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Abstract Beyond the Einstein-Maxwell model, electro-
magnetic field might couple with gravitational field through
the Weyl tensor. In order to provide one of the missing
puzzles of the whole physical picture, we investigate weak
deflection lensing for photons coupled to the Weyl tensor
in a Schwarzschild black hole under a unified framework
that is valid for its two possible polarizations. We obtain its
coordinate-independent expressions for all observables of the
geometric optics lensing up to the second order in the terms
of & which is the ratio of the angular gravitational radius to
angular Einstein radius of the lens. These observables include
bending angle, image position, magnification, centroid and
time delay. The contributions of such a coupling on some
astrophysical scenarios are also studied. We find that, in the
cases of weak deflection lensing on a star orbiting the Galac-
tic Center Sgr A*, Galactic microlensing on a star in the
bulge and astrometric microlensing by a nearby object, these
effects are beyond the current limits of technology. How-
ever, measuring the variation of the total flux of two weak
deflection lensing images caused by the Sgr A* might be a
promising way for testing such a coupling in the future.

1 Introduction

Gravitational lensing has become an invaluable tool in astron-
omy, cosmology and gravitational physics [1-4]. The intrin-
sic essence of gravitational lensing is the interaction between
electromagnetic and gravitational fields. Beyond the stan-
dard Einstein—-Maxwell theory, the effect of one-loop vac-
uum polarization on photons was considered under different
spacetimes and found to be extremely small [5—15]. Extended
models of the coupling were also investigated for various
physical circumstances [16-30].

#e-mail: yixie@nju.edu.cn

The Weyl tenser can also play as a mediator to couple
the electromagnetic and gravitational fields. Such a coupling
has been widely investigated in several contexts [31-43].
Recently, strong deflection gravitational lensing for photons
coupled to the Weyl tensor has received much attention due
to the deployment of direct observation on the supermassive
black hole at the Galactic center, Sgr A*, by the Event Hori-
zon Telescope.! The unique feature of the strong deflection
lensing is the relativistic images of photons winding several
loops around the lens [44,45], which can not be generated
in a weak gravitational field. Focusing on photons coupled
to the Weyl tensor in a Schwarzschild black hole, the strong
deflection lensing was studied [46,47]. It was then extended
to a more complicated background by considering a Kerr
black hole [48].

However, the relativistic images of Sgr A* are extremely
faint [49-51] and, therefore, exceedingly difficult to detect.
As an alternative, the primary and secondary images of weak
deflection gravitational lensings are much easier to observe
and they have been extensively used in astronomy and cos-
mology [1-3]. Weak deflection lensings can also provide
insights on modified theories of gravity [52—-54] and clues
on the interaction between electromagnetic and gravitational
fields. In this work, we will study weak deflection lensing
for photons coupled to Weyl tensor in a Schwarzschild black
hole, which was absent in the literature. By focusing on
coordinate-invariant quantities, we obtain all of its geomet-
ric optics lensing observables, which include bending angle,
image position, magnification, centroid and time delay. These
observables are worked out to the second order in the per-
turbation parameter ¢ which is the ratio of the angular grav-
itational radius to angular Einstein radius of the lens. The
results are represented in a unified form which is valid for
both of two polarization directions of the Weyl coupling.

1 http://www.eventhorizontelescope.org/.
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In Sect. 2, after the unified effective metric for photons
coupled to the Weyl tensor in a Schwarzschild black hole
with two polarization directions is briefly reviewed, we will
derive its light bending angle that is expressed with invari-
ant quantities. The lensing observables, including positions,
magnifications and time delay of images, are obtained in Sect.
3 and relations between them are represents in Sect. 4. We
work out practical observables of the lensing and investigate
its observability for several astrophysical scenarios in Sect.
5. Finally, in Sect. 6, we summarize and discuss our results.

2 Effective metric and light bending
2.1 Effective metric

We consider a Schwarzschild black hole with mass M, as the
lens, and set the observer and the source in the asymptotically
flat region of its spacetime. We assume that it is vacuum
outside the lens. When a photon couples to the Weyl tensor in
the background of the Schwarzschild black hole, its worldline
will no longer follow the null geodesic. However, it was found
[39,46] that the geodesic rule can be recovered by taking
an effective metric for such a coupling. This metric can be

written as
ds> = — A(r)de® + B(r)dr? + C(r)d22, (1)

where r is the radial coordinate and d$2% = d#? + sin® 6dg?.
The functions A(r), B(r) and C(r) are

-1 2m,
Ar)=B@Ur)" =1-— 2)
and
3 K
+ 160 m,
Cor) = <#) 2 3)
r° —8ame
where « is a constant with dimension of [Length]2 charac-

terising strength of the coupling between the photon and the
Weyl tensor, me = GM,/ c? is the gravitational radius of the
Schwarzschild black hole, and s is an constant. We use s to
unify the expression of C(r) for two different polarizations
of the photon respectively along [, (PPL) and m , (PPM) (see
[39,46] for more details):
+1 for PPL,

' { —1 for PPM. @
In fact, the results of weak deflection lensing that we obtain
in the following parts are also valid when s takes other real
numbers with different physical interpretations.

