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Abstract Results for the two-loop corrections to the Higgs-
boson masses of the MSSM with complex parameters of
O(

α2
t + αtαb + α2

b

)
from the Yukawa sector in the gauge-

less limit are presented. The corresponding self-energies and
their renormalization have been obtained in the Feynman-
diagrammatic approach. The impact of the new contributions
on the Higgs spectrum is investigated. Furthermore, a com-
parison with an existing result in the limit of the MSSM
with real parameters is carried out. The new results will be
included in the public code FeynHiggs.

1 Introduction

After the discovery of a Higgs boson [1,2] with a mass
around 125 GeV, intense studies were performed to reveal its
nature. Although within the present experimental uncertain-
ties the measured properties of this new boson are consistent
with the expectations for the Higgs boson of the Standard
Model (SM) [3,4], it could be part of an extended model
like the theoretically well motivated minimal supersymmet-
ric Standard Model (MSSM). In the MSSM the observed
particle could in principle be interpreted as one of the three
neutral physical Higgs bosons. At the tree level, the physical
states are given by the neutral CP-even h, H and CP-odd
A bosons, together with the charged H± bosons, and can be
parametrized in terms of the A-boson mass mA and the ratio
of the two vacuum expectation values, tan β = v2�v1 . An
admixture of theseCP eigenstates is introduced to the Higgs
sector via loop contributions involving complex parameters
from other supersymmetric (SUSY) sectors [5–8].

Loop corrections to the masses of the Higgs bosons are
sizable and therefore phenomenologically very important.
Accordingly, numerous calculations for higher-order cor-
rections to the mass spectrum within the MSSM for the
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case where CP conservation has been assumed [9–63] as
well as for the general case of the MSSM with complex
parameters (cMSSM) [5–8,61–72] have already been per-
formed. The largest one-loop contributions originate from
the Yukawa sector due to the size of the top-quark Yukawa
coupling ht , where αt = h2

t /(4π) . For large values of tan β

contributions of the order αb = h2
b/(4π) , with the bottom

Yukawa coupling hb, can become sizable. At the two-loop
level both types of contributions receive further potentially
large corrections. The dominant contribution is given by
the leading O(αtαs) terms [26–28,69] which are known in
the MSSM with complex parameters. Additional corrections
involving the strong coupling αs are known in the special case
of the CP-conserving MSSM [49–53]. Another important
class of two-loop corrections are Yukawa-coupling enhanced
contributions of the order O(

α2
t + αtαb + α2

b

)
which are

known in theCP-conserving MSSM as well [36,39] (the cor-
rections of O(

αtαb + α2
b

)
with on-shell parameters are only

available in the approximation tan β → ∞ and mb → 0).
A computation of the leading corrections of O(

α2
t

)
has been

published for the general MSSM [70,71]. In this article also
the other pieces of the two-loop Yukawa terms are obtained
for the general case of the MSSM with complex parameters.

The phases of complex parameters in the MSSM are con-
strained by limits on electric dipole moments (EDMs) [73–
78], the impact of meson mixings and decays (see Ref. [79]
and references therein), and Higgs-coupling measurements
[4].

Following the usual convention, we choose to fix the phase
of the mass of the electroweakinos, φM2 , to zero; then the
phase of μ from the superpotential, φμ, needs to be close
to zero or π in order to be compatible with the experimen-
tal constraints. The other relevant parameters are the phase
of the gluino mass parameter, φM3 , and the trilinear soft-
breaking parameters of the stops, φAt , and sbottoms, φAb .
These phases, φM3 , φAt and φAb , are less constrained; espe-
cially the bounds on the phases of the trilinear soft-breaking
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parameters are weaker for the third generation than for the
second and first generation.

The calculation presented here extends the Yukawa-type
contributions of O(

α2
t

)
from Refs. [70,71], and profits from

previously developed tools [80]. For this reason the theoret-
ical framework is just briefly outlined and only new aspects
are explained in detail in Sect. 2. The numerical analysis in
Sect. 3 is focused on the impact of the new contributions on
the Higgs masses, showing substantial shifts of 2 GeV and
more in certain regions of parameter space. In the limit of van-
ishing phases of the parameters, our results agree well with
previous results in the MSSM for the case where CP conser-
vation has been assumed [39]; differences are shown for the
comparison with an interpolation for non-zero phases which
so far has been used in FeynHiggs [28,29,68,81,82]. The
new results will become part of the public codeFeynHiggs.

2 Higgs masses at higher orders in the complex MSSM

In this section, we briefly outline the theoretical framework
for Higgs-mass predictions at higher orders in the MSSM.
We introduce our conventions, explain some details of our
chosen renormalization scheme, and comment on the gauge-
less limit and the bottom mass resummation.

