = − 1 in mod-
ified Friedmann equations ((2), (3)), the number of critical
points are as follows

Fig. 10 The two dimensional phase plane for parameters (a, H), by
setting α = 0, β = − 0.1

P1 = χc = 0, ζc =
√

2

2

√
− α +

√
α2 − 12β,

P2 = χc = 0, ζc = −
√

2

2

√
− α +

√
α2 − 12β,

P3 = χc = 0, ζc =
√

2

2

√
− α −

√
α2 − 12β,

P4 = χc = 0, ζc = −
√

2

2

√
− α −

√
α2 − 12β,

Also,

ρb = −3(ζ 4
b − αζ 2

b − β)

ζ 6
b

, hb = (ζ 4
b + αζ 2

b + 3β)

2ζ 2
b (ζ 4

b − 2αζ 2
b − 3β)

(30)
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Fig. 11 The three dimensional plot of � as a function of α and β for
k = − 1

Given the minimal condition that a bounce needs to occur
from the local point of view while the energy density is posi-
tive (hb > 0, ρb > 0), the various possibilities to satisfy this
condition can be classified as
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ρb > 0 �⇒ (ζ 4
b − αζ 2

b − β) < 0

hb > 0 �⇒
⎧
⎨
⎩

(ζ 4
b + αζ 2

b + 3β) > 0, (ζ 4
b − 2αζ 2

b − 3β) > 0

(ζ 4
b + αζ 2

b + 3β) < 0, (ζ 4
b − 2αζ 2

b − 3β) < 0

The above classification can be rearranged as two sets of
following conditions,

CI :

⎧⎪⎪⎨
⎪⎪⎩

i : − (ζ 4
b − αζ 2

b − β) > 0

i i : (ζ 4
b + αζ 2

b + 3β) > 0

i i i : (ζ 4
b − 2αζ 2

b − 3β) > 0

CII:

⎧⎪⎪⎨
⎪⎪⎩

i : (ζ 4
b − αζ 2

b − β) < 0

i i : (ζ 4
b + αζ 2

b + 3β) < 0

i i i : (ζ 4
b − 2αζ 2

b − 3β) < 0

All of the (i), (ii) and (iii) conditions of CI class or all
of them for CII class should be satisfied to have a bounce.
The combining of (i) and (ii) conditions of CI, gives the
(2αζ 2

b + 4β) > 0 condition which is in contradiction with the
result of the combined provision of the (i) and (iii) conditions,
i.e. (2αζ 2

b + 4β) < 0. However, a similar calculation on
the (i), (ii) and (iii) conditions of CII shows that it would
be satisfied only if α > 0 and β < 0. One can conclude,
therefore, that there is the possibility of having the oscillating
solution only for positive α and negative β of a negative
curvature k = − 1 universe.

4.3.1 k = − 1, α = posi tive, β = negative

For positive α and negative β, the expression α2 − 12β > 0
and hence (−α + √

α2 − 12β) are positive while (−α −√
α2 − 12β) is negative. Consequently, there are only two of

the above mentioned critical points, P1 and P2. The eigenval-
ues of the system can be real or complex. The three dimen-
sional plot of �, shown in Fig. 11 as a function of α and β,
illustrates the positive and negative values of � in different
regions. For example by setting α = 0.7 and β = − 0.1,
the eigenvalues of system would be λ = ±(6.6I,− 6.6I )
(Fig. 12), whereas for α = 0.3 and β = − 0.1 the eigenval-
ues are real as λ = ±(2.3,− 2.3). Therefore, it is possible
to have a bouncing-oscillating solution by proper choosing
of α and β.

