
Eur. Phys. J. C (2018) 78:200
https://doi.org/10.1140/epjc/s10052-018-5703-6

Regular Article - Theoretical Physics

Pauli–Zeldovich cancellation of the vacuum energy divergences,
auxiliary fields and supersymmetry

Alexander Yu. Kamenshchik1,2,a, Alexei A. Starobinsky2,3,b, Alessandro Tronconi1,c, Tereza Vardanyan1,d,
Giovanni Venturi1,e

1 Dipartimento di Fisica e Astronomia, Università di Bologna and INFN, via Irnerio 46, 40126 Bologna, Italy
2 L. D. Landau Institute for Theoretical Physics, Moscow 119334, Russia
3 National Research University Higher School of Economics, Moscow 101000, Russia

Received: 26 January 2018 / Accepted: 4 March 2018 / Published online: 10 March 2018
© The Author(s) 2018. This article is an open access publication

Abstract We have considered the Pauli–Zeldovich mech-
anism for the cancellation of the ultraviolet divergences in
vacuum energy. This mechanism arises because bosons and
fermions give contributions of the opposite signs. In con-
trast with the preceding papers devoted to this topic wherein
mainly free fields were studied, here we have taken their
interactions into account to the lowest order of perturbation
theory. We have constructed some simple toy models having
particles with spin 0 and spin 1/2, where masses of the parti-
cles are equal while the interactions can be quite non-trivial.

1 Introduction

Many years ago Pauli [1] suggested that the vacuum (zero-
point) energies of all existing fermions and bosons compen-
sate each other. This possibility is based on the fact that vac-
uum energy of fermions has a negative sign whereas that of
bosons has a positive one. As is well known, such a can-
cellation indeed takes place in supersymmetric models (see
e.g. [2]). Subsequently in a series of papers Zeldovich [3,4]
related vacuum energy to the cosmological constant. How-
ever rather than eliminating divergences through the boson-
fermion cancellation, he suggested the Pauli-Villars regular-
ization of all divergences by introducing a number of massive
regulator fields. Covariant regularization of all contributions
then leads to finite values for both the energy density ε and
(negative) pressure p corresponding to a cosmological con-
stant, i.e. connected by the equation of state p = −ε.
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In our preceding paper [5] we examined the conditions for
the cancellation of the ultraviolet divergences of the vacuum
energy to the leading order in h̄, i.e. by considering free theo-
ries and neglecting interactions. Such conditions are reduced
to some sum rules involving the masses of particles present
in the model. We formulated these conditions not only for the
Minkowski spacetime, but also for the de Sitter one. In the
latter case, the radius of the de Sitter universe also enters into
the mass sum rules. In paper [6] we applied such considera-
tions to observed particles of the Standard Model (SM) and
also studied the finite part of vacuum energy. This last con-
tribution should be very small, so as to obtain a result com-
patible with the observed value of the cosmological constant
(almost zero with respect to SM particle masses). We showed
[6] that it was impossible to construct a minimal extension
of the SM by finding a set of boson fields which, besides
canceling ultraviolet divergences, could compensate resid-
ual huge contribution of known fermion and boson fields of
the Standard Model to the finite part of the vacuum energy
density.

On the other hand, we found that addition of at least one
massive fermion field was sufficient for the existence of a
suitable set of boson fields which would permit such cancel-
lations and obtained their allowed mass intervals. On exam-
ining one of the simplest SM extensions satisfying the con-
straints, we found that the mass range of the lightest massive
boson was compatible with the Higgs mass bounds which
were known at the time of the publication of the paper [6].
As is well known, later the Higgs boson was discovered at
the LHC [7,8]. For some time it appeared that there might
exist an the observed diphoton excess at 750 GeV [9]. This
excess, had it been confirmed, could be interpreted as an indi-
cation for the existence of a new heavy elementary or com-
posite particle with a mass of the order of 750 GeV. Later
this phenomenon disappeared, nonetheless inspiring in the
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meanwhile quite a few theoretical works. In particular, we
also studied in our preprint how the presence of such a new
particle could be included into our scheme of the cancellation
of ultraviolet divergences of vacuum energy [10].

In our preceding papers [5,6,10] we studied only free the-
ories without interactions. It is also interesting to take inter-
actions into account, at least to the lowest order of perturba-
tion theory. This is not easy, and in the present paper we shall
concentrate on the construction of relatively simple toy mod-
els where the “Pauli–Zeldovich cancellation” of ultraviolet
divergences still takes place.

We wish to emphasize that the approach employed in the
present paper represents a whole direction in quantum field
theory which goes well beyond effective low energy field the-
ory and, although based on some hypothesis, has not been
proven to be wrong. We also wish to mention the paper by
Ossola and Sirlin [11], where contributions of fundamental
particles to the vacuum energy density were discussed with
a special attention to relations between different regulariza-
tion schemes and to the appearance of power divergences in
different contexts. Other related approaches are presented in
Refs. [12–14].

In the recent paper [15], it was noticed that under certain
circumstances (in particular, but not limited to finite QFTs),
the Pauli cancellation mechanism would survive the intro-
duction of particle interactions. It was pointed out there that
for the mass sum rules to be valid at different mass scales, it
is necessary to impose some relations on mass runnings with
energy. Thus, the corresponding relations between anoma-
lous mass dimensions were formulated [15]. However, con-
crete examples were not constructed.