Before we perform detailedly and lengthy calculation on
the light bending and its resulting lensing observables, it is
worth mentioning that the parameterized second-order post-
Newtonian formalism for weak deflection lensing established

@ Springer

in Refs. [52,53], which is called “Keeton—Petters formal-
ism” for short hereafter, cannot be applied to the spacetime
(1) in this paper. Keeton—Petters formalism is valid for a
static, spherically symmetric and asymptotically flat space-
time, whose metric is written in the standard Schwarzschild
coordinates denoted by overbar with coefficients: [52,53]

2 3
Agp(r) = 1+ ZaI% + 2a2<%) + 2a3 (%) +-y ()
C C C
2 3
Bgp(r) = 1— 217122 +4b2(%> - 8b3<%> T, (6)
C C c
Crp(P) = 7. %)

Here, ¢ is the Newtonian potential with

¢ Mo
2= (8

c

and aj 2 3 and by 2 3 are dimensionless and numerical param-
eters. However, after transforming (1) from its current coor-
dinates to the standard Schwarzschild ones, we find that b 5 3
depend on the radial coordinate rather than numerical ones,
such as

bi(F) = 1 + 245 . ©)
r

The additional r-dependent terms have to be taken into
account when evaluating the integral of the light bending
angle (see next subsection for details); however, they are
absent in the Keeton—Petters formalism. This issue was also
recognized for Solar System tests of a scalar-tensor gravity
[55]. One exception is the trivial case of « = 0 in which
the metric (1) reduce to the Schwarzschild black hole in the
standard coordinates. Therefore, due to the fact that such a
formalism cannot be directly employed, we stick to the met-
ric (1) and perform all of the indispensable calculation for
proceeding our investigation.

2.2 Light bending

For a light ray propagating through spacetime (1), the dis-
tance of closet approach rg and the impact parameter b of the
light ray satisfy the relation as [56]

C(ro) = b*A(ro). (10)

In the scenario of weak deflection lensing, ro and b are much
larger than m, which leads to the Taylor expanded solution
to (10) as

6
}’()_ n 7
S =1=2 bug"+ 0" (n

n=1
with small parameter

Ne

b

q (12)
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The first two coefficients b; and b, are

by =1+ 12sa, (13)
3

by = J + 3654 + 245’ (155 — 2), (14)

where we define a dimensionless parameter as

_ o
o= b—z; (15)
the details of other b, (n = 3,...,6) can be found in

Appendix A. When the coupling vanishes, i.e., @ = 0, Eq.
(11) returns to the one for the Schwarzschild black hole in
Einstein’s general relativity (GR) [52].

Following the standard procedure, e.g. [56], the bending
angle can be obtained as [49,56]

G ( )—/ Sy
alrpg) =
v VO A —

dr —m, (16)

which can be written in the form of a series for weak deflec-
tion lensing as [52]

6
a(h) = Z a,h™ + O(h7) (17)

n=1
with small parameter
Me
h=—. (18)
ro

The coefficients a,, for n = 1 and 2 are

a; =4+ 32sa,
15 _ (135
a=—m—4+sayg| —m — 144 (19)
4 2
_of| (1125
+ sag Tn — 1152 |)s — 757 |, (20)

where the dimensionless parameter & is defined as

O\‘l\)l Q

ag (21)
For testing photons coupled to the Weyl tensor in the Solar
System, the leading term of &(h) ~ a;h was calculated pre-
viously [57]; and our result is in agreement with that. Other
higher-order coefficients a, (n = 3,...,6) can be found
in Appendix A. The deflection angle (17) can go back to
the one for the Schwarzschild black hole in GR [52] when
a = 0. However, such an expression depends on coordi-
nate of o and should be transformed into an gauge-invariant
form. With the help of Eq. (11), we can replace the distance
of closet approach ro with the impact parameter b and obtain

6
&b) =Y ang" + O0(q)), (22)

n=1

where

a; =4+ 32sa, (23)
15 135 75

Gy = n[Z + s+ 7s512(15s — 2)}, (24)

and higher-order coefficients &, (n = 3, ..., 6) can be found

in Appendix A. It can be easily checked that the gauge-
invariant deflection angle (22) can return to the one for the
Schwarzschild black hole in GR [52] when the coupling van-
ishes.

3 Image positions, magnifications and time delay

After the deflection angle has been obtained, we can deter-
mine the image positions, magnifications, and time delay of
the weak deflection lensing for photons coupled to the Weyl
tensor in the Schwarzschild black hole. Denoting d; , ds and
dys as angular diameter distances between the observer, lens
and the source, we adopt the general lens equation as [49,50]

tan 4 = tan ¥ — D[tan ¥ + tan(@ — 9¥)], (25)

where # is the angular position of the source, ¥ =
arcsin(b/dy) is the angular position of the image and D =
drs/ds. Following the convention of Refs. [52-54], angles
of image positions are set to be positive so that the angular
position of the source 4 is positive if the image is on the
same side of the lens as the source while 4 is negative if the
image is on the opposite side. We also define scaled variables
[52-54]

B 9 S

B=2, 0=— f=—, e=- (26)
g Ug TE g

where %4 = arctan(m,/dp) is the angular gravitational

radius at distance dr, 7 is the time delay between images,
the angular Einstein ring radius is

4medy s
Vg = 27
E=, / dLds 27

and the time scale is

Mme
o = 4 (28)
C

Then, it is assumed that solution to the lens equation (25)
can be expressed in the form of a series as

0 = 6y + &6 + 626, + O(7), (29)

where 0y, 61 and 6, are respectively the zeroth-order, first-
order and second-order terms for the image position in the
weak deflection lensing. With that, the bending angle (22)
can be written as

@ Springer
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g2 15 1
% Zn—491+§sa 1357