2.1 Notation and conventions at the tree level

The two scalar SU (2) Higgs doublets are expressed in terms
of their components in the following way:

H1 =
(

v1 + 1√
2
(φ1 − iχ1)

−φ−
1

)

,

H2 =
(

φ+
2

v2 + 1√
2
(φ2 + iχ2)

)

. (2.1)

After rotation to mass eigenstates, the Higgs potential reads

VH = −Th h − TH H − TA A − TG G

+ 1

2

(
h, H, A, G

)
MhH AG

⎛

⎜⎜
⎝

h
H
A
G

⎞

⎟⎟
⎠

+ (
H−, G−)

MH±G±
(
H+
G+

)
+ . . . , (2.2)

with the tadpole coefficients Th,H,A,G , and the mass matrices

MhH AG =

⎛

⎜
⎜⎜⎜
⎜⎜
⎝

m2
h m2

hH m2
hA m2

hG

m2
hH m2

H m2
H A m2

HG

m2
hA m2

H A m2
A m2

AG

m2
hG m2

HG m2
AG m2

G

⎞

⎟
⎟⎟⎟
⎟⎟
⎠

,

MH±G± =
⎛

⎝
m2
H± m2

H−G+

m2
G−H+ m2

G±

⎞

⎠ . (2.3)

The matrices MhH AG and MH±G± are diagonal at the tree
level after minimizing the potential. Explicit expressions for
the entries are given in Ref. [68].

2.2 Gauge-less limit

The gauge-less limit in our calculation is defined by neglect-
ing all couplings proportional to g1 or g2. As a consequence
of this approximation the gauge-boson masses MW and MZ

are equal to zero in the new two-loop contributions.
Accordingly, the Higgs-boson masses entering the two-

loop calculation take on the values

mh = mG = mG± = 0, mH = mA = mH± . (2.4)

In this limit, the tree-level mixing angles α ∈ [−π/2, 0)

and β ∈ [0, π/2) fulfill the relation

α = β − π

2
. (2.5)

2.3 Higgs masses at the two-loop order

The Higgs mass matrix elements at the two-loop order
receive contributions from self-energies, leading in general
to mixing of all neutral states. In this article the full one-
loop corrections are used, while the O(αtαs) and the new
O(

α2
t + αtαb + α2

b

)
terms are evaluated in the gauge-less

limit and at zero external momentum. Therefore, the loop-
corrected propagator �hH AG is given by

�hH AG(p2)

= i
[
p21 − M(0)

hH AG + �̂
(1)
hH AG(p2) + �̂

(2)
hH AG(0)

]−1
.

(2.6)

Therein, �̂(k)
hH AG denotes the matrix of the renormalized diag-

onal and non-diagonal self-energies for the h, H, A,G fields
at loop order k, and M(0)

hH AG denotes the diagonal tree-level
mass matrix.

Mixing of the Goldstone boson (and of the longitudi-
nal Z boson) with the other Higgs bosons yields negligi-
ble effects to the propagators of the physical Higgs bosons
[83–85]. Therefore, in the following we will only consider
the (3 × 3) submatrix of �hH AG involving the physical
Higgs bosons. Though, Goldstone–Higgs mixing is taken
into account in subloop renormalization terms of the type
(one-loop)2 [71].

The neutral Higgs masses are derived from the real parts
of the complex poles of the hH A propagator matrix, obtained
as the zeros of the determinant of the renormalized two-point
function,
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det 	̂hH A
(
p2) = 0

	̂hH A
(
p2) = i

[
p21 − M(0)

hH A + �̂
(1)
hH A(p2) + �̂

(2)
hH A(0)

]
.

(2.7)

2.4 Counterterms

The renormalized two-loop self-energies can be written as

�̂
(2)
hH A(p2) = �

(2)
hH A(p2) − δ(2)MZ

hH A , (2.8)

with �
(2)
hH A denoting the unrenormalized self-energies at the

two-loop order, and δ(2)MZ
hH A comprising all two-loop coun-

terterms resulting from parameter and field renormalization.
The notation follows [71], where the required expressions
for δ(2)MZ

hH A can be found.
The Feynman-diagrammatic calculation of the self-energies

has been performed with the help of FeynArts [86,87] for
the generation of the Feynman diagrams, and TwoCalc [88]
for the two-loop tensor reduction and trace evaluation. The
one-loop renormalization constants have been obtained with
the help of FormCalc [89].

2.4.1 Genuine two-loop renormalization

The two-loop counterterms for the Higgs self-energies given
in Ref. [71] also apply to the corrections described in the
present article. However, there is an interesting difference for
the cancelation of the divergence in the self-energy �

(2)
hH (0).

