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Abstract Following the proposal in (Braun and Miiller. Eur
Phys J C55:349, 2008), we study the feasibility to calculate
the pion distribution amplitude (DA) from suitably chosen
Euclidean correlation functions at large momentum. In our
lattice study we employ the novel momentum smearing tech-
nique (Bali et al. Phys Rev D93:094515, 2016; Bali et al.
Phys Lett B774:91, 2017). This approach is complementary
to the calculations of the lowest moments of the DA using
the Wilson operator product expansion and avoids mixing
with lower dimensional local operators on the lattice. The
theoretical status of this method is similar to that of quasi-
distributions (Ji. Phys Rev Lett 110:262002, 2013) that have
recently been used in (Zhang et al. Phys Rev D95:094514,
2017) to estimate the twist two pion DA. The similarities and
differences between these two techniques are highlighted.

1 Introduction

In recent years there has been increasing interest in the
possibility to determine parton distribution functions from
Euclidean correlation functions, bypassing Wilson’s opera-
tor product expansion. The general scheme of such calcula-
tions is to consider a product of suitable local currents at a
spacelike separation z, sandwiched between hadronic states,

(H|(q11Q)(z/2) (QTq)(=2/2) |H') ey

and match the lattice calculation of this quantity to the per-
turbative expansion in terms of collinear parton distributions
(HlgmIq(=m|H'), n*=0. ®)

The existing concrete proposals differ mainly in the choice
of the Q-field. This can be chosen as an auxiliary scalar in
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the fundamental representation of the color group [6,7], or as
an (auxiliary) heavy [8] or light [1] quark. Another sugges-
tion [4] is to replace the Q-field propagator by a Wilson line
connecting g (z/2) and g(—z/2). This last proposal received
the most attention, despite added complications due to the
renormalization of the Wilson line [9,10], see Refs. [11-18]
for recent discussions, the reason being that it allows for a
more direct momentum space interpretation in the framework
of the large-momentum effective theory [14,19] (LaMET).
The corresponding correlation functions, transformed into
the longitudinal momentum fraction representation, have
become known as quasi-parton-distributions [4]. While quasi
parton-distributions are certainly interesting objects, it was
already pointed outin Refs. [1,20] that position space correla-
tion functions (or “lattice cross sections”, in the terminology
of [21-23]) contain the complete information on parton dis-
tributions. In all cases the functions calculated on the lattice
(for early work, see also [24]) are related to parton distri-
butions by means of QCD factorization in the continuum,
which can be done both in position and momentum space.
A position space analysis naturally leads to the concept of
Toffe-time distributions [16,20,25,26]. We emphasize that
all the above suggestions are equivalent, and their relative
virtue will be determined by the possibility to control lattice
artifacts and other systematic uncertainties.

In this work we study the simplest function of this kind,
the pion distribution amplitude (DA), using the technique
suggested in Ref. [1], i.e., we use a light quark (Q = ¢) in
Eq. (1) and perform the analysis directly in position space.
The same DA has recently been studied using the quasi-
distribution approach in Ref. [5]. We consider a correlation
function of renormalized scalar and pseudoscalar operators
at equal times

T(p-z,2%) = (@O q](z/2) [Gysu](—z/2)10),  (3)
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where g (z) creates a light quark field of hypothetical flavor
q # u,d and square brackets [(O] denote operator renor-
malization in the MS scheme. In what follows, we fix the
renormalization scale to the “kinematic” scale in the correla-
tor, ug = 2/«/—_12 (cf. [1,27]). The correlation function (3)
can be calculated on the lattice as a function of two variables,
p-z = —p-zand z> = —z°. Here and below we use boldface
letters for spatial 3-vectors.