In the present paper we discuss some relatively simple
examples of models where the Pauli–Zeldovich cancella-
tion takes place to the first order of perturbation theory.
Being inspired by the famous supersymmetric Wess–Zumino
model [16], we consider models with spinor, scalar and pseu-
doscalar fields only. We hope to treat vector (gauge) fields in
future works. The models which we discuss are not super-
symmetric, but they have one important feature which makes
them akin to supersymmetric models: the number of the
fermion and boson degrees of freedom in them is the same.
That implies an unexpected feature: the necessity to take so
called auxiliary fields into account. Such fields are neces-
sary in the supersymmetric models, because they allow one
to formulate supersymmetry transformations in a coherent
way.

But their role is even more ubiquitous. To conserve
supersymmetry, it is necessary to have the balance between
fermion and boson degrees of freedom not only on shell, but
also off shell. However, the number of degrees of freedom
of a spinor field doubles when it is off shell. For example,
a Majorana spinor has two complex components, i.e. four
degrees of freedom off shell. When we require the satisfac-

tion of the first-order Dirac equation, the number of degrees
of freedom becomes equal to two. Thus, for example, in the
Wess–Zumino [16] model one has two fermion degrees of
freedom of the Majorana spinor and two boson degrees of
freedom associated with the scalar and pseudoscalar fields.
Off shell the number of fermion degrees of freedom becomes
equal to four, while the role of two additional boson fields
is played by two auxiliary fields which become in a sense
independent off shell. If we consider non-supersymmetric
models with the Pauli–Zeldovich mechanism of cancellation
of ultraviolet divergences for vacuum energy in the presence
of interactions, then the number of the boson and fermion
degrees of freedom should be equal not only on shell, but
also off shell. This means that we should introduce auxiliary
fields. Further, when we consider a model with interactions,
we should not only take into account running of masses of
the fields, but also consider cancellations of contributions
coming from the potential terms in the Lagrangians. It is
there that the introduction of the auxiliary fields becomes
very convenient. Fortunately, we shall see that, at least in the
considered class of spinor-scalar models, the introduction of
auxiliary fields is equivalent to a simple rule for the calcula-
tion of some contribution to the scalar fields self-interaction.
Here we can add that, in principle, one can perform all calcu-
lations and show that in the formalism where auxiliary fields
are excluded, vacuum energy in the supersymmetric models
is equal to zero. However, in this case there are no sepa-
rate cancellations of the potential energy and of the kinetic
energy between bosons and fermions. Thus, verification of
the analogous cancellation in non-supersymmetric models
becomes more complicated. Hence, it is better to implement
rather simple rules, equivalent to the explicit introduction of
auxiliary fields, which will be used in the present paper.

Here we present a model consisting of a Majorana fermion
and two scalar fields with the same mass and with different
kinds of interactions, and we show that for such a model,
one can find a family of coupling constants such that the
Pauli–Zeldovich mechanism for the cancellation still works.
Then we find an analogous family of models with a Majorana
fermion, a scalar field and a pseudoscalar field. Obviously,
the Wess–Zumino model belongs to this family. We also dis-
cuss briefly models where particles with different masses are
present.

The structure of the paper is as follows: in the second
section we briefly discuss the mass sum rules for theories
without interactions; in the third section we formulate rules
for the conservation of the mass sum rules when interactions
are switched on. In Sect. 4 we discuss the vacuum expectation
values of the potential terms and the role of auxiliary fields. In
Sect. 5 we present a model with one Majorana field and two
scalar fields. In the sixth section we consider a model with one
Majorana field, one scalar field and one pseudoscalar field.
Section 7 is devoted to the discussion of models with non-
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degenerate masses, the last section contains some concluding
remarks.

2 Vacuum energy and the balance between the fermion
and boson fields

One knows that vacuum energy of the harmonic oscillator
is equal to h̄ω

2 . If one has a massive field with mass m, then

ω = √
k2c2 + m2c4, where k is the wave number. In the

following we shall set h̄ = 1 and c = 1. The energy density
of vacuum energy of a scalar field treated as free oscillators
with all possible momenta is given by the divergent integral
[3]:

ε = 1

2

∫
d3k

√
k2 + m2

= 2π

∫ ∞

0
dkk2

√
k2 + m2. (1)

We can regularize this integral by introducing a cutoff Λ. In
this case

ε = 2π

∫ Λ

0
dkk2

√
k2 + m2

= 2πm4

⎡
⎣ Λ

8m

(
2Λ2 + 1

m2

) √
Λ2

m2 + 1

−1

8
ln

⎛
⎝Λ

m
+

√
Λ2

m2 + 1

⎞
⎠

⎤
⎦ . (2)

On expanding this expression with respect to the small
parameter m

Λ
, one obtains

ε = π

2
Λ4 + π

2
Λ2m2 + π

16
m4(1 − 4 ln 2) − π

4
m4 ln

Λ

m

+o
(m
Λ

)
. (3)

The contribution of one fermion degree of freedom coincides
with that of Eq. (1) with the opposite sign. It now follows
from Eq. (3) that to cancel the quartic ultraviolet divergences
proportional to Λ4, one has to have equal numbers of boson
and fermion degrees of freedom:

NB = NF . (4)

The conditions for the cancellation of quadratic and logarith-
mic divergences are∑

m2
S + 3

∑
m2

V = 2
∑

m2
F (5)

and∑
m4

S + 3
∑

m4
V = 2

∑
m4

F , (6)

respectively. Here the subscripts S, V and F denote scalar,
massive vector and massive spinor Majorana fields respec-

tively (for Dirac fields it is sufficient to put a 4 instead of 2
on the right-hand sides of Eqs. (5) and (6)). For the case in
which the conditions (4), (5) and (6) are satisfied, the remain-
ing finite part of the vacuum energy density is equal to