75 (128
—6401) + —ns&2(15s - 2)} + %{—
2 O L 3

15 32, 6144
— b1 — 4606 407 + 3P 05 + s —~

& = 4—(1 +8s@) +
Ao

— 13576, + 3291 — 326062 + TD 0y

—s&2|:<11257[01 -

524288
05 @ (24s% — 65 + 1)} + O(h),

and the lens equation (25) can be found as

663552) 73728:|
s

— 15076 + ——
o + 35

(30)

e [15
0= 4D—(,390 —90 + 14 8sa) + —D[ 4
6%

—40,03 + 1) + 5s5¢(135n — 646))
75 3 15
+ S msad(15s = 2)} n ;—8D{64 - a6,

224

64
— 64D6; — 4006, + 467 + 3 piD%03 + == 3 D68

64
— D68 + sa

— 4636, — 3

8704
(T — 13576,

1792, ,
—1024D6 — 326062 + 3267 + —— D6}

806912
072|:s< = —1125n91—409609§>

73728:|

32768

15070, — =2
+ 120761 105

= s@>(419s% — 965 + 16)}

+ 0, 31)

which will be used to work out the observables.
3.1 Image positions

By making the coefficients of €, €2 and €* in (31) vanish, we
can find out 6,, (n = 0, 1, 2). The first term gives that

" , (32)

which leads to the zeroth-order image position for the weak
deflection lensing as

1
0o = 5(/3 +n), (33)
where
n=.+/B%+4+32sa. (34)

It is worth mentioning that the negative solution of 6y is
neglected due to our convention that the angular position of

@ Springer

an image is set to be positive. The positive- and negative-
parity images can respectively be found by using 8 > 0 and
B < 0 (see next section for details). If s > 0, it will make 0
bigger than its corresponding values for the Schwarzschild
black hole in the absence of such a coupling to the Weyl
tensor; if s < 0, 6p will become smaller. Additionally, Eq.
(33) itself also imposes a bound on &. In order to ensure that
n and resulting 6 are real, it demands that

I & 35)
S > —— — —.
- 8 32

For the special case of 8 = Oands = — 1, itimpliesa < 1/8

sothata < 6 x 10'® m? where b is assumed to be the radius
of the Sun by considering the Sun as the lens. Such a specific
bound is consistent with but looser than the one obtained by
the Solar System test on the deflection of light due to the Sun
[57].

The coefficient of €2 in (31) does not depend on g explic-
itly so that, after substituting (33), we can obtain the first-
order correction to the image position as

15 1+ 18s& + 10s(15s — 2)&?
o = g 0T sU5s — )& (36)
16 00+1+8sa

It can be easily checked that when & = 0, 1 will return to its
familiar value for the Schwarzschild black hole in GR [52].

Vanishing the coefficient of €3 in (31) yields the second-
order term as

5
r=p) pad",
n=0

where the factor p and first two coefficients po and p; are

(37

1
00(03 + 1+ 8s@)?’

p= (38)

= 8D298+D 64[)
Po=35"% 3

— 16)93

88 4
+( 5 D= 32D+ 16 )6;

16
+9§<?D2 -

16 225
—D*+16 — —xn?,
3 256
1024

pi=s| 5 D%} + D( ——D 25665

+ (70402

225
16D + 32 — == x?
128

(39)

2176
768D + T)eo

512
+(==Dp*>-512D +
3 5 32

3456 2475 2:|

5632 2025 2)93

_@lﬂ e

40
30 64 (40)
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The higher-order coefficients p, (n = 2,...,5) can be
found in Appendix B. If the coupling to the Weyl tensor
is absent, 6, will have its value as the same as the one for the
Schwarzschild black hole [52].

3.2 Magnifications

At angular position ¢, the signed magnification p is [58]

sin B(9) d%’(ﬁ)]l

o) = [ sin ¥ do

(41)

With scaled variables (26), we can have a series of
expanded in terms of € as

W= o+ em +eun + O, (42)

where the zeroth-order, first-order and second-order terms
are

%
_ , 43
HOZ g = (1 + 8sap? @
15 1 + 18sa + 10s(15s — 2)&@?
= — gyt 18sa t 055 = 2)a7, (44)
16 (65 + 1+ 8sa)?
6
py=my ma". (45)
n=0

In the expression of w7, the factor m and the first two coef-
ficients my and m; are

92
m=— L —, (46)
65 + 1+ 8sa)>(F5 — 1 — 8sa)
8
my = 51)295‘ + (48D% — 32D — 32)68

272 675 , A

ZEp? 64D + —n% — 64 )6,
+( 3 " ) 0

8

+ (48D* — 32D — 32)03 + gD2, (47)

128 4352
my = s[Tnzeg + (115202 — 768D — T) N

N 8704 2048D+6075 ) 11264
—_— J— _7‘[’ _— —
3 32 5 0

6912
+ (1920D2 —1280D — T)e& + 128D2:|, (48)

and the higher-order coefficients m,, (n = 2,...6) can be
found in Appendix B. It can be checked that © will be diver-
gent if s& equals to either —(03 +1)/8 or (93 —1)/8. When
o =0, u, (n = 0,1,2) can also return to their familiar
values for the Schwarzschild black hole [52].