The corresponding counterterm reads

δ(2)mZ
hH = δ(2)m2

hH + 1
2m

2
H±δ(2)ZhH + . . . , (2.9)

where terms with products of two one-loop counterterms
have been omitted. In the gauge-less limit δ(2)m2

hH is the
only counterterm which contains δ(2)tβ ,

δ(2)m2
hH = m2

H± c2
β δ(2)tβ + . . . . (2.10)

Here we define tβ ≡ tan β, sβ ≡ sin β and cβ ≡ cos β. The
two-loop field renormalization constant for the same matrix
element is given by

δ(2)ZhH = −cβsβ

[
δ(2)ZH2 − 1

4

(
δ(1)ZH2

)2

−δ(2)ZH1 + 1
4

(
δ(1)ZH1

)2
]

. (2.11)

The two-loop counterterm for tβ in the DR scheme and in
the gauge-less limit can be expressed as

δ(2)tβ = tβ
2

[(
δ(2)ZH2 − δ(2)ZH1

)

− 1
4

(
δ(1)ZH2 − δ(1)ZH1

)2

−
(
δ(1)ZH2 − δ(1)ZH1

)
δ(1)ZH1

]
. (2.12)

Combining Eqs. (2.9)–(2.12) yields

δ(2)mZ
hH = cβ sβ m2

H±
4

(
δ(1)ZH2 −δ(1)ZH1

)
δ(1)ZH1 +. . . .

(2.13)

The DR field-renormalization constant δ(1)ZH1 is a pure UV-
divergent term, calculated as the derivative with respect to
the external momentum p2 of the φ1 Higgs self-energy. The
only contribution in the gauge-less limit is a bottom loop,
i.e. in the case of the previously calculated O(

α2
t

)
correc-

tions [71], δ(1)ZH1 was equal to zero due to the approxi-
mation mb = 0. The terms originating from two-loop field-
renormalization and two-loop renormalization of tβ canceled
each other exactly.

Now, for the more general case of a non-zero bottom
mass, also δ(1)ZH1 is non-zero and the cancelation is not
complete anymore. The genuine two-loop parts of the field-
renormalization constants, δ(2)ZH1 and δ(2)ZH2 , drop out in
the gauge-less limit at zero external momentum in Eq. (2.13)
because of a cancelation of the contributions in δ(2)tβ
and δ(2)ZhH . In principle, δ(2)ZH1 and δ(2)ZH2 could still
appear as field-renormalization constants for the other Higgs-
mass counterterms. However, also there they drop out exactly
(see Eq. (2.23) in [71]):

• for δ(2)mZ
h since m2

h = 0 in the gauge-less limit,
• for δ(2)mZ

H since m2
H = m2

H± and α = β − π
2 in the

gauge-less limit,
• for δ(2)mZ

A since m2
A = m2

H± in the gauge-less limit,
• for δ(2)mZ

hA and δ(2)mZ
H A since the Higgs sector is CP

conserving at the tree level.

2.4.2 Resummation

Radiative corrections to the relation between the bottom-
quark mass and the Yukawa coupling of the bottom quark hb
are proportional to tβ . In order to resum the leading tβ -
enhanced contributions, an effective bottom Yukawa cou-
pling is used as described in Refs. [84,90–95], leading to a
UV finite and complex correction factor �mb. Using a DR
renormalization for mb in the MSSM, the largest contribu-
tions of this type are captured through an effective bottom-
quark mass which is given by

mDR,MSSM
b (mos

t ) � mb,eff = mDR,SM
b (mos

t )

|1 + �mb| . (2.14)
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The symbol mDR,SM
b (mos

t ) denotes the bottom mass in the
DR renormalization scheme, taking into account SM-type
QCD corrections, evaluated at the on-shell top mass.

We use the correction factor �mb at the one-loop order
which is implemented in FeynHiggs. For illustrating the
effects seen in our numerical analysis below, we give here
the explicit form of the leading contributions:

�mb = 2 αs

3 π
μ∗ M∗

3 tβ I
(
m2

b̃1
,m2

b̃2
,m2

g̃

)

+ αt

4 π
μ∗ A∗

t tβ I
(
m2

t̃1
,m2

t̃2
, |μ|2

)
, (2.15a)

I(a, b, c) = −b a log b
a + c b log c

b + a c log a
c

(b − a) (c − b) (a − c)
. (2.15b)

Further subleading contributions involve terms ∝ αb and ∝
α. With this definition a part of the considered two-loop cor-
rections of O(

αtαb + α2
b

)
to the Higgs-boson masses are

absorbed into an effective bottom-quark mass. In order to
avoid a double counting of contributions from the bottom–
sbottom sector to the Higgs-boson self-energies, the bottom-
mass is renormalized in the DR scheme as specified in
Eq. (2.14).