εfinite =
∑

m4
S lnms + 3

∑
m4

V lnmV

−2
∑

m4
F lnmF . (7)

Let us now calculate the vacuum pressure. This pressure is
given by the formula [3]

p = 2π

3

∫ ∞

0
dk

k4

√
k2 + m2

. (8)

On introducing the cutoff Λ we have

p = 2π

3

∫ Λ

0
dk

k4

√
k2 + m2

= 2π

3
m4

⎡
⎣1

8

Λ

m

(
2Λ2

m2

) √
Λ2

m2 + 1 − Λ

m

√
Λ2

m2 + 1

+3

8
ln

⎛
⎝Λ

m
+

√
Λ2

m2 + 1

⎞
⎠

⎤
⎦ . (9)

On expanding this expression with respect to the small
parameter m

Λ
, we obtain

p = π

6
Λ4 − π

6
Λ2m2 − 7π

48
m4 + π

4
ln 2

+π

4
m4 ln

Λ

m
+ o

(m
Λ

)
. (10)

On then comparing the expressions (3) and (10), we see that
the quartic divergence satisfies the equation of state for radi-
ation p = 1

3ε, the quadratic divergence satisfies the equation
of state p = − 1

3ε, which sometimes is identified with the
so called string gas (see e.g. [17,18]), while the logarithmic
divergence behaves as a cosmological constant with p = −ε.
If all these divergences cancel, then the finite part of the pres-
sure is

pfinite = −
(∑

m4
s lnms + 3

∑
m4

V lnmV

−2
∑

m4
F lnmF

)
, (11)

which also behaves as a cosmological constant. We can
emphasize that the real (renormalized) vacuum energy does
not have radiation-like (or, p = −ρ/3) equation of state.
Instead, following Pauli and Zeldovich we investigate con-
ditions under which it (and the whole average value of the
vacuum energy-momentum tensor) can be finite without any
renormalization in the absence of an exact supersymmetry
(which is not realized in nature). If it is finite indeed, then
any method of calculation – covariant or non-covariant – will
show it.
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3 Running masses and anomalous mass dimensions

In what follows we shall consider models having only par-
ticles with spin zero and spin 1/2. If we include the inter-
actions, the masses begin their running and the conservation
of the relations (5) and (6) implies some new restrictions
on the masses and on the coupling constants. Namely, the
conservation of the relation (5) gives
∑

γmS = 2
∑

γmF, (12)

where γm is the mass anomalous dimension defined as

γm ≡ μ
∂m2

∂μ
, (13)

where as usual μ is the renormalization mass parameter. The
conservation of the relation (6) gives
∑

m2
SγmS = 2

∑
m2

FγmF. (14)

These relations coincide with those presented in paper [15].
We shall here derive the expressions for these anomalous

mass dimensions. Generally the technique of such calcu-
lations was developed many years ago [19–25]. However,
for convenience and completeness we shall perform all the
derivations from the start. On considering our toy models
with degenerate masses, we shall not really use them explic-
itly. It will be enough to study shifts of masses induced by
radiative corrections for different fields present in the models
under consideration. However, when one considers models
where particles with different masses are present, the formu-
las given in this section become necessary.

Our treatment of the anomalous mass dimensions in the
presence of quadratic divergences is based on the approach
presented in paper [26], which in turn uses the version of
renormalization group formalism connected with dimen-
sional regularization [27].

Let us consider the model, including a Dirac spinor with
a mass M and a scalar field with a mass m.

L = 1

2
∂μφ∂μφ − m2φ2

2
− λφ4

4!
+ iψ̄γ μ∂μψ − Mψ̄ψ − gψ̄ψφ. (15)

The full propagator of the fermion field is given by

S(p) = i

p̂ − M − iΣ
, (16)

where Â ≡ γμAμ and where Σ is the self-energy operator
of the fermion field. This operator in the one-loop approxi-
mation is given by the formula

Σ = g2
∫

ddk

(2π)d

1

(p − k)2 − m2

k̂ + M

k2 − M2

= p̂Σ1 + MΣ2. (17)

Here d is the dimensionality of the spacetime such that

d = 4 − ε. (18)

Let us first calculate the term Σ2:

Σ2 = g2
∫

ddk

(2π)d

1

((p − k)2 − m2)(k2 − M2)
. (19)

On making a Wick rotation, we obtain the integral on the
Euclidean momenta:

Σ2 = ig2
∫

ddkE
(2π)d

1

((p − k)2
E + m2)(k2

E + M2)
. (20)

We are interested only in the divergent part of this integral.
Thus, we can neglect the masses in the denominator. On using
the formula

1

a
=

∫ ∞

0
e−αadα, (21)

the Gaussian integration, the formula connecting the Euler
B and Γ functions

B(a, b) ≡
∫ 1

0
dxxa−1(1 − x)b−1 = Γ (a)Γ (b)

Γ (a + b)
, (22)

and the fact that

Γ (ε) = 1

ε
+ · · · , (23)

we arrive to the expression

Σ2 = ig2

8π2ε
. (24)

To find Σ1, we shall take the 1
4 Tr( p̂Σ). Then

Σ1 = g2

p2

∫
ddk

(2π)d

kp

((p − k)2 − m2)(k2 − M2)
. (25)