3.3 Time delay

The time delay is the difference between the light travel time
with and without the lens and it can be expressed as

ds
cos A

where Rg.. and Ryps are the radial coordinates of the source
and observer and they have the relations as [52]

¢t = T (Rgc) + T (Robs) — (49)

Rye = (dig + d3 tan®> 5)'/2, (50)
Robs = dL. (51
The function 7 (R) has the form as

dr

R
TR = /,0 dr

and it can be integrated and expanded as

dr (52)

3
T(R)=To+ro Y Tyh"+ 6%, (53)

n=1

where the first two terms are

To =/ R? — g, (54)
_ g2 _
oV (LVE)
1+& 3
_ 2
+12sa0 "5 6 1) (55)
1+&
with
_n
=2 (56)

and higher-order terms 73 and 74 can be found in Appendix B.
It is obvious that Tj is not affected by the coupling to the
Weyl tensor, but 77 has the Shapiro delay term with an addi-
tional correction proportional to sa which is consistent with
the result obtained for the Solar System test [57]. When
ag = 0,7, (n = 1,2,3) can return to their values for the
Schwarzschild black hole [52].

Afterreplacing ro with b by using Eq. (11) and substituting
(50) and (51), we can have the scaled time delay [see Eq. (26)]
in a series as

T =7 +et + O, (57)
where

1 dL92 02
fo=~|1+B8%—02—In| —2L ) 4 24sa
70 2|: + B 0 n( o + 24sa |,

157 (1 s
= — -+ ——— (74307 +a(1502s (58

: 890{2 9§+1+8s&[ o+ a50s  (58)

+111s — 263 —2) + sa*(720s — 96)]}. (59)
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Although it is also possible to obtain the & (&%) term for 7,
that is less vital than the &(g2) corrections to 6 and w. If
sa > 0, it will make 7y bigger than its corresponding value
in the absence of the coupling to the Weyl tensor; if sa¢ < O,
7o will become smaller. When such a coupling vanishes, 7
and 7| can go back to their values in GR [52].

4 Relations between lensing observables

Considering photons coupled to the Weyl tensor in the
Schwarzschild black hole, we can find some relations
between lensing observables given in the previous section.
4.1 Position relations

With Eq. (33), we can respectively obtain the positive- and

negative-parity images at the leading order by specifying >
Oand B <O as

o = 5 18D (60)
which also leads to

0 — 6, =IBl, (61)
and

6,0y =1+ 8sa. (62)

It is clear that the value of 96" — 0 is not affected by the
coupling to the Weyl tensor and 9; 6, is dependent on the
coupling only. When such a coupling vanishes, th and 9; 0y
will have their values in GR [52]. If s > 0, then it will make
QSE and Qgr 6, bigger than their corresponding values in the
absence of such a coupling to the Weyl tensor; and vice versa.

According to Egs. (36) and (60), we can have the first-
order corrections to the image positions as

15 1+ 18sa + 10sa*(15s — 2)

0F = — . 63
1= (1 = 1)) (63)

They generate two relations that one is

15 1+ 18sa + 10sa>(15s — 2)
—7

16 1 + 8sa

which is independent on the angular position of source; and
the other is

0 +0; =

, (64)

B 15 1+ 18s& + 10s@2(15s — 2)
of —o; =——m|pl _ (65
16 n(l 4 8sa)

which is source-dependent.
Based (37), we can obtain the second-order corrections to
the image positions as

5

4
o5 = iBi(ZaBn&" +if) Zmﬁ”) (66)
n=0

n=0

@ Springer

where the factors 31 and the first two coefficients of 3, and
1 (n=0,1)are

1

Pr=— . (67)
n3(n £ |B)*
64 1024
Po = 3 1)2,38+D< ;D 128);36
+ (%DZ —1024D + 128)/34
8576 225 5\ o
—2304D + 768 — =
+( 3 + T )ﬂ
2 7
+ == 0 2 1024p +1024 — o5 2, (68)
3 16
512 16384
Py = [ 3 D?p8 + (TD—2048)/36
17408
+ (40448D2 — 24576D + —) g4
274432 135168 2025
( —73728D + - Tnz)ﬂz
102400 221184 7425
+— D? — 40960D + - Tnz], (69)
64 896
Pp = ?D2ﬂ6 + D(TD - 128)ﬂ4
3392 5
+ TD — 768D + 128 ) B
3328 225
—1024D +512 - == 72, (70)
512 14336
P = [ . D20 + ( s D- 2048)/34

174
+ (2713602 —18432D + T(B)ﬂ

106496
+ [

112 202
D2 —32768D + fal 025 2

ol an

and higher-order coefficients ‘B3, (n = 2,...,5) and ‘}3:1
(n = 2,3,4) can be found in Appendix C. They yield a
relation as

4
0F —0; =5 s,a", (72)

where the factor s and the first two coefficients s and s, are

18]

- 73

(1 + 8sa)3 (73)

225
=8D>+ ==—x% — 16, 74
50 + 7567 (74)
2025 2816
5 = s(256D2 + an — T) (75)

The higher-order coefficients s, (n = 2, 3, 4) can be found
in Appendix C.
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4.2 Magnification relations

Using Egs. (43)—(45) for magnifications and Eq. (60) for
image positions, we can have

1
ny = [Iﬂl(ﬂz +4)+ B+

2|BIn?
1656218 n)], (76)
w=ny
_ _Enl+183&+10s6{2(15s—2) a7
16 n3
and
4
uy =+MY Ma”, (78)
n=0

where the factor 9T and the first two coefficients 91y and 90,
are

1
= 1815 (79)
1BIn?
8 176
mo = §D2,B4 + (TD2 — 32D — 32)/32
675
— 128D + 192D* + ﬁnz — 128, (80)
128 4352
m = S[szﬁ“ + (14081)2 — 768D — T)ﬁZ
5 6075 o 22528
+6144D% — 4096D + —— > = | 81)

The higher-order coefficients 91, (n = 2, 3, 4) can be found
in Appendix C. They can give three simple magnification
relations as

g + g =1, (82)
uy —uy =0, (83)
1y +us =0. (84)

Again, the sign of the magnification denotes the parity of
an image so that the absolute value of & indicate its bright-
ness. At the zeroth-order, the difference between the fluxes of
images, | u:ﬂ — |1y |, equals to the flux of the source without
lensing. The relation (83) emerges because both images have
the same 1. These relations are immune to the coupling to
the Weyl tensor.