2.4.3 Subloop renormalization

One-loop counterterms for subloop renormalization enter the
self-energies �

(2)
hH A in Eq. (2.8). In contrast to the previously

calculatedO(
α2
t

)
corrections, the approximation of massless

bottom quarks is dropped in the present calculation. Accord-
ingly, new counterterms for the bottom–sbottom sector are
induced, which are specified in the following.

The squark mass matrices in the
(
q̃L, q̃R

)
bases, q = t, b,

in the gauge-less limit are given by

Mq̃ =
(

m2
q̃L

+ m2
q mq

(
A∗
q − μκq

)

mq
(
Aq − μ∗ κq

)
m2

q̃R
+ m2

q

)

,

κt = 1

tβ
, κb = tβ. (2.16)

SU (2)-invariance requires m2
t̃L

= m2
b̃L

≡ m2
Q̃3

. The squark

mass eigenvalues can be obtained by performing unitary
transformations,

Uq̃Mq̃U
†
q̃ = diag

(
m2

q̃1
, m2

q̃2

)
. (2.17)

The independent parameters entering the two-loop calcula-
tion via the quark–squark sector are the quark massesmq , the
soft SUSY-breaking parameters mQ̃3

and mq̃R , q̃ = t̃, b̃, the

complex trilinear couplings Aq = |Aq |ei φAq , q = t, b, the
complex μ parameter from the superpotential, and the ratio

of the vacuum expectation values tβ . All of them have to be
renormalized at the one-loop level,

mq → mq + δ(1)mq , Mq̃ → Mq̃ + δ(1)Mq̃ . (2.18)

Here δ(1)Mq̃ denotes the matrix of counterterms after apply-
ing the renormalization transformation to the parameters in
Eq. (2.16). The renormalization of the top–stop sector, as
well as of μ and tβ , is carried out as specified in Ref. [71].

For the renormalization of the bottom–sbottom sector, we
refer to Refs. [39,50,96] where renormalization of mb and
Ab in the DR scheme has been proposed to avoid numerical
instabilities. Also for the applied resummation of �mb the
DR scheme for mb is convenient, as explained above. The
renormalization scale is chosen to be the on-shell top mass.

• The bottom-quark self-energy in a Lorentz decomposi-
tion is given by

�b(p) = 
p ω− �L
b (p2) + 
p ω+ �R

b (p2)

+ mb �S
b (p2) + mbγ5 �PS

b (p2), (2.19)

with the left-vector part �L
b , right-vector part �R

b , scalar
part �S

b , and pseudo-scalar part �PS
b . The bottom-quark

mass renormalization is fixed at the on-shell top-mass
scale via

δ(1)mb = mb �e
[

1

2

(
�L

b

(
m2

b

) + �R
b

(
m2

b

)) + �S
b

(
m2

b

)
]

DR
.

(2.20)

• With Eqs. (2.17) and (2.18) we define

Uq̃ δMq̃ U
†
q̃ =

(
δ(1)m2

q̃1
δ(1)m2

q̃1q̃2

δ(1)m2 ∗
q̃1q̃2

δ(1)m2
q̃2

)

. (2.21)

The renormalization of the soft-breaking parameter Ab

follows from Eqs. (2.16) and (2.21) with q = b, yielding

δ(1)Ab =
⎡

⎣Ub̃ 11U
∗
b̃ 12

δ(1)M2
b̃1

− δ(1)M2
b̃2

mb

+Ub̃ 21U
∗
b̃ 12

δ(1)M2
b̃1b̃2

mb
+ Ub̃ 11U

∗
b̃ 22

δ(1)M2 ∗
b̃1b̃2

mb

−(
Ab−μ∗ tβ

) δ(1)mb

mb
+ μ∗ δtβ + tβ δμ∗

⎤

⎦

DR

.

(2.22)

The divergent parts of the counterterms δ(1)M2
b̃i

, i =
1, 2, which are needed for the DR renormalization in
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Eq. (2.22), can be computed from the corresponding
sbottom self-energies �

(1)

b̃i b̃i
, i = 1, 2, and the diver-

gent part for the counterterm δ(1)M2
b̃1b̃2

can be obtained

from the sbottom mixing �
(1)

b̃1b̃2
, where the self-energy

is defined with an incoming b̃2 and an outgoing b̃1. The
renormalization conditions to fix the auxiliary countert-
erms δ(1)M2

b̃i
and δ(1)M2

b̃1b̃2
may be chosen analogously

to the stop-sector counterterms in Ref. [71]. Again, the
renormalization scale in Eq. (2.22) is the on-shell top
mass.