Using the identity

pk = 1

2
(p2 + k2 − (p − k)2), (26)

we transform the expression (25) as

Σ1 = g

2p2

∫
ddk

(2π)d

(
1

k2 − M2 − 1

(p − k)2 − m2

− m2 − M2 − p2

((p − k)2 − m2)(k2 − M2)

)
. (27)

This expression only contains a logarithmic divergence. On
making a Wick rotation, integrating in the Euclidean momen-
tum space and keeping only the poles in ε, we obtain

Σ1 = ig2

16π2ε
. (28)

Thus,

Σ = p̂
ig2

16π2ε
+ M

ig2

8π2ε
. (29)
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On substituting the formula (29) into Eq. (16) we see that
the fermion propagator in the one-loop approximation is

S(p) = i

p̂
(

1 + g2

16π2ε

)
− M

(
1 − g2

8πε

) . (30)

In the same approximation, this propagator can be rewritten
as

S(p) =
i
(

1 − g2

16π2ε

)

p̂ − M
(

1 − 3g2

16π2ε

) . (31)

Thus, we see that the shift of the mass M is

δM = − 3g2M

16π2ε
. (32)

To compensate this shift, we should introduce a counter-
term into the Lagrangian, or in other terms, we should intro-
duce a bare mass MB which is connected with the renormal-
ized mass M through the relation

MB = ZMM, (33)

where

ZM = 1 + 3g2

16π2ε
. (34)

Further, to have a canonically normalized fermion field, or
in other words, to compensate a non-trivial divergent factor
in the numerator of the formula (31), we should introduce a
bare fermion field

ψB = Z1/2
ψ ψ, (35)

where

ZB = 1 + g2

16π2ε
. (36)

On now, following the scheme elaborated in paper [27],
we introduce and calculate the anomalous mass dimension
for the fermion mass M . Let us remember that when we
use the dimensional regularization, the renormalized quanti-
ties depend on the renormalization mass parameter μ. At the
same time the bare quantities depend on the regularization
parameter ε, but do not depend on the renormalization mass
parameter μ. Thus, we can write down a general equation

μ
∂

∂μ
MB = μ

(
∂

∂μ
ZM

)
M + ZMμ

∂

∂μ
M = 0. (37)

Generally, the renormalization constant ZM has the follow-
ing structure:

ZM = 1 +
∞∑
n=1

an
εn

. (38)

On introducing

γM ≡ μ
∂M

∂μ
, (39)

we can rewrite Eq. (37) as follows:

γM

(
1 +

∞∑
n=1

an
εn

)
+ M

∞∑
n=1

μ
∂an
∂μ

1

εn
= 0. (40)

For the case wherein the residues an depend only on the
Yukawa coupling constant g, Eq. (40) becomes

γM

(
1 +

∞∑
n=1

an
εn

)
+ M

∞∑
n=1

μ
∂g2

∂μ

dan
dg2

1

εn
= 0. (41)

We now introduce the β – function for the Yukawa constant
g:

βg ≡ μ
∂g2

∂μ
+ εg2. (42)

Then Eq. (41) reads:

γM

(
1 +

∞∑
n=1

an
εn

)
+ M(βg − εg2)

∞∑
n=1

dan
dg2

1

εn
= 0. (43)

The above equation should be correct in any order in ε. To
the zeroth order it gives:

γM = g2 da1

dg2 . (44)

From Eq. (34) we immediately obtain

γM = 3g2M

16π2 . (45)

The calculation of the analogous quantity for the scalar
field is more complicated because the mass renormalization
in this case includes quadratic divergences. To treat them, we
shall follow the approach developed in paper [26]. The full
propagator of the scalar field is

D(p) = i

p2 − m2 − iΠ
, (46)

where Π is the self-energy operator. The contribution of the
scalar field self-interaction to the one-loop order in the oper-
ator Π is

Π = λμε

2

∫
ddk

(2π)d

1

k2 − m2 . (47)

Let us note that we here include the factor με to provide the
correct dimensionality of Π . We did not include such a factor
on calculating the self-energy of the fermion, because there
only logarithmic divergences were present and this factor
disappeared in the limit d → 4. Here, in the presence of
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quadratic divergences the factor με becomes crucial. A direct
calculation gives

Π = −iλμεmd−2

2(4π)
d
2

Γ

(
1 − d

2

)
. (48)

One can see that this expression has the pole at d = 4 and
also the pole at d = 2, corresponding to quadratic diver-
gence [26]. Indeed, it is well known that in the theory with
the Lagrangian (15) the index of divergence of a diagram
G, ω(G) is

ω(G) = 4 − 3

2
EF − EB, (49)

where EF is a number of the external fermion lines and EB is
a number of the external boson lines. Thus, the diagrams with
EF = 0, EB = 2 are quadratically divergent. Let us now
consider d-dimensional spacetime. In this case, the formula
(49) is replaced by

ω(G) = (d − 4)L + 4 − 3

2
EF − EB, (50)

where L is the number of loops. Let us again consider a
diagram with EF = 0, EB = 2. This diagram, which is
quadratically divergent at d = 4 becomes logarithmically
divergent (ω(G) = 0) at d = 4 − 2

L . That means that the
quadratic divergence is represented as a pole of the quantity

ε(L) = 4 − d − 2

L
, (51)

and in the case of the one-loop approximation

ε(1) = 2 − d. (52)

Thus, expanding the expression (48) around d = 4, we have

iΠd→4 = − λm2

16π2ε
, (53)

while expansion of the same expression at d → 2 gives

iΠd→2 = λμ2

4πε(1)
. (54)

Thus, the infinite shift of the mass squared in the full propa-
gator of the scalar field due to its self-interaction is

δm2 = −m2 λ

16π2ε
+ μ2 λ

4πε(1)
. (55)

We can analogously calculate the contribution of the
fermion loop to the self-energy of the scalar field.