By combining Egs. (33), (36), (43) and (44), we can verify
that

g0 + g O +ui 0 +ui6; =0. (85)

4.3 Total magnification and centroid

If the two images can not be separated, the observables are
the total magnification and magnification-weighted centroid
position. The relations about magnifications (82)—(84) leads
to the total magnification as

oot = I+ 1]

= Qud — 1) +2%uf + 0. (86)

The exact cancellation between ,uT and u; [see Eq. (83)]
guarantee that jio¢ does not have the &'(¢) term.

The magnification-weighted centroid position is defined
by [52]

O ut| =07 u"|  6tut +67u
Ocent = T — = TE— 87)
It 4 | wr—n

With the results obtained in the previous parts of this section,
it can be expanded in the series of € as

Ocent = Op + €01 + 20, + O(&), (88)

where the zeroth-order, first-order and second-order terms
are

B2 + 3 + 24sa
o= iea (5
©; =0, (90)
4
@ =6) 6,a" 91)

In the expression of ®», the factor G and the first two coef-
ficients &g and & are

1B

S = , 92
n2(B2 + 2 + 16s@)? ©2)
8 104 272
Sy = -D? —16 D D?
o= 502+ (50 - 16) ot (20
64 675
—64D +32|8%> — —D?> — —x? 4 128, 3
+ )ﬁ 3 TR (93)
64 16
S = s[?szs(’ + (TD 256)Dﬁ
4352
+ (217602 — 1536D + T)ﬂz
2048 6075 22528
— D? — %+ , (94)
3 32 5

and the higher-order coefficients &,(n = 2,3,4) can be
found in Appendix C.

4.4 Differential time delay

The differential delay between the positive- and negative-
parity images is

At =t — 1, (95)

@ Springer
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and it has a series form as
AT = Ay + e AT + O(2), (96)

where the zeroth-order and first-order terms are

N n+ 18I
Aty = =n|B| +1In (—) C0)
2 n— 1Bl
. 15 18] 1 _
A = —7— | = 411
U= R0+ 8sa)2 [2 + s
+sa’(111s — 2) + 48s%a> (155 — 2)}. (98)

Since both of them are affected by the coupling to the Weyl
tensor, it is theoretically possible to test it by observing the
differential time delay between two images (see next section
for discussion).

5 Observational effects

By using the lensing relations found in the previous section,
we can obtain the practical observables for the photons cou-
pling to the Weyl tensor in the Schwarzschild black hole.
After that, like Ref. [53], we will consider and discuss sev-
eral astrophysical scenarios.

5.1 Practical observables

In order to proceed the investigation, we focus on the zeroth-
order and first-order lensing effects. The former ones are the
observables of the weak deflection limits, and the latter ones
might be able to be measured in the near future. To fulfill this
purpose, we need convert the scaled variables (8, 0, i, T) to
practical observables (%, ¥, F, t). Observables of lensing
usually are the positions, fluxes and time delays of the images.
The fluxes are connected to the magnifications through the
flux of the source, i.e., F; = | ;| Fyc.

Following the discussion in Ref. [53], we also con-
struct some possibly measurable combinations of observ-
ables which are

Por =01 +07
15 1 + 18s@ + 10s&?(15s — 2)
=&+ =
T 1+ 8@
+0(eh), (99)
AP=9T -9~
a1 15 g1+ 18s@ + 10s@?(15s — 2)
= — —&m—
16 & 1+ 8sa
+0(e), (100)
Foo=F"+F~
P2+ 202 + 16sav?2
= Fic E E o, (101)

|B|&
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AF=FT —F~
15 o _ _2
= Fye — Fsrc§8ﬂﬁ[1 + 18sa + 10sa”(15s — 2)]
+0(e?), (102)
P OYF~ — 0" F~
cent = Ftot
B + 302 + 245092
— 2| ETTE L o), (103)

B+ 20% + 16savd

drds (1 2 & + ||
At = 2186 + 92 [ 20
’ chs{2| &+ En<5—|@|

5+ 11sa + sa’(111s — 2)

15 Vg|B| 1
E—NN——m—>
8 (1 + 8s@)?

+48s%a> (155 — 2)] + ﬁ(sz)}. (104)
Here, we define that
& =\ + 407 + 325092, (105)

These combinations of observables represent our results
about weak deflection lensing for photons coupling to the
Weyl tensor in the Schwarzschild black hole. We will inves-
tigate the effects of the coupling on these practical observ-
ables so that we define following indicators to demonstrate
its contributions:

3Pt = Piot — Pot(@ = 0), (106)
SAP = AP — AP(a = 0), (107)
FtOt
8Vt0t =25 10g10 [m}, (108)
8Ar = 2.51log, [L] (109)
AF(@x =0)
3Scent = Feent — Feent(@ = 0), (110)
AT = At — At(a = 0), (111)

where the differences between fluxes are converted into mag-
nitudes. Keeping the leading contributions, we can have their
dominant terms as

167.9E - -2
§Pot = ———sa + O(s,a”), (112)
VB +4
15 IBI(5B% +12) _ 2 2
SAP = —§87T Ewsa+ﬁ(€ , ), (113)
8 80 a4+ 0@, a%), (114)
14 = SO ,a7),
T (I 10)(B2 +2)(B2 + 4)
225 3824+4 N
SAr = ~ 3 losn 7z +4)5/2soz + 0, a%), (115)
818179 _
8 Seent = ('Bszljzsa + 02, a2, (116)
45 di.d
sAT = — L8 en|Bl9isa + 0(2, a2). (117)

cdrs
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They imply that the polarization s and the strength « for pho-
tons coupling to the Weyl tensor cannot be simultaneously
determined at least based on its leading observational effects.