We restrict ourselves to sufficiently small distances,
|z|/2 < 1GeV~!, such that the same correlation function
can be calculated in continuum perturbation theory in terms
of the pion DA using standard QCD factorization techniques.
The result reads

2y _ bz

o3 (p- 2,27, )
where <157§P = @, + O(ay) + higher twist (the various cor-
rections will be discussed later), with

1
Or(p-2) = / du e @D (1. )
0

F; =~ 93MeV is the pion decay constant, the variable u
corresponds to the quark momentum fraction and ¢, (1) is
the (leading-twist) pion DA. The integral of the pion DA
is normalized to unity, foldu ¢-(u) = 1, and its shape has
been hotly debated for more than 30years. This discussion
has been reinvigorated by the strong scaling violation in the
wy*y form factor observed by the BABAR [28] and, to a
lesser extent, the BELLE [29] collaboration, which is difficult
to explain unless the pion DA exhibits strong enhancements
near the end points, see, e.g., Refs. [30-32] for a review and
further references. For illustrative purposes we consider three
models:

o (u) = 6u(l —u),

¢ (u)

u

Fig. 1 Plot of the three models for the pion distribution amplitude
given in Eq. (6)
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(I)n(p : Z)

p-z

Fig. 2 The position space pion DA @, (p - z) [cf. Eq. (5)] for the three
models in Eq. (6)

P (u) = ;*/“(1 —u),
P w) =1, (©6)

at the reference scale ;9 = 1GeV. These models and
the corresponding Fourier-transformed position space DAs
@, (p - z), defined in Eq. (5), are plotted in Figs. 1 and 2,
respectively. Measuring the correlation function (3) on the
lattice for a range of values of p -z = —p -z and z* = —z°
gives access to the pion DA in position space (5) that contains
the full information on the longitudinal momentum fraction
distribution.

The main difference of our technique [1] to the approach
of Ref. [5] is that the smallness of higher twist and perturba-
tive corrections (for arbitrary pion momentum) is guaranteed
by keeping the distance |z| between the currents sufficiently
small. A large pion momentum is needed not in order to sup-
press the corrections, but because it provides the necessary
lever arm in the dimensionless variable p - z that is manda-
tory to distinguish between pion DAs of different shape, see
Fig. 2.

In contrast, in the LaMET-based approach of [5] formally
a Fourier transform over all values of z is taken, and small-
ness of perturbative and higher twist corrections is achieved
indirectly by considering the asymptotic expansion of the
amplitude at large values of the pion momentum for a fixed
quark momentum fraction u, which is the Fourier conjugate
of p- z. Thus |p| — oo implies that the integration region in
the Fourier integral shrinks to |z| ~ 1/|p| — 0.

Another difference is that in Ref. [5] a Wilson line is used
to connect the quark and the antiquark, whereas in this study
we use a light-quark propagator [1]. To tree-level accuracy
the difference in the corresponding coordinate space expres-
sions is simply a different coefficient function in Eq. (4).
While taking the Wilson line not along a lattice axis intro-
duces additional difficulties, e.g., concerning renormaliza-
tion, the separation z can be chosen arbitrarily without prob-
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lems when a light-quark propagator is used. We consider
this possibility as an advantage of our calculation because
we have found discretization errors to be largest if z lies
along a lattice axis. Also the renormalization of the lattice
correlator is greatly simplified when one works with a light-
quark propagator (for recent progress regarding the Wilson
line approach see [16—18]).

Note that we suggest to match the lattice matrix element
with the pQCD factorization expression directly in coordi-
nate space. This has the advantage that the lattice data can be
directly confronted with the theory since perturbative predic-
tions based on model parametrizations of the DAs can easily
be transformed to position space.

The whole program naturally splits into two parts—the
lattice calculation where all usual extrapolations/limits have
to be taken and the pQCD factorization in terms of the pion
DA in the continuum. Our presentation is structured accord-

ingly.
2 QCD factorization

The complete QCD expression for the correlation func-
tion (3) can be written as

T(p-z,2°)

1
= Fr - /duei(“_l/z)(”'Z)H(u,zz,u)%(u,u)
27274
0
T ™

where H (u, 72, w) = 1 + O(ay) is a short distance coeffi-
cient function that can be evaluated perturbatively, u is the
factorization scale, and THT stands for power-suppressed (in
z?) contributions that can be calculated in terms of the pion
DAs of higher twist [33,34].