Π = −g2με

∫
ddk

(2π)d

Tr[(k̂ + p̂ + M)(k̂ + M)]
[(k + p)2 − M2][k2 − M2] . (56)

Calculation of this integral gives

− iΠ = 4g2Md−2με

(4π)
d
2

Γ

(
1 − d

2

)

+2g2με(p2 − 4M2)

(4π)
d
2

Γ
(ε

2

) [
Γ

( d
2 − 1

)]2

Γ (d − 2)
. (57)

The logarithmic divergence is now

− iΠd→4 = g2 p2

4π2ε
− 3g2M2

2π2ε
, (58)

while the quadratic divergence is

− iΠd→2 = 2g2μ2

πε(1)
. (59)

The scalar field propagator corrected by the fermion loop is

D(p) = i

p2 − m2 + g2 p2

4π2ε
− 3g2M2

2π2ε
+ 2g2μ2

πε(1)

=
i
(

1 − g2

4π2ε

)

p2 −
(
m2 + 3g2M2

2π2ε
− g2m2

4π2ε
− 2g2μ2

πε(1)

) . (60)

Thus, the mass squared of the scalar field is shifted as

δm2 = 3g2M2

2π2ε
− g2m2

4π2ε
− 2g2μ2

πε(1)
. (61)

On combining the last equation with Eq. (55), we obtain the
full mass shift:

δm2 = −m2 λ

16π2ε
+ μ2 λ

4πε(1)
+ 3g2M2

2π2ε

−g2m2

4π2ε
− 2g2μ2

πε(1)
. (62)

To compensate this shift, we introduce a bare scalar field
mass following the procedure elaborated in the paper [26]:

m2
B = Zmm

2 + Zμμ2, (63)

where the renormalization constants in the one-loop approx-
imation are

Zm = 1 + λ

16π2ε
− 3g2M2

2π2m2ε
+ g2

4π2ε
(64)

and

Zμ = − λ

4πε(1)
+ 2g2

πε(1)
. (65)

Further, to have a canonical normalization of the scalar
field, we introduce a bare field as follows:

φB = Z1/2
φ φ, (66)

where

Zφ = 1 + g2

4π2ε
. (67)
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On now introducing the anomalous mass dimension

γm ≡ μ
∂m2

∂μ
, (68)

and requiring the independence of the bare mass (63) on
the renormalization mass parameter μ and using the explicit
expressions (64) and (65), we obtain in the one-loop approx-
imation

γm = λm2

16π2 − 3g2M2

2π2 + g2m2

4π2 − λμ2

4π
+ 2g2μ2

π
. (69)

Let us also include some pseudoscalar fields into our
model. The interaction between a scalar and the fermion is
described by the following term in the Lagrangian:

L = −hψ̄γ 5ψχ. (70)

Here

(γ 5)2 = −1, γ 5k̂γ 5 = k̂. (71)

On repeating the preceding calculations and using the formu-
lae (71), we see that the contribution of the interaction (70)
to the anomalous mass dimension of the fermion field is

γM = h2M

16π2 . (72)

The contribution of the fermion loop to the anomalous mass
dimension of the pseudoscalar field χ is

γmχ = −h2M2

2π2 + h2m2

4π2 + 2h2μ2

π
. (73)

4 Contribution of potential terms into the vacuum
energy and the auxiliary fields

When we switch on the interactions and require the cancella-
tion of ultraviolet divergences in the expression for vacuum
energy, we should consider not only the mass sum rules,
but also the potential terms. The contributions of the poten-
tial terms to the vacuum energy density have the following
structure

Epot = 〈0|T (V exp(i
∫
d4xL int))|0〉

〈0|T exp(i
∫
d4xL int)|0〉 . (74)

Here, L int is the interaction Lagrangian and the exponent
should be expanded up to necessary order in the perturbation
theory while V represents potential terms. For the term

V = λφ4, (75)

to obtain the result in the two-loop approximation which we
study in the present paper, it is enough to take only the zeroth
order of the expansion of the exponent of the action in the
formula (74). The corresponding contribution is equal to

E1 = −3λI 2, (76)

where the integral I is defined as

I =
∫

dk

k2 − m2 . (77)

The contribution of the Yukawa interaction term is given
by the structure

E2 = 〈0|T (gψ̄ψφ × (−ig)ψ̄ψφ|0〉, (78)

where the second factor (−ig)ψ̄ψφ comes from the first-
order term in the expansion of the T -exponent. This contri-
bution (for the case of a Majorana spinor) is equal to

E2 = 2g2
∫

Tr[( p̂ + k̂ + M)(k̂ + M]
[(p + k)2 − M2][k2 − M2][p2 − m2] , (79)

where M is the fermion mass andm is the scalar mass. A sim-
ple calculation shows that for the case of the Wess–Zumino
model, when m = M and there are well-known relations
between the coupling constants [16], the quartic divergences
present in the contributions (76) and (79) do not cancel each
other (we shall present detailed calculations in the next sec-
tion). Namely, the contribution of the spinors is twice that
of the scalars. The reason for this mismatch was already dis-
cussed in the Introduction. The point is that the number of
fermion degrees of freedom is doubled off shell. To com-
pensate this effect, we should introduce the auxiliary scalar
fields as is done in supersymmetric models. A simple exam-
ple shows that this exactly gives the doubling of the lead-
ing contribution to vacuum energy. Indeed, let us consider a
model with the Lagrangian