4.3.2 k = −1, Othercases

As it was mentioned above, other cases of a negative curva-
ture k = − 1 universe have no oscillating solution. The for-
mal analysis appropriately can be applied the same as expres-

Fig. 12 The two dimensional phase plane for parameters (a, H). We have set k = − 1, α = 0.7, β = − 0.1
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sions of a positive curvature universe. Let us consider the case
of α = posi tive and β = posi tive, for example, where both
the values of (−α − √

α2 − 12β) and (−α + √
α2 − 12β)

expressions are negative. Thus the system has no real critical
point, indicating that the system has no oscillating solution.
However, similar to some of the cases described in the previ-
ous subsections, it is possible to have a single bounce if both
the energy density and the derivative of hubble parameter at
bounce be positive. By tacking into account these parameters
at bounce, we have

ρb = −3(ζ 4
b − αζ 2

b − β)

ζ 6
b

,
dχ

dt
|tb = (ζ 4

b + αζ 2
b + 3β)

2ζ 2
b (ζ 4

b − 2αζ 2
b − 3β)

(31)

where positive energy density implies the negative (ζ 4
b −

αζ 2
b − β), and automatically the negative ζ 4

b − 2αζ 2
b − 3β.

Hence the positive dχ
dt |tb requires the negative (ζ 4

b + αζ 2
b +

3β) which it is impossible for positive values of α and β, so
that there is no bouncing solution to this case. One can see that
the cases of α = posi tive, β = 0 and α = 0, β = posi tive
are the special forms of α = posi tive, β = posi tive with
no bouncing solution.

The system has two critical points, P1 and P2 for α =
negative, β = negative. The energy density at bounce
would be

ρb = −3(ζ 4
b − αζ 2

b − β)

ζ 6
b

(32)

where for negative values of α and β is negative. This means
that without the aforesaid conditions a single bounce never
can occur. From Eq. (16), one can also understand this by
noting the fact that the parameter � is positive and says that
the eigenvalues are real and no oscillating solution can exist.
In addition, there are two of the above critical points, P1(χc =
0, ζc = √

α) and P2(χc = 0, ζc = −√
α) for the α =

negative, β = posi tive case and also two critical points,
P1(χc = 0, ζc = √

α) and P2(χc = 0, ζc = −√
α) for

α = negative, β = 0. Here � = α4 is positive and indicates
that the eigenvalues are real and no oscillating solution can
exist.

5 Conclusion

The beginning of the universe in the context of general rel-
ativity without encountering singularities is not possible, as
shown using the singularity theorem if a certain condition is
satisfied. Oscillating universes have been explored to solve
some problems of the standard cosmological model to avoid
the big bang singularity and replace it with a cyclic evolu-
tion. Because of that, the outcome of bouncing models is

very dependent on the choice of perturbation mechanisms in
the background displaying a bounce; the aim of some spe-
cific models can be useful for extracting characteristics of a
general expected behavior.

Since it is expected that by inclusion of quantum correc-
tions, therefore, the singularity problem be replaced by a
quantum bounce; and also with cognizance of the thermo-
dynamical area law that provides an important viability test
for any theory of quantum gravity. The aim of this paper was
twofold: exploring the bouncing solutions for modified Fried-
mann equations in order to find out the quantum entropy-
corrected effects on the metric of FRW universe, and possible
signatures of its unknown parameters (α and β) in satisfy-
ing the expected oscillatory evolutions (for matter dominated
universes). At this point, from the consensus viewpoint, the
value of the logarithmic pre-factor (α) is a point of notable
controversy which is constrained to be a negative (from the
considerations of LQG) or positive (employed by statistical
arguments) value and/or the “best guess” might simply be
zero.

By virtue of this matter, there is only the possibility of
bouncing-oscillating solutions for curved universes (k �= 0).
In this right, there is the possibility of oscillating solutions
and a single bounce (a bouncing evolution without regular
repetition) under some appropriate conditions for positive
curvature k = 1 universe with positive α and negative α,
respectively (with any given value of β); whereas a non-
singular solution does not exist for the case of k = 1 uni-
verse with α = 0 (and β = 0). Furthermore, the possibility
of having the oscillating solutions there is only for positive
α (and negative β) of a negative curvature k = − 1 uni-
verse. As a result of what was said, accordingly, since the
cyclic evolutions should be appeared in discussing the quan-
tum corrections to Friedmann equations; we can emphasize
the necessity of non-zero α and by the way recommend the
positive values of α for the possibility of having the oscillat-
ing solutions and negative values of α for the presence of a
quantum bounce. In addition to this result, a detailed descrip-
tion of calculations and how to find the stability analysis of
systems was performed in the paper, where illustrates the
direction of handling a modified gravity theory along with
phase plane analysis in discussing the bouncing evolution of
cyclic cosmology scenario.
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