The factorization scale dependence of the pion DA is con-
siderably simplified by using the expansion

o
G (. 1) = 6u(l =) ) ar (WCy'* Qu— 1), ®
n=0
where the C,3, / 2()c) are Gegenbauer polynomials. The n = 0
coefficient is fixed to unity, aj = 1, by the normalization
condition and the remaining ones, n = 2,4, ..., encode all
relevant nonperturbative information on the DA. They have
to be defined at a certain reference scale g (acommon choice
is o = 1 GeV) and evolved to the scale of the process. The
corresponding mixing matrices are known in analytic form
to two-loop accuracy [35,36] and numerically for the first
few moments to three-loop accuracy [37].
Using this expansion, the leading-twist (LT), i.e., twist
two, contribution to the correlation function can be written
as

T = Fosls 4ZH(p zoway (. ©)

Setting both the renormalization and factorization scales to
w = 2/+/—z% we obtain, to O(a;) accuracy,

H,1=|:1+ ZCF(7 —11)] (L 2)
_a: /dsf(zp Z){(n—4)—(7p'z)

+ ((n - 2)[2} + [111;5)} >cos(§p : z)} ., (10
+ +

whereCFz‘%,nz1+2yE,§=1—s,and
3 ;
Falp) = 3"V2A (4 D+ 207,500, (1D

The plus prescription is defined as usual,

1 1

/ds f®)[g®)] E/ds [f(s) = fF(D]g(s). 12)

0 0

The sum in (9) converges very rapidly since

2y

so that for finite p ~ % p - z only the first few Gegenbauer
moments give a sizeable contribution, cf. [1].

The leading higher twist contribution O(z%) can be esti-
mated using models for the twist 4 pion DAs discussed in
Refs. [33,34]. For the case at hand these corrections are in
general complex. We obtain for the real part

VT (n+1)(n+2)

p—>
Fulp) = [(n+5/2)

; (13)

1
-z
SZzzz /du cos[(u —1/2)p - z]{ZOS%uzuz

0

ReTHT — _F,

1
— mZuii + SmZ i 14uit =5 + 6a% (3 — 10uid) |
(14)

where 82 =~ 0.2 GeV? at the scale u = 1 GeV [33,34]. The
last two terms take into account the pion mass corrections
and are rather small.

We find that the higher twist correction for the scalar-
pseudoscalar correlation function has the same sign as the
leading-twist term, in contrast to the vector-vector correlation
function considered in Ref. [1], in which case the higher twist
correction has the opposite sign. Numerically, this correction
turns out to be about 20% of the leading twist contribution
at |z|/2 ~0.2fm ~ 1 GeV~!.
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3 Lattice calculation
3.1 Generalities

We wish to avoid the calculation of disconnected quark line
diagrams, which are challenging in lattice simulations. This
becomes possible by implementing an appropriate flavor
structure of our currents. One may consider having a 7° in
the final state and ¢ = d in Eq. (3). However, this matrix ele-
ment vanishes identically due to isospin symmetry. Instead
we pretend that the auxiliary quark field g of Eq. (3) is a dif-
ferent, third flavor but for simplicity we keep it at the same
mass my = m, = mg. This corresponds to our continuum
QCD calculation.

In the actual lattice calculation we determine the three-
point function using the sequential source method. Therefore,
the currents are situated at z and at (the chosen origin) 0 and
are afterwards “shifted” to the symmetric locations in Eq. (3)
by multiplication with the appropriate phase.