L = 1

2
(∂μφ)2 + F2

2
+ hFφ2. (80)

On shell this theory is equivalent to the theory where the
auxiliary field is excluded F by means to the equation of
motion

F + hφ2 = 0 (81)

and which has a Lagrangian

L = 1

2
(∂μφ)2 − 1

2
h2φ4. (82)

It follows from Eq. (76) that vacuum energy in the theory
with the Lagrangian (82) is equal to

Evacuum = −3

2
h2 I 2. (83)

Let us calculate an analogous (two-loop) contribution to
vacuum energy in the model with the Lagrangian (80). It is
equal to

Evacuum = 〈0|T (−hFφ2 × (ih)Fφ2|0〉 = −3h2 I 2. (84)

Here we have used the fact that the propagator of the auxiliary
field in the massless theory is given [28] by

〈0|T (FF)|0〉 = i. (85)
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We see that in this case the result is doubled because of
the effective doubling of the number of degrees of freedom.
One can check also that the contributions to the self-energy
operator of the scalar field to the order of h2 coincide in the
models with the Lagrangians (80) and (82):

〈
0

∣∣∣∣T
(

φφ ×
(

− ih2φ4

2

))∣∣∣∣ 0

〉

=
〈
0

∣∣∣∣T
(

φφ × 1

2
(ihFφ2)2

) ∣∣∣∣0
〉

= 6h2 I. (86)

Thus, the requirement of the explicit account of auxiliary
fields arises only in the diagrams possessing quartic ultra-
violet divergences and including only boson propagators,
because their contribution is proportional to the number of
degrees of freedom present off shell in the model under con-
sideration. This fact gives us a practical recipe: when one
calculates vacuum energy contribution of the scalar field dia-
grams, having the shape of “eight”, one should multiply it by
the factor 2.

Concluding this section, we wish to make one more com-
ment. In the action (80) the term F2

2 is also present. One
can consider this term as a part of the kinetic energy. The
contribution of this term into vacuum energy is given by the
formula
〈
0

∣∣∣∣T
(

− F2

2
× (ih)Fφ2|0 × (ih)Fφ2|0 × 1

2

) ∣∣∣∣0
〉

= +3

2
h2 I 2. (87)

Thus, on summing (87) and (84) we reproduce the result (83).
This means that, in the end, the results for vacuum energy
in the model (80) with an auxiliary field and in the model
(82), where the auxiliary field is eliminated, coincide. How-
ever, the expressions for the contributions of the potential
energy and of the kinetic energy do not coincide separately.
As we have already mentioned in the Introduction, a similar
effect can be observed in the supersymmetric Wess–Zumino
model. If we consider the formalism in the absence of aux-
iliary fields, vacuum energy is still equal to zero, but the
potential and kinetic energy are not equal to zero separately.

5 A model with one Majorana and two scalar fields

Let us consider a model with a Majorana field ψ and two
scalar fields A and B. All the fields have the same mass m
and the interaction is given by

Hint = λ1A
4 + λ2B

4 + λ3A
2B2

+g1ψ̄ψ A + g2ψ̄ψB

+mh1A
3 + mh2B

3 + mh3A
2B + mh4AB

2. (88)

The two tadpole diagrams for fields A and B should be can-
celled to avoid the necessity of introducing linear in fields
terms into the Lagrangian. The tadpole for the field A arises
due to the contraction of this field with the vertices A3, AB2

and ψ̄ψ A. All these contributions are proportional to the
integral (77). The corresponding combinatorial factors are
3mh1, for A3,mh4 for AB2 and −4mg1 for the vertex ψ̄ψ A.
The last contribution arises due to the trace of the fermion
propagator which is proportional to the mass m. Thus, the
cancellation of the tadpole diagram for A requires

3h1 + h4 = 4g1. (89)

Similarly the vanishing of the tadpole for the field B requires

3h2 + h3 = 4g2. (90)

Now the self-energy operator for the propagator of the
field A obtains the contributions from the vertex A4, from the
vertex A2B2 and from the pair of vertexes ψ̄ψ A, A3, A2B
and AB2. The contributions of two quartic vertexes are both
proportional to the integral I . The corresponding coefficients
are 12λ1 and 2λ3. The contribution of the fermion loop is

C1 = −2g2
1Tr

∫
Tr(( p̂ + k̂ + m)(k̂ + m)

[(p + k)2 − m2][k2 − m2]dk, (91)

where the factor 2 arises due to the Majorana nature of the
fermion. Then

C1 = −8g2
1

∫
k2 + kp + m2

[(p + k)2 − m2][k2 − m2]dk

= −4g2
1

∫
(k2 − m2) + ((k + p)2 − m2) − p2 + 4m2

[(p + k)2 − m2][k2 − m2] dk

= −8g2
1 I + (4p2 − 16m2)g2

1K , (92)

where

K =
∫

dk

[(p + k)2 − m2][k2 − m2] . (93)

Quadratic divergences present in the integral I should be
canceled because such divergences do not arise in the self-
energy correction to the fermion propagator. Thus, we have

12λ1 + 2λ3 − 8g2
1 = 0 (94)

and, analogously,

12λ2 + 2λ3 − 8g2
2 = 0. (95)

Now the contribution of the pairs of the triple scalar vertices
is

C2 = (18h2
1 + 4h2

3 + 2h2
4)m

2K . (96)
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Thus, the propagator of the scalar field A in the one-loop
approximation has the form

(GA)−1 = −i(p2(1 − 4ig2
1K )

−m2(1 + i(−16g2
1 + 18h2

1 + 4h2
3 + 2h2

4)K ).