• Invariance under SU (2) yields the following relation
between the stop and sbottom sector:

δ(1)m2
Q̃3

≡
2∑

i = 1

|Ut̃ i1|2 δ(1)m2
t̃i

+ 2�e
[
Ut̃ 21U

∗
t̃ 11 δ(1)m2

t̃1 t̃2

]
− 2mt δ

(1)mt

=
2∑

i = 1

|Ub̃ i1|2 δ(1)m2
b̃i

+ 2�e
[
Ub̃ 21U

∗
b̃ 11

δ(1)m2
b̃1b̃2

]
− 2mb δ(1)mb .

(2.23)

We trade δ(1)m2
Q̃3

, δ(1)m2
t̃R

and δ(1)At for δ(1)m2
t̃i

, i =
1, 2, and δ(1)m2

t̃1 t̃2
, and we apply on-shell conditions to

both stop particles and the stop mixing angle (see Ref.
[71]). Then we choose to make δ(1)m2

b̃1
a dependent quan-

tity by the relation in Eq. (2.23). The other diagonal
sbottom-mass counterterm δ(1)m2

b̃2
is employed instead

of δ(1)m2
b̃R

and is fixed on-shell via

δ(1)m2
b̃2

= �e
[
�

(1)

b̃22

(
m2

b̃2

)]
. (2.24)

The quantity δ(1)m2
b̃1b̃2

is the off-diagonal entry of

Eq. (2.21) for q = b. It is already fixed by the renor-
malization condition of Eq. (2.22) for the independent
counterterm δ(1)Ab.

3 Numerical results for the Higgs spectrum

In the following numerical analysis the new contributions
of O(

α2
t + αtαb + α2

b

)
are added to the known Higgs-mass

corrections in the general case of the MSSM with complex
parameters which are implemented in FeynHiggs (ver-
sion 2.12.0).1 While the improvement by resummation

1 The previously implemented contributions of O(
α2
t

)
are replaced by

the new result.

of leading logarithms as described in Refs. [57,58,60] can
be applied also to the case of complex parameters (via an
interpolation routine), we have not included contributions
of this kind in our numerical results presented below.2 The
large impact of the O(

α2
t

)
terms has been investigated in

Refs. [70,71] and is not presented here again. Instead the
focus is set on the new corrections induced by the finite bot-
tom mass. If not stated otherwise, we choose the following
default setting for the parameters entering through the new
contributions:

tβ = 50, mH± = 1.5 TeV, mQ̃3
= 2.1 TeV,

mt̃R = mb̃R
= 2 TeV, mt = 173.2 GeV, (3.1a)

At =
∣∣∣∣1.3mt̃R + μ∗

tβ

∣∣∣∣ ei φAt , Ab = 2.5mb̃R
ei φAb ,

M3 = 2.5 TeV ei φM3 , μ = sgn[μ] 1 TeV. (3.1b)

The quantities in Eq. (3.1a) are real parameters. The charged
Higgs mass mH± is chosen as an input parameter, and
its value is set to ensure the compatibility of scenarios
with high tβ with the current experimental constraints from
searches for heavy MSSM Higgs bosons [97,98]. The param-
eters in Eq. (3.1b) are in general complex. Their respective
phases φAt , φAb and φM3 are scanned in Sect. 3.2. Thereby
the gluino mass parameter M3 does not occur directly in the
new Higgs self-energy contributions, but it appears in the
leading term of the bottom-mass resummation. The parame-
ter μ is also complex in general, but its phase is constrained
to be very close to zero or π by EDM limits (see above). We
remark that the phases φM3 , φAt and φAb are also constrained
by EDM limits, but scenarios with large phases are possible
(see e.g. Ref. [99]). We show results for the Higgs mass when
varying two phases at the same time.

The absolute value of At has been fixed to yield a light-
est Higgs-boson mass close to 125 GeV which can then be
identified with the Higgs signal discovered at ATLAS and
CMS. Together with mQ̃3

and mt̃R it determines the mass
shift which is induced by the stop contributions. We choose
different values for mQ̃3

and mt̃R , mb̃R
to avoid numerical

instabilities due to degeneracies. Different setups formt̃R and
Xt = At − μ∗/tβ are possible to yield a lightest Higgs mass
of 125 GeV as can be seen in Fig. 1. Therein the gray bar indi-
cates the mass range 125.1 ± 0.21(stat)± 0.11(syst)GeV as
measured by ATLAS and CMS [100].

2 For the scenarios in Fig. 1, for which in contrast to the other results
shown below FeynHiggs version 2.13.0 has been used, the incor-
poration of higher-order leading and next-to-leading logarithmic con-
tributions (FeynHiggs flag loglevel=1) would shift the displayed
results for Mh by 0.6 GeV (blue), 1.7 GeV (red) and 2.7 GeV (green)
for Xt = 0; −0.1 GeV (blue), 1.0 GeV (red) and 2.0 GeV (green) for
|Xt |/mt̃R = 2.