3.2 Correlation functions

The remaining nontrivial part of the lattice simulation is
the calculation of the connected triangle diagram depicted
in Fig. 3. Introducing a phase matrix ¢; that is diagonal in
position space (with diagonal entries (¢;)yy = e~ PY) and is
nonzero only on time slice 7, we can rewrite the three-point
function as follows:

Z e~PY y

t>0 t=0

Fig. 3 The relevant triangle diagram, where the two local currents are
at + = 0, while the smeared interpolating current for the pion with
momentum P is situated at # > 0
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¢ = ifir |Gz 05 (6P ®G)0.2)))

- i<tr {S(z, 0 5G(z, 0)}), (15)

where z = (z, 0), G stands for the quark propagator, and

l ¥
S=vs <G¢(p><ﬂzV5¢<—p>G) Vs =GPp vsPpG,
(16)

is a sequential source. The momentum dependent smearing
@ p) 1s performed as described in Ref. [2]. We want to stress
that in this situation the new momentum smearing technique
is even more cost efficient than described in Ref. [3], since
one needs a second inversion of the Dirac operator for each
additional momentum anyway.

The matrix element (3) can be obtained from C 3pt by
canceling the normalization factor describing the overlap of
the smeared current with the pion state. The latter can be
obtained, e.g., from the two-point function C 2pt of 2 smeared
current at the sink (at time ¢, as in the three-point func-
tion) and a local axialvector current at the source. Neglecting
excited state contributions, one finds

T(p-z,20)  Zs(wZp(p) C*P(p,2)
Fr Za C?(p)

E(p)., 7

where Zy is the renormalization factor of the local current
X with respect to the MS scheme [38], cf. Sect. 4.

3.3 Taming discretization effects

In the continuum, the chiral even part of the propagator con-
necting the two local currents (proportional to Z) gives the
most important contribution, while the chiral odd part (pro-
portional to the unit matrix) is suppressed by a factor m\/@
and, thus, can be set to zero in a first approximation. How-
ever, with Wilson fermions the situation is completely differ-

: : : N 2 2
20k .............. o ................. ........... . tr(z -~y Glr::te(z))% 4
: ¢ : ° 22
. ; | sk os@E
15F-- R [RERNE Lo PR : : ]
e : :
:; - LI . .
Lo e
: ° Y °: .
0.5 i Lo e A P CRRERES P
e 3 ] ]
O se . . e .
00 prbddetod oo, — : :
I I I 1 1
1 2 3 4 5
1 =2/lz| [GeV]

Fig. 4 The (free field) discretization effects of the Wilson propagator
compared to the continuum expectation for the different Dirac structures
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Fig. 5 Correction of discretization effects for the example of a fixed
p-z = 0.39 and |p| = 1.08 GeV. Points with a correction larger than
10% (gray triangles) will be ignored in the analysis

ent. We find that the contribution from the chiral odd part,
which removes the doublers and breaks chiral symmetry, can
be of the same order of magnitude as the leading contribu-
tion, cf. Fig. 4. The “jumping” of the points nicely demon-
strates the strong dependence of the lattice artifacts on the
chosen direction. In particular the points along the axes [e.g.,
(1, 0, 0)] exhibit the largest discretization effects, while the
points along the diagonal [e.g., (1,1, 1)] are much better
behaved. The large contribution of the chiral odd part of the
propagator is a peculiarity of using Wilson fermions. How-
ever, the appearance of large discretization effects is probably
a general feature of all coordinate space methods.

The appearance of large contributions from the chiral odd
part of the propagator would lead to huge lattice artifacts in
the correlator. However, the perturbative calculation shows
that in the situation where the two currents are located sym-
metrically with respect to the chosen origin, contributions

T T

¢ |pl = 1.08 GeV

¢ Ipl =1.53 GeV
¢ Ipl =1.88 GeV ||

14f

Re (Df;P(p -7,7%)
=
o~

u=2/lz| [GeV]

Fig. 6 The plots show our results for the scalar-pseudoscalar channel
for different fixed values of p - z and different pion momenta. The error-
bars include the statistical error only. The solid/dashed lines correspond

from the chiral even and the chiral odd parts of the prop-
agator are nicely separated in some channels. For instance,
for the scalar-pseudoscalar channel the contribution from the
chiral even part (which is the one we are interested in) is real,
while the chiral odd part appears only in the imaginary part.
Hence, we can choose to analyze only the part of the signal
that does not contain the problematic contributions. Note,
however, that the continuum expectation that either the real
or the imaginary part (depending on which one corresponds
to the chiral odd part) of the signal should be strongly sup-
pressed is not valid for the lattice data. Therefore, the correct
identification of the relevant part of the signal is crucial.