Before investigating some observational examples numer-
ically, we need to specify the domain of the coupling constant
a. In order to ensure that a photon can continuously propa-
gate outside the event horizon of a Schwarzschild black hole,
« has to satisfy two theoretical bounds [46,47] that

a<aly fors=+1, (118)
a>a® fors=—1, (119)
with
M 2
ally =m2 =2.2x 1o6< : ) m?, (120)
Mg
1 M, \?
= ——m=—1.1x 106<—> m?. (121)
2 Mg

where M, and M are the mass of the hole and the Sun.
Based on experiments in the Solar System, an observational
bound was found as [57]

obs

lsa| <@ =4 x 10" m?. (122)

Thus, if it is assumed that the strength of « is irrelevant to
the mass of the lens, the observational bound ocib]s will be
much tighter than the theoretical ones ai‘] for a supermassive
system with M, > 10°® M and ai‘l will be much more

stringent for a stellar system with M, < 10 Mg. Both of

these two kinds of bounds will be adopted in the following
parts.

5.2 The supermassive black hole in the Galactic Center

By monitoring stellar orbits in the Galactic Center, the mass
and distance to the supermassive black hole Sgr A* was deter-
mined as M, = 4.28 x 10% M and d. = 8.32 kpc [59]. Its
gravitational radius is me, = 6.32 X 10° m = 2.05 x 1077
pc, whose angular radius is 5.08 x 10~ arcsecond (as) and
whose time scale is tg = 84.3 s.

We consider a source orbiting the Sgr A* with a distance
dis < dy, sothat ds ~ di . We also define a scaled distance
dis = dis/(1 pc). From the perspective of the observer,
if the source can be close enough to Sgr A* in the sky, it
can be strongly lensed. The angular Einstein radius is v =
0.0224 (dﬁs)l/ 2 as and the perturbation parameter is € =
2.26 x 107 (d}y) /2.

Therefore, based on Eq. (99), we can make a rough esti-
mation, in which the first-order correction is dropped since it
is smaller by 4 orders of magnitude, and find that the angular
separation of the two lensed images is larger than

Piot.min = 0.0448 (df')'/>/T + 32s5@ as. (123)

When the weak deflection lensing is considered that b > my,,
Piot, min €ven for a source with dfjs ~ 1073 (and resulting & ~
7.16 x 1073) is still larger than the current resolution as low
as 50 microarcsecond (pas) achieved by phase referencing
optical/infrared interferometry [60]. It means that Py, AP,
Fiot, AF and At can be obtained according to the positions,
flux and timing of two separated images.

As a case study, we consider a source at dig = 1073
pc with its B ranging from 1073 to 10. We take a wider
domain of « belonging to [10°, 102°] m? which can cover
both aib]s and |Oli]1 | for Sgr A*. It can be checked that & <
1.2 x 10~ for both s = 1 and — 1 by using the relation of
sin ¥ = b/dy, and the series solutions to the image positions.
Our interest is the contributions on the lensing observables
due to . Estimations [see Egs. (112)—-(117)] suggest when
«a is sufficiently small that is satisfied for this case, s solely
changes the sign of the leading effects of @. Therefore, we
focus on the leading contributions for s = 1, which can
nicely approximate the results for s = —1 after changing
their signs.

Figure 1 shows color-indexed § Py, AP, 8rior, 8 Arior
and § At against o and B in logarithmic scales. The coupling
constant o can make the total separation of two images larger
than its value in GR, i.e., § P, > 0. When « is around 0‘111’
8 Pt can reach the level of 0.1 pas, which is still beyond the
current ability. § Py, decreases when « drops; andif o ~ oeoibls,
8 Pyt will be down to ~ 10~ pas far beyond the capability
today. The existence of o can cause the angular difference
between two images become smaller than the one in GR, i.e.,
8AP < 0.The sub-figure of —§ A P has a similar pattern with
its most significant contribution at 1073 pas at o ~ 053_11 .The
effects of « on § Py and §AP for Sgr A* are too small to
detect in the near future.