123



222 Page 6 of 11 Eur. Phys. J. C (2018) 78 :222

Fig. 1 Dependence of the
lightest Higgs-mass Mh on the
stop parameters mt̃R and
Xt = At − μ∗/tβ as predicted
by FeynHiggs-2.13.0 in
the version for real parameters
without contributions of
resummed logarithms. We set
mQ̃3

= mt̃R + 100 GeV. The
other parameters except mQ̃3

,
mt̃R and At have been fixed to
the values given in Eq. (3.1)
with vanishing phases.
Two-loop corrections of
O(

αtαs + αbαs + α2
t + αtαb + α2

b

)

are comprised as implemented
in the version of FeynHiggs
for real parameters

mtR
~ 1 TeV 2 TeV 3 TeV

–3 – 2 –1 0 1 2 3

100

105

110

115

120

125

130

Xt
mtR

~

Mh

[GeV]

The absolute value of Ab is close to the upper limit

|Ab|2 < 3
(
m2

Hd
+ |μ|2 + m2

Q̃3
+ m2

b̃R

)
, (3.2a)

m2
Hd

+ |μ|2 =
(
m2

H± − m2
W

)
sin2β − 1

2
m2

Z cos 2β ,

(3.2b)

from the approximate bound from the requirement of vacuum
stability to avoid charge- and color-breaking minima [101,
102] (see Refs. [103–109] for more detailed discussions of
this issue).

In the following analysis we call �Mh the shift of
the lightest Higgs-boson mass by the new Yukawa terms
ofO(

αtαb + α2
b

)
, i.e. excluding the previously analyzed con-

tributions of O(
α2
t

)
. In Sect. 3.1, the impact of different

parameters on the lightest Higgs boson mass in the CP-
conserving case is investigated.

We have also investigated the mass shifts of the heavier
neutral Higgs bosons. In general, the shifts are of the same
absolute size as for the lightest Higgs but with opposite sign.
However, since the tree-level input value mH± needs to be
large for high values of tβ (where the O(

αtαb + α2
b

)
con-

tributions are relevant) to be in agreement with experimen-
tal constraints, the relative mass shift for the heavy Higgs
bosons is only ≈ 10/00. Moreover, the two heavy Higgs bosons
receive nearly identical corrections; in the investigated sce-
narios the largest difference was ≈ 0.1 GeV. For this reason
we do not present numerical results for the mass shifts of the
heavier Higgs bosons here. It should, however, be noted that
even small mass shifts can have an important impact on the
resonance-type behavior that typically occurs between the

two heavy neutral Higgs states in CP-violating scenarios;
see Refs. [110,111].

3.1 Scenarios with real parameters

We start to analyze our results by performing a compari-
son with the previously implemented two-loop corrections
in FeynHiggs. The two-loop corrections of O(

αtαb + α2
b

)

were up to now only known for the MSSM with real parame-
ters and mA being an input. We compare our new result with
the predictions obtained so far with FeynHiggs from both
the versions for real parameters3 and for complex parameters
(for the latter employing the same renormalization scheme
withmA as input and in the limit of real parameters, but with-
out terms of O(

αtαb + α2
b

)
). Both versions contain shifts

due to �mb effects (see Eq. (2.15)), including contributions
of O(αtαb).

In Fig. 2 the predictions of FeynHiggs (dashed: MSSM
with real parameters, dotted: MSSM with complex param-
eters) are compared to our new result (solid) as a function
of mA. The different colors correspond to different values
of tβ . The large deviations between the dashed and dotted
curves for large values of tβ are induced by theO(

αtαb + α2
b

)

terms, which are not incorporated in the dotted curve. After
adding our new contributions to the result for complex
parameters the agreement with the FeynHiggs result for
the case of real parameters is very good, i.e. the dashed
and solid lines almost coincide with each other. Since the
version of the O(

αtαb + α2
b

)
corrections which is imple-

3 The contributions of O(αbαs) beyond �mb are only available in this
version and therefore subtracted to allow for a clean comparison.

123



Eur. Phys. J. C (2018) 78 :222 Page 7 of 11 222

Fig. 2 Comparison of the
lightest Higgs-boson mass Mh
as predicted with our new
two-loop corrections (solid), the
version of FeynHiggs for the
MSSM with real parameters,
i.e. including O(

αtαb + α2
b

)

corrections (dashed), and the
version of FeynHiggs for the
MSSM with complex
parameters, i.e. without
O(

αtαb + α2
b

)
corrections

(dotted) for the parameters
specified in Eq. (3.1) with
vanishing phases
and sgn[μ] = −1

new result old with ( t b+ b
2) old without ( t b+ b

2)

t = 50
t = 30
t = 10

500 1000 1500 2000

122

124

126

128

130

mA [GeV]

Mh

[GeV]

= 1 TeV –1 TeV

0 10 20 30 40 50 60 70
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

t

Mh

[GeV]

Fig. 3 Dependence of the lightest Higgs-mass shift �Mh on tβ . The
parameter μ is either positive (blue) or negative (red)

mented in FeynHiggs so far employs further approxima-
tions of tβ → ∞ and mb → 0 (see Ref. [39]), while our new
result is not simplified further, the agreement is not expected
to be perfect. The largest difference of ≈ 0.3 GeV is found in
the threshold region at mA = mt̃2 − mt̃1 ≈ 200 GeV which
enters via the renormalization in the stop sector.