We can now concentrate on the correction of the discretiza-
tion effects in the chiral even part of the propagator (these
correspond to the blue points in Fig. 4). First and foremost
we have decided to simply discard data points where the free
field discretization effect is already larger than 10%, which
mainly excludes very small distances (|z| < 2a) and direc-
tions along the lattice axes. For the remaining data points
we use a correction factor ¢“°™(z) determined such that the
corrected propagator

Gl (2) = (@) Grau(2) , (18)
satisfies the condition

|
trcD{sz;)ér(Z)} = trcD{zGcont(Z)} ’ (19)

where the trace runs over Dirac and color indices. To zeroth
order accuracy in oy (where G, = Ggff is the free propa-
gator) this leads to

2.1l 22
T —m
O (2) = (trD{sz;?ﬂz)}ZT) Ko (mv=27).

(20)
p-z=196
VVVVVVVVVVVVVV L [®p=108Gev]
¢ Ipl =153 GeV
Y Rl Ipl = 1.88 GeV |
Sﬁ .
& ! e
) i PRI sl
&) ; T
9 H :
B 08 b i
3 D SR —
0.5 1.0 1.5 2.0
w1 =2/lz| [GeV]

to predictions taking into account/neglecting higher twist contributions
for the different DA models (6). The color-coding is the same as in
Fig. 1

@ Springer
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which corresponds to multiplying the blue data points in
Fig. 4 with a factor such that one obtains the continuum result
in the non-interacting case. Looking at Fig. 5 it is clear to the
naked eye that this correction leads to a much smoother and
less direction-dependent behavior of the data points.

4 Results

The gauge field ensemble used in this study has been gen-
erated (by QCDSF / RQCD) with two mass-degenerate fla-
vors of nonperturbatively improved Wilson fermions and the
Wilson gluon action (ensemble IV in Ref. [39]). The dimen-
sions of the lattice are 323 x 64 and the hopping parameter
is k = 0.13632. The coupling parameter 8 = 5.29 trans-
lates to the lattice spacing a =~ 0.071fm = (2.76 GeV)~!
and the pion mass has been determined in Ref. [40] to the
value m; = 0.10675(59)/a ~ 295 MeV. In order to get a
reasonable overlap with the hadron state at large momentum,
we have employed the momentum smearing technique (cf.
Ref. [2]) with APE smeared links [41].

The operator renormalization is performed as described
in Ref. [38]. The local operators are renormalized nonper-
turbatively in a RI'-MOM scheme along with a subtraction
of lattice artifacts in one-loop perturbation theory. The final
conversion to the MS scheme employs 3 loop continuum
perturbation theory. To be consistent, we use the Ny = 2
specific running of ¢ in all perturbative calculations. To this
end, we combine the results of Refs. [42] and [43] to obtain
a value of ay at 1000/a ~ 2.76 TeV. From there we evolve
it downwards using 5 loop running.

In Figs. 6 and 7 we confront the data points with predic-
tions from continuum perturbation theory corresponding to
the pion DAs shown in Fig. 1. For all cases we show a version
ignoring higher twist (i.e., twist 4) effects (dashed lines) and
one including higher twist corrections (solid lines), where
87(1GeV) = 0.2 GeV? is set to the QCD sum rule esti-
mate obtained in Ref. [44] (cf. also Ref. [45]). The error-
bars only include the statistical error. It is clear that the
systematic uncertainty is sizeable: in addition to discretiza-
tion effects and higher order perturbative corrections there
may be excited state contaminations and, possibly, finite vol-
ume effects. Therefore, one should refrain from drawing any
premature phenomenological conclusions. Nevertheless, the
qualitative agreement found in Ref. [46] between our data
points at . = 1.08 GeV and the results obtained using the
quasi-DA method is encouraging.