(97)

Normalizing as usual the wave function, i.e. making the coef-
ficient at p2 equal to 1, we obtain

GA = i

p2 − m2(1 + i(−12g2
1 + 18h2

1 + 4h2
3 + 2h2

4)K )
.

(98)

Thus, this effective shift of the mass squared given by

im2(−12g2
1 + 18h2

1 + 4h2
3 + 2h2

4)K (99)

defines the running of the mass for the scalar field A. The
analogous shift for the second scalar field is

im2(−12g2
2 + 18h2

2 + 4h2
4 + 2h2

3)K . (100)

The self-energy contribution to the fermion propagator is

C3 = 4(g2
1 + g2

2)

∫
k̂ + m

[(p − k)2 − m2][k2 − m2]
= (g2

1 + g2
2)(2 p̂ + 4m)K , (101)

where the factor 4 arises due to the Majorana nature of the
fermion. The fermion propagator is now

GF = i

p̂(1 − 2i(g2
1 + g2

2)K ) − m(1 + 4i(g2
1 + g2

2)K
.

(102)

On normalizing the term at p̂, we obtain

GF = i

p̂ − m(1 + 6i(g2
1 + g2

2)K
. (103)

The shift of the mass squared is

12im2(g2
1 + g2

2)K . (104)

The running of the masses and, hence, the shifts (99), (100)
and (104) should be equal and we obtain two equations:

18h2
1 + 4h2

3 + 2h2
4 − 12g2

1 = 12(g2
1 + g2

2) (105)

and

18h2
2 + 4h2

4 + 2h2
3 − 12g2

2 = 12(g2
1 + g2

2). (106)

Let us now consider the contribution of the potential term
(88) to vacuum energy. The contribution of the quartic terms
is

E1 = (3λ1 + 3λ2 + λ3)I
2. (107)

The contribution coming from the two scalar-fermion ver-
tices is given by the integral

E2 = −8
∫

Tr(( p̂ + k̂ + m)(k̂ + m)

[(p + k)2 − m2][k2 − m2][p2 − m2]dkdp
= −4(g2

1 + g2
2)I 2 − 12m2(g2

1 + g2
2)L , (108)

where

L =
∫

dkdp

[(p + k)2 − m2][k2 − m2][p2 − m2] . (109)

The contribution to vacuum energy of the triple scalar inter-
actions is

E3 = m2(6h2
1 + 6h2

2 + 2h2
3 + 2h2

4)L . (110)

We can now observe that the sum

2E1 + E2 + E3 = 0, (111)

provided Eqs. (94), (95), (105) and (106) are satisfied. The
coefficient 2 in front of the term E1 is introduced to take into
account the fact that the number of boson and fermion degrees
of freedom should be equal also off shell. It is equivalent to
the introduction of two auxiliary fields in supersymmetric
models, as was explained in the preceding section.

On now substituting the expressions for g1 and g2 from
Eqs. (89) and (90) into Eqs. (105) and (106), we obtain the
following pair of the consistency conditions on the constants
h1, h2, h3 and h4:

18h2
1 − 27h2

2 + 13h2
3 + 2h2

4 − 36h1h4 − 18h2h3 = 0,

(112)

18h2
2 − 27h2

1 + 13h2
4 + 2h2

3 − 36h2h3 − 18h1h4 = 0.

(113)

These equations are homogeneous in h1, h2, h3 and h4.
Thus, we can fix h1 = 1 and we can then change the value of
h2. Then we shall have a system of two quadratic equations
for h3 and h4. This system, which is equivalent to one quar-
tic equation for one variable, is solvable analytically but the
solutions are very cumbersome. Thus, we shall just present
some numerical solutions. In any case we have four solu-
tions, two of them are complex and two of them are real. We
shall only take real solutions into account.

h2 = 1,

h3 = h4 ≈ 3.8

or

h3 = h4 ≈ −0.2.
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Then

h2 = 0.9

h3 ≈ 3.56, h4 ≈ 3.58

or

h3 ≈ −0.46, h4 ≈ 0.17.

Then

h2 = 10/9

h3 ≈ 3.98, h4 ≈ 3.96

or

h3 ≈ 0.2, h4 ≈ −0.5.

h2 = 1/2

h3 ≈ 2.8, h4 ≈ 2.9

or

h3 ≈ −1.2, h4 ≈ 1.2.

h2 = 2

h3 ≈ 5.8, h4 ≈ 5.6

or

h3 ≈ 2.5, h4 ≈ −2.4.

h2 = 1/10

h3 ≈ 2.09, h4 ≈ 2.26

or

h3 ≈ −1.8, h4 ≈ 1.9.

h2 = 10

h3 ≈ 22, h4 ≈ 21

or

h3 ≈ 19, h4 ≈ −18.

Let us note that the negative values of the coupling constants
are not essential because they are in front of the odd (third)
power of fields A and B. The lower bound of the scalar field
potential exists and is determined by the quartic terms with
positive constants λ1, λ2 and λ3.