The total brightness of two images can be enhanced under
the coupling to the Weyl tensor with respect to the one in
GR and its difference 8ro can reach the level of ~ 5 x 10~%
mag, corresponding to relative flux of about 500 parts per mil-
lion. Although it is within the current photometric accuracy
of a dedicated space telescope, such as the Kepler mission
for searching transiting exoplanets [61], the emission of Sgr
A* is constantly changing and its variable flux might eas-
ily overwhelm this variation of the total flux of two images
due to the coupling. But it might still be a promising way to
constrain o by measuring 87 in the future if this noise can
be well understood and separated. Additionally, the coupling
can reduce the brightness difference between two images, but
such as reduction is less than ~ 10~ mag below the current
threshold. Finally, effects of « on the differential time delay
between two images are represented. When « ~ oszl, SAT
can reach the level of ~ 10~* s which is practically inacces-
sible because the exposure time for astronomical imaging is
usually much longer than it.
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Fig. 1 Estimated contributions in observables of the weak deflection
gravitational lensing caused by photons coupling to the Weyl tensor in
the Schwarzschild black hole. We consider Sgr A* as the lens with the
mass and distance as M, = 4.28 x 10° Mg and di, = 8.32 kpc [59]
and assume a source at a distance of 1073 pc from Sgr A*. From top to
bottom panels and from left to right, color-indexed & Piot, AP, Srior,
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8 Aryor and 8 At against o and § are respectively presented in logarith-
mic scales. In each sub-figure, the dashed line denotes the observational
bound on « and the dash-dot one shows the theoretical bound. Here,
the polarization s = 1 is taken; the contributions of s = — 1 can be
sufficiently approximated by changing the signs of the ones shown in
each sub-figures
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Fig. 2 Estimated contributions in microlensing caused by photons cou-
pling to the Weyl tensor in the Schwarzschild black hole. Left: 8ro is
shown for a Galactic lensing with M, = Mg and 2d;, = ds = 8 kpc.
Right: § Scent is represented for an astrometric lensing with M, = 0.676

In a summary, based on the current limit of the technology
and the specific circumstance of the Sgr A*, the impact of
the photons coupling to the Weyl tensor in the Schwarzschild
black hole is unable to be detected in the observables of weak
deflection lensing, while measuring on the variation of the
total flux of two images might be a promising way for testing
such a coupling in the future.

5.3 Galactic and astrometric microlensing

In a scenario of microlensing, a foreground gravitational
object lenses a more distant background star. Plenty of
projects [62—67] on Galactic microlensing measure change
of the total fluxes of stars in the bulge with time, while astro-
metric microlensing on centroid shifts of a remote source by a
nearby lens is also discussed [68—70] and practiced [71-73].

For Galactic lensing, masses and distances of the lens and
source are respectively scaled by the solar mass and by 8
kpc as M} = M,/Mg and d§ = ds/(8 kpc). We suppose a
situation that the lens is located at rough midpoint between
the observer and the source, i.e. di, ~ dps ~ ds/2. We
can, therefore, have that 9, ~ 2.5 x 10712 (M7/dg) as,
Vg ~ 1073 (M} /d)"/? asand & ~ 2.4 x 1072 (M} /d$)"/%.
We concentrate on the contribution of the coupling to the
Weyl tensor on Fi,; which is indicated by 8r.

For astrometric lensing, masses and distances of the lens
and source are respectively scaled by the solar mass and by
2 kpcas My = M,/Mg and d§ = ds/(2 kpc). We assume
that a nearby lens is located at 10 pc from the observer, i.e.
df = dL /(10 pc), so that ds =~ di.s. We can have that ¥, ~

Astrometric Microlensing

10°
107®
2
10 }
107°
n
g
@ 10 10712
g
[))
2=}
10—15
1
10—18
-1 n n
10
108 108 1010 10"?
oc(mz)

Mg, di. = 5.55 pc and ds = 2 kpc. In each panels, the dashed line
denotes the observational bound on « and the dash-dot one shows the
theoretical bound, where the polarization s = 1 is taken

1.0 x 1072 (M} /d}") as, 9 ~ 2.9 x 1072 (M} /d;)'/? as
and e ~ 3.5 x 1078 (Mf/df)l/z. Astrometric lensing by a
nearby star has an Einstein ring radius almost 30 times larger
then the one of Galactic lensing. The centroid position Scent
is the observables, in which § Scen¢ indicates the contributions
of a.

The left panel of Fig. 2 shows color-indexed §ryo for
a specific case of Galactic lensing, where we assume that
M, = Mg and 2d;, = ds = 8 kpc. The coupling constant «
is set belonging to the domain [10°, 10'2] m?, covering both
af (dashed line) and o, (dash-dot line) with s = 1 for
the lens. The right panel of Fig. 2 represents color-indexed
8 Scent for a case of astrometric lensing with M, = 0.676 M,
dy, = 5.55pcandds = 2 kpc based on the microlensing event
caused by a near white dwarf [73]. We take o € [105'5, 1012]
with s = 1 in order to contain the observational and the-
oretical bounds. However, the contributions of « in these
two microlensing 8ro; and 8 Scen; are far beyond the current
observational limits. The contributions from the other polar-
ization for the coupling, i.e. s = —1, can be sufficiently
approximated by changing the signs of the ones shown in
this figure; and they are too small to detect as well.

6 Conclusions and discussion

In order to provide one of the missing puzzles of the whole
physical picture of photons coupled to Weyl tensor in a
Schwarzschild black hole, we investigate its weak deflec-
tion lensing, as an extension of the previous works on its
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strong deflection lensing [46,47]. Under a unified framework
valid for both two polarization directions of the coupling,
we obtain its bending angle, image position, magnification,
centroid and time delay in the coordinate-invariant forms
upon to the second order in the perturbation parameter of the
ratio of the angular gravitational radius to angular Einstein
radius of the lens. The contributions of such a coupling on
some astrophysical scenarios are also studied. We find that,
in the weak deflection lensing on a star orbiting the Sgr A*,
Galactic microlensing on a star in the bulge and astrometric
microlensing by a nearby lens, these effects caused by cou-
pling are beyond the current limits of technology. However,
measuring the variation of the total flux of two images caused
by the Sgr A* might be a promising way for testing such a
coupling in the future.