In Fig. 6, one immediately notices the higher twist effect,
in particular for large distances, while the curves correspond-
ing to the various DAs are hard to distinguish for small
values of p - z. In Fig. 7 deviations from the asymptotic
form are nicely visible at p - z 2 4. The latter region,
however, can only be reached with larger hadron momenta,

@ Springer

since we are limited to perturbatively accessible values of
lz| =2/u < 2GeV~! & 5.5a. In Fig. 7 it becomes clear
that our data points with |p| = 1.88 GeV can already reach
out into this region, but that one still needs higher statistics
to be able to differentiate between different DA models.

5 Summary

In this work we have demonstrated that the coordinate space
method for the determination of the pion DA proposed in
Ref. [1] is promising, in particular as far as the statistical
error is concerned. To this end, we have analyzed lattice data
atmy, = 295 MeV at a lattice spacing of a = 0.071 fm using
dynamic Wilson fermions. We have shown that the large
hadron momenta, which are a prerequisite of this method
(and also for other related methods), lie just within the scope
of the novel momentum smearing technique [2].

We have found particularly large discretization effects for
directions along the coordinate axes, which are probably not
specific to our calculation but will most likely occur also
in other coordinate space calculations. Furthermore, we find
that the chiral odd part of the quark propagator leads to large
lattice artifacts. This contribution stems from the Wilson term
in the propagator and is therefore a peculiarity of using Wil-
son fermions. We have overcome this problem by analyz-
ing the real part of the scalar-pseudoscalar channel, where
only the chiral even part contributes. For the remaining dis-
cretization effects stemming from the propagator, we have
adopted the correction method described in Sect. 3.3, which
hasreduced the anisotropy of the data considerably. However,
observing large discretization effects on this single interme-
diate lattice spacing shows that taking the continuum limit
will be of vital importance, if one aims at achieving quanti-
tative results in the future.

Unlike the Wilson line approach [5,16], the direction of
the separation between the currents z can be chosen arbi-
trarily using our method. This enables us to realize a large
number of different |z| and p - z values and also to study and
minimize discretization effects. Intricacies related to the Wil-
son line renormalization [ 1 1-18] are avoided entirely, and the
possibility to vary the Dirac structures in the currents offers
an additional handle on the higher-order perturbative correc-
tions and higher twist effects.

In the near future we plan to investigate a new algorithm
that may reduce the statistical uncertainties. We will also
move to a smaller lattice spacing to enable the use of larger
momenta |p| < m/a (and therefore larger p - z values at
a given scale © = 2/|z] 2 1GeV) along with distances
|z| > a, which will reduce lattice artifacts.
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Fig. 7 Results from the scalar-pseudoscalar channel for fixed values of
the distance z? corresponding to perturbative scales around j ~ 1GeV.
The errorbars only include the statistical error. Note that this comprises
only a small subset of the available data. The left-hand-side plots dis-
play the real part of the normalized matrix element T (p - z, z2)/ Fy,

while those on the right-hand-side show the respective real part of
¢,§P(p -z, 2%) defined in Eq. (4). At tree level and up to higher twist cor-
rections, the latter correspond to the position space DA (5). Solid/dashed
lines correspond to predictions that include/neglect higher twist contri-
butions. The color-coding is the same as in Fig. 1
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LIBHADRONANALYSIS library and the multigrid solver implementation
of Ref. [49] (see also Ref. [50]). We thank Daniel Richtmann for code
development, discussions and software support.
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Commons license, and indicate if changes were made.
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