One can meanwhile introduce the quartic interactions
using auxiliary fields in a manner similar to that used in the
Wess–Zumino model. It is enough to introduce the follow-
ing terms into the Lagrangian instead of terms with quartic
interactions:

F2

2
+ G2

2
+ F(

√
2λ1A

2 − √
2λ2B

2)

+G
(√

2λ3 + 2
√

λ1λ2

)
AB. (114)

6 Model with a Majorana field, a scalar field and a
pseudoscalar field

Let us consider another toy model where the field B is a
pseudoscalar. In this case

h2 = h3 = 0

and the interaction between the pseudoscalar and the fermion
is described by the Lagrangian

g2ψ̄γ5ψB.

In this case we have only one condition for the tadpole can-
cellation for the scalar field Awhich coincides with that given
by Eq. (89). The conditions for the cancellation of quadratic
divergences in the propagators of the scalar and pseudoscalar
fields are also the same (94) and (95). However, the shifts of
the mass squared for the fields A, B and ψ are different. They
are proportional to

δm2
A ∼ −12g2

1 + 18h2
1 + 2h2

4,

δm2
B ∼ 4h2

4 + 4g2
2,

δm2
ψ ∼ 12g2

1 − 4g2
2, (115)

respectively. Correspondingly, on requiring that the running
of these three masses are the same, we obtain the following
couple of equations:

− 12g2
1 + 18h2

1 + 2h2
4 = 4h2

4 + 4g2
2 (116)

and

4h2
4 + 4g2

2 = 12g2
1 − 4g2

2 . (117)

From these two equations we obtain immediately

g1 = ±h1. (118)

If

g1 = h1

then from Eq. (89) we obtain

h4 = g1,

which, in turn, implies

g2
1 = g2

2

and

λ1 = λ2.

If, instead,

g1 = −h1, (119)

then

h4 = −7g1,
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which implies a negative value for g2
2 or for g2

1 as follows from
the couple of equations (116) and (117). Thus, the choice
(119) should be discarded.

We have seen that for the case with one Majorana field,
one scalar and one pseudoscalar we have less freedom in the
choice of the coupling constants than in the case of two scalar
fields and one Majorana field, but this choice is still broader
than that in the Wess–Zumino model.

In principle, one can also consider a model with one Majo-
rana field and two pseudoscalar fields. In this case the triple
scalar interactions do not exist and the constants h1, h2, h3

and h4 all are equal to zero. The requirement of the absence
of quadratic divergences in the shifts of the mass squared of
two pseudoscalar propagators is again given by Eqs. (94) and
(95). However, the shifts of the mass squared for this propa-
gators are equal to zero, while the shift of the mass squared
of the fermion propagator is given by

−4g2
1 − 4g2

2 .

Thus, the Yukawa interactions should vanish as well. Now,
the conditions (94) and (95) can be satisfied if

λ3 = −6λ1 = −6λ2,

but the corresponding quartic potential of these two pseu-
doscalar fields is unbounded from below and is hardly inter-
esting.

7 Models with non-degenerate masses

It is interesting to find toy models with masses which are
not degenerate. In this case it is necessary to consider at least
four boson and four fermion degrees of freedom [5]. The sim-
plest models of this kind are those which include a certain
number of “triplets” of the types described in two preced-
ing sections, i.e. with degenerate masses inside any triplet
and with coupling constants (again, describing interactions
within a triplet) which satisfy the relations obtained in the
Sects. 5 and 6. Naturally, in this case, if there are no interac-
tions between the fields belonging to different triplets, then
the Pauli–Zeldovich mechanism does work. If we introduce
interactions between different triplets with different masses,
then the coupling constants should satisfy some constraints.

We shall illustrate this by considering a model, where there
are two triplets. Both triplets contain a Majorana fermion
and two scalar fields. The mass of all the particles in the
first triplet is equal to m1, in the second triplet – m2 and the
coupling constants describing interactions within the triplets
are chosen in such a way that vacuum energy is equal to zero.
Let us then introduce the following interaction Hamiltonian
between fields belonging to different triplets:

H = λAC A2C2 + λAD A2D2 + λBC A2C2 + λBD A2D2

+gAχ χ̄χ A + gBχ χ̄χB + gCψψ̄ψC + gDψψ̄ψD

+hAC1A
2C + hAC2AC

2 + hAD1A
2D + hAD2AD

2

+hBC1B
2C + hBC2BC

2

+hBD1B
2D + hBD2BD

2, (120)

where the scalar fields A and B and the Majorana spinor ψ

belong to the first triplet, while the scalar fields C and D and
the Majorana spinor χ belong to the second triplet.

It is now possible to find relations which constrain the
choice of the coupling constants given in the interaction
Hamiltonian (120). However, this task is rather cumbersome
and we shall postpone it and the construction of other models
for future work [29].

8 Concluding remarks

In this paper we have studied the Pauli–Zeldovich mecha-
nism for the cancellation of ultraviolet divergences in vac-
uum energy which is associated with the fact that bosons and
fermions produce contributions to it having opposite signs.
In contrast with the preceding papers devoted to this topic
where only free fields were considered, here we have taken
interactions up to the lowest order of perturbation theory into
account. We have constructed a number simple toy models
having particles with spin 0 and spin 1/2, wherein masses
of the particles are equal while interactions can be quite
non-trivial. To make calculations simpler and more transpar-
ent, it was found useful to introduce some auxiliary fields. It
appears that the presence of these fields is equivalent to the
modification of some contributions of the physical fields to
the vacuum expectation of the potential energy. We hope to
construct more complicated models including particles with
different masses and in the presence of vector fields in future
work [29].
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