In our following analysis we choose mH± as an input
parameter. In this case the O(

αtαb + α2
b

)
terms are new con-

tributions. We investigate the dependence of the prediction
for Mh on tβ, μ and M3, whereby all parameters are still kept
real. The results are depicted in Figs. 3, 4, 5 and 6.

As can be seen in Fig. 3 large contributions above 1 GeV
are only visible at high values of tβ . In this scenario M3 is
positive, leading to a much bigger �Mh if μ is negative,
which can be understood from Eqs. (2.14) and (2.15). For
later analysis we fix tβ = 50.

M3 = 2.5 TeV –2.5 TeV
solid: At

= Ab
= 0; dotted: At

= Ab
=

–3 –2 –1 0 1 2 3
–1

0

1

2

[TeV]

Mh

[GeV]

Fig. 4 Dependence of the lightest Higgs-mass shift �Mh on μ. The
parameter M3 is either positive (blue) or negative (red). The region
around μ = 0 is left out because of numerical instabilities

= 1 TeV –1 TeV

–3 –2 –1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M3 [TeV]

Mh

[GeV]

Fig. 5 Dependence of the lightest Higgs-mass shift �Mh on M3. The
parameter μ is either positive (blue) or negative (red)
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Ab
= 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

|Ab|
m
bR

Mh

[GeV]

Fig. 6 Dependence of the lightest Higgs-mass shift �Mh on |Ab|. The
sign of Ab is either positive (blue) or negative (red), and sgn[μ] = −1

In Fig. 4 we investigate the dependence of �Mh on the
size of μ. We find very large gradients for the following
two cases: positive M3 and negative μ ≈ −1.8 TeV, and
negative M3 and positive μ ≈ 2.6 TeV, which can again be
understood from Eqs. (2.14) and (2.15), where for too large
values of |μ| and opposite signs of μ and M3 the pertur-
bative region of parameter space is left, as �mb → −1.
A further increase of |μ| in the regions of large gradients
leads to a very strong enhancement of the bottom Yukawa
coupling and accordingly to very large negative mass shifts,
yielding eventually a tachyonic Higgs boson. For the fol-
lowing analysis, we choose to fix μ = −1 TeV, i.e. below
the problematic scale and with sgn[μ] = −1. However, it
should be noted that scenarios with positive μ can lead to
large shifts as well, when M3 is negative, as in both cases the
bottom Yukawa coupling is enhanced. Moreover, scenarios
with sgn[μ] = 1 are in better agreement with constraints
from the anomalous magnetic moment of the muon [112–

114]. Close to |μ| = mt̃1,2
−mt ≈ 1.8 TeV one can see kinks

which are induced by threshold effects from the higgsino–
top–stop system.

In Fig. 5 the impact of the gluino mass parameter is
depicted. This effect enters the Higgs self-energies at the
investigated order purely via the employed effective bottom
mass. We see a rising shift at growing |M3| for opposite
signs of μ and M3 (yielding the same enhancement in �mb,
see Eqs. (2.15)). At |M3| = mb̃1,2

− mb ≈ 2 TeV (nearly
invisible) threshold effects from the gluino–bottom–sbottom
system appear. For our following analysis we fix |M3| above
that region at 2.5 TeV.

Finally, in Fig. 6 the absolute value of Ab is varied, and
the resulting mass shift is plotted for positive sign (blue)
and negative sign (red) of Ab. The difference between both
curves, i.e. the impact of the phase φAb , is enhanced for larger
absolute values. However, as too large values of |Ab| lead to
instable vacua according to the upper limit of Eq. (3.2), we
set it to |Ab| = 2.5mb̃R

in the scenarios of the following
section.

3.2 Scenarios with complex parameters

Various phases enter the self-energies of the Higgs bosons
at O(

α2
t + αtαb + α2

b

)
. Their impact on the Higgs sector

is shown in Figs. 7, 8 and 9. Here we keep μ negative,
i.e. sgn[μ] = −1, and M3 positive, but we could also have
chosen the opposite signs of both parameters to see enhanced
effects for the phase dependent terms as has been shown in
Fig. 4.