In this work, as an astrophysically important ingredient,
the spin of a black hole has not been taken into account.
A self-consistent treatment should move from the present
model we considered to photons coupled to the Weyl tensor in
a Kerr black hole, in which the strong deflection lensing was
studied [48]. As expected, the spin can make the light prop-
agation more complicated and effectively causes the caustic
shifted and distorted [74]. We will leave the detailed investi-
gation on its weak deflection lensing for future works.
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Appendix A: Higher-order coefficients of b,,, a,, and &,

In Eq. (11) for relation between rg and b, the higher-order
coefficients b, (n = 3, ..., 6) are

by = 4 + 144s@ + 288s@”(9s — 1)

+768sa> (245 — 65 + 1), (A.1)
by = % + 630s@ + 7565&>(21s — 2)

+ 86453 (2435 — 545 + 8)

+96sa*(11979s> — 43565 + 11885 — 80),  (A.2)
bs = 48 + 2880sa + 7680sa>(12s — 1)

+23040sa@> (755 — 155 + 2)

+184325a* (9725 — 32452 + 815 — 5)

+ 615ﬁs&5(64827s4 —30870s° 4 1102552

— 14705 + 88), (A3)
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(A.4)

In Eq. (17) for the deflection angle, the higher-order coeffi-
cients a, (n = 3,...,06) are
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In Eq. (22) for the gauge-invariant form of the deflection

angle, the higher-order coefficients &, (n = 3, ..., 6) are
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Appendix B: Higher-order coefficients of p,, m, and 7},

In Eq. (37) for the second-order correction to the image posi-
tion, the higher-order coefficients p, (n =2, ...

,5) are

@ Springer



191 Page 14 of 18

Eur. Phys. J. C (2018) 78:191

4096
P2 = s{s[D(TD - 1024)98
201728
+ (563202 — 6144D + — )95‘

647168 _ 8775 1)
35 g )0
96256 10240 , 12825 ,
. p>— 22,

7 3 16

18432 , (1125 , 36864 ,
- 9 - 9

35 0 +< 16 " 35 ) 0

18432 1125 ,
e el D

35 1 »

45056 3432448
p3 = s{s{(TDz — 16384D + T)eg

32768 3309568 151875
+ ( 712)92

+ (2048D2 6144D + ———

(B.13)

= " Dp?_32768D -
3 32768D + o T 0

_ 81920, 16039936 292275712]
3 105 32
H[ ~ 26;44961 N (10;25712 B 1637840)93
14625 , 557056
ST ]
N 131072, | 262144 , N 131072}
105 105 105 |

5491916
ps = sz{s2[<65§l[)2 _ 65536D 4 219168

(B.14)

105
1265625 ,\ ., 327680 , 93650944
32 3 105
3695625 , 84375 , 4194304 o2
_ 22—
64 8 35 0
165375 , 5373952 2097152
+ n?— +
16 35 105
5625 2097152 5625
- Og—l— - —n? ,
8 105 16
o[ o) 524288 , 219676672 1265625 ,
ps =s7|s —TD + b4

105 8
84375 , 16777216
+ +

(B.15)

8388608
105

2 T T 35
5625
_7712].

- (B.16)

In Eq. (45) for the second-order correction to the mag-

nification, the higher-order coefficients m,, (n = 2,...,06)
o 512 55 08 2
mp = s1s 5 D<6y + ( 9216D“ — 6144D
403456\ 2
- 0y + ( 34816D° — 24576 D
35
26325 1294336
+— n? — s )95‘ + <307zoD2

@ Springer

192512 36864

35

—20480D — )002 + 2560D2] + 68

<73728 3375 2)6 n
0

36864
4 B.17
35 16 0} (B.17)

35
6864896\
105 0
455625 ,
T
16

my = s{sz[(24576D2 —16384D —

D= —131072D +

(557056 )
73

6619136
21
32079872 , 81920 ,[ 524288

203 + =D | 4 563

)93‘ + (24576002 — 163840D

04
105 0t 3 35 9

327680 30375 ,\ , 1114112
7 35
262144 o 524288 , 262144 ,
- 00 - 00 - 00 ’

105 105 105

o[ S[ /1114112
my = s?1s?| (=5 D? —262144D +

(B.18)

3796875
T

109838336
- T)eg + (983040D2 — 655360D
187301888 8388608

62 + 163840D7 62

105 >°+ ]HO[( 35
25312 10747904 1687

253 5ﬂ2)92+ 074790 }Jr( 6875,

8 0 35 3
4194304\ , 4194304 ,
- - 0 (- B.19
105 ) °7 105 0} (B.19)
439353344
ms = s3{s2[<1572864D2 — 1048576D — T>9§
©saangap? | 4 (3592 o 16777216 5
s - 9
35 105 °
(B.20)
2097152
m = D% (B.21)

In Eq. (53) for the time delay, the higher-order coefficients
T, (n =2,3) are
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Appendix C: Higher-order coefficients of s,, LP,, B/,
M, and S,

In Eq. (72) for the relation about the second-order corrections
to the image positions, the higher-order coefficients s,, (n =
2,3,4) are
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In Eq. (66) for the second-order correction to the positions
of the positive- and negative-parity images, the higher-order
coefficients P, (n = 2,...,5) and P, (n = 2,3, 4) are
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In Eq. (78) for the second-order correction to the mag-
nifications of the positive- and negative-parity images, the
higher-order coefficients 9, (n = 2, 3, 4) are
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In Eq. (91) for the second-order correction to the
magnification-weighted centroid position, the higher-order
coefficients &,, (n = 2, 3, 4) are
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