We start with the phases φAt and φAb . The results are
depicted in Fig. 7, where mass shifts between 0.3 and 1.4 GeV
can be seen. For φAb = 0 the variation with respect to φAt

is maximal; the larger the phase of Ab, the flatter the depen-
dence on the phase of At . Similarly, variation of φAb yields

Ab
= 0

2
–

2

solid: exact; dotted: interpolated

– – 3
4

– 2 – 4
0

4 2
3
4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

At

Mh

[GeV]

Fig. 7 Dependence of the lightest Higgs-mass shift �Mh on φAt and φAb , sgn[μ] = −1. solid: exact calculation, dotted: interpolation in
FeynHiggs, the red-dotted and orange-dotted lines are identical
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Fig. 8 Dependence of the lightest Higgs-mass shift �Mh on φM3 and
φAb , sgn[μ] = −1
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Fig. 9 Dependence of the lightest Higgs-mass shift �Mh on φM3 and
φAt , sgn[μ] = −1

the largest effects for φAt = 0. Also the signs of the phases
matter, e.g. the mass shifts are different for φAb = ±π

2 .
In addition to the exact calculation (solid lines),

FeynHiggs offers an implemented interpolation of the self-
energy corrections that have been known up to now for the
case of real parameters but not for the complex case. Since
theO(

αtαb + α2
b

)
terms were only available in FeynHiggs

for the MSSM with real parameters in the limits tβ → ∞
and mb → 0, deviations from the new mass shifts can
be expected even for real parameters. Besides these rela-
tively small differences, the linear interpolation can differ
by ≈ 0.5 GeV from the full result in the investigated sce-
nario. Also the asymmetric behavior for the change of two
phases at the same time was not described correctly by the
interpolation.

Figures 8 and 9 show the influence of varying the gluino
phase φM3 and in addition either φAb or φAt . These terms
are induced by the correction factor �mb as the investigated
class of two-loop corrections does not contain the parameter

M3. Also here the largest phase dependence is found when
one phase is equal to zero. In Fig. 8 the mass shift is nearly
symmetric in ±φM3 and ±φAb , i.e. the red and yellow curves
are lying on top of each other. Nevertheless, there are small
asymmetries in the renormalized two-loop self-energies �̂hA

and �̂H A. On the contrary the mass shift �Mh in Fig. 9 shows
a clear asymmetry similar to Fig. 7.

In summary, phase dependent contributions of
O (

αtαb + α2
b

)
lead to mass shifts of the lightest Higgs boson

of ≈ 1 GeV in the investigated scenarios. The sign of μ has
been chosen to be negative in the considered scenarios, but
similar effects can be found at positive large μ (and opposite
sign of M3).

4 Conclusions

The two-loop corrections of O(
α2
t + αtαb + α2

b

)
to the

Higgs-boson masses in the MSSM with complex parame-
ters have been computed in the gauge-less limit at vanishing
external momentum. The terms of O(

αtαb + α2
b

)
have only

been known in the special case of the MSSM with real param-
eters before, and were incorporated in FeynHiggs in the
limits tβ → ∞ and mb → 0. The specific aspects related
to the renormalization of these new contributions have been
discussed, and their numerical impact on the Higgs spectrum
has been investigated.

For the lightest Higgs boson mass at ≈ 125 GeV we have
found shifts above 1 GeV at tβ > 40 for different scenarios:
moderate |μ| = 1 TeV with negative sign and positive M3,
At , Ab, or with positive sign and negative M3, At , Ab. The
reason for that enhancement can be found in the large cor-
rection factor �mb yielding an enhancement of the bottom
Yukawa coupling. The effect of varying the phases φM3 , φAt

and φAb can be as large as 1 GeV. If one phase is set close to π ,
the dependence on the other phases is typically weakened; the
largest effects are found when only one phase is varied with
all others being zero. In FeynHiggs so far an interpolation
of the corrections of O(

αtαb + α2
b

)
obtained for the case of

real parameters is used for the case of complex parameters.
We have found deviations with a size of ≈ 0.5 GeV from this
approximation, especially when several phases are different
from zero at the same time.

Mass shifts for the heavier neutral Higgs bosons have not
been depicted. They are similar to the ones of the lightest
Higgs boson; however, with opposite sign. Since we used
a large value for tβ in our scenarios, we need to choose a
rather large input mass mH± = 1.5 TeV to be consistent with
existing experimental bounds. Therefore, the relative size
of the mass shifts is small. Moreover, the two heavy Higgs
bosons receive similar corrections with a maximal difference
of ≈ 0.1 GeV in the investigated scenarios. Nevertheless,
small mass shifts can be important to correctly describe the
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resonance-type behavior of nearly mass-degenerate mixed
states like the two heavy Higgs bosons in the MSSM with
complex parameters.

The new results will be implemented in the public
code FeynHiggs.
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