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Abstract A minimal-length scenario can be considered as
an effective description of quantum gravity effects. In quan-
tum mechanics the introduction of a minimal length can
be accomplished through a generalization of Heisenberg’s
uncertainty principle. In this scenario, state eigenvectors of
the position operator are no longer physical states and the
representation in momentum space or a representation in a
quasiposition space must be used. In this work, we solve the
Schroedinger equation with a Dirac δ-function potential in
quasiposition space. We calculate the bound state energy and
the coefficients of reflection and transmission for the scatter-
ing states. We show that leading corrections are of order of
the minimal length (O(

√
β)) and the coefficients of reflection

and transmission are no longer the same for the Dirac delta
well and barrier as in ordinary quantum mechanics. Further-
more, assuming that the equivalence of the 1s state energy of
the hydrogen atom and the bound state energy of the Dirac
δ-function potential in the one-dimensional case is kept in a
minimal-length scenario, we also find that the leading cor-
rection term for the ground state energy of the hydrogen atom
is of the order of the minimal length and Δxmin ≤ 10−25 m.

1 Introduction

Gravity quantization has become a huge challenge for theo-
retical physicists. Despite enormous efforts made, so far, it
was not possible to obtain a theory which can be considered
suitable and not even a consensus approach. Nevertheless,
most of the candidate theories for gravity quantization seem
to have one common point: the prediction of the existence of
a minimal length, that is, a limit for the precision of a length
measurement.
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Although the first proposals for the existence of a mini-
mal length were done by the beginning of 1930s [1–3], they
were not connected with quantum gravity, but instead with
a cut-off in nature that would remedy cumbersome diver-
gences arising from quantization of systems with an infinite
number of degrees of freedom. The relevant role that grav-
ity plays in trying to probe a smaller and smaller region of
the space-time was recognized by Bronstein [4] already in
1936; however, his work did not attract a lot of attention.
It was only in 1964 that Mead [5,6] once again proposed a
possible connection between gravitation and minimal length.
Hence, we can assume that gravity may lead to an effec-
tive cut-off in the ultraviolet. Furthermore, if we are con-
vinced that gravitational effects are in order when a minimal
length is introduced then a minimal-length scenario could
be thought of as an effective description of quantum gravity
effects [7].

As far as we know, the introduction of a minimal-length
scenario can be carried out in three different ways [7–
9]: a generalization of the Heisenberg uncertainty principle
(GUP), a deformation of special relativity1 (DSR) and a mod-
ification of the dispersion relation (MDR).

Various problems connected with the minimal length
have been studied in the context of non-relativistic quantum
mechanics. Among them are the harmonic oscillator [10–14],
the hydrogen atom [15–21], step and barrier potentials [22–
24], finite and infinite square wells [25,26]. In the relativistic
context, the Dirac equation has been studied in [27–33]. The
Casimir effect has also been studied in a minimal-length sce-
nario in [34–38].

An interesting problem in quantum mechanics is the Dirac
δ-function potential. In general, the Dirac δ-function poten-
tial is used as a pedagogical exercise. Nevertheless, it has also
been used to model physical quantum systems [39]. Maybe
because the attractive Dirac δ-function potential is one of

1 It is named doubly special relativity because of the existence of two
universal constants: the speed of light and the minimal length.
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the simplest quantum systems which displays both a bound
state and a set of continuous states, it has been used to model
atomic and molecular systems [40–45]. In addition, the short-
range interactions in condensed matter with a large scattering
length can actually be modeled as a Dirac δ-function poten-
tial [46–50]. In quantum field theory, in order to treat the
Casimir effect more realistically, the boundary conditions
are replaced by the interaction potential 1

2σ(x)φ2(x), where
σ(x) represents the field of the material of the borders (back-
ground field). Hence, for sharply localized borders the back-
ground field can be modeled by a Dirac δ-function [51,52].

The Dirac δ-function potential by its very nature is a chal-
lenging problem in a minimal-length scenario.

Ferkous [53] and Samar and Tkachuck [54] have inde-
pendently calculated the bound state energy in “momen-
tum space”. In the two papers cited, the authors have found
a correction for the expression of energy in

√
β and β

(
√

β ∼ Δxmin), but with different coefficients, therefore hav-
ing disagreeing outcomes. Samar and Tkachuck claim that
this is because Ferkous considers p to belong to (−∞,∞),

whereas they consider p to belong to
(
− π

2
√

β
, π

2
√

β

)
. In this

work, we propose to solve the problem of a non-relativistic
particle of mass m in the presence of the Dirac δ-function
potential in quasiposition space. Since the quasiposition
space representation is used we can consider the cases of
bound states and scattering states as well. We find the same
expression for the energy of the bound state as obtained by
Ferkous. In addition, assuming that the equality between
the 1s state energy of the hydrogen atom and the bound
state energy of the Dirac δ-function potential in the one-
dimensional case when the coefficient of the δ-potential is
replaced by the fine structure constant [41] is kept in a
minimal-length scenario, we find that the leading correc-
tion for the ground state energy of hydrogen atom is of the
order of the minimal length (O(

√
β)), differently from the

values commonly found in the literature using perturbative
methods [15–18,55], but according to the results obtained
by Fityo et al. [20] and Bouaziz and Ferkous [21] using a
non-perturbative approach.

The rest of this paper is organized as follows. In Sect. 2 we
show how to introduce a minimal-length scenario and find
the time-independent Schroedinger equation in a quasiposi-
tion space representation. In Sect. 3 we solve the modified
Schroedinger equation and find the bound state energy and
the coefficients of reflection and transmission for the scatter-
ing states. We present our conclusions in Sect. 4.

2 Minimal-length scenario

In quantum theory, a minimal-length scenario can be accom-
plished by imposing a non-zero minimal uncertainty in the
measurement of position which leads to a generalized uncer-

tainty principle (GUP). Since

ΔxΔp ≥ |〈[x̂, p̂]〉|
2

, (1)

a generalization of the uncertainty principle corresponds to a
modification in the algebra of the operators. There are differ-
ent suggestions of the modification of the commutation rela-
tion between the position and momentum operators which
implement a minimal-length scenario. We are concerned with
the most usual of them, proposed by Kempf [10,11], which
in a one-dimensional space is given by

[x̂, p̂] := i h̄
(

1 + β p̂2
)

, (2)

where β is a parameter related to the minimal length. The
commutation relation (2) corresponds to the GUP

ΔxΔp ≥ h̄

2

[
1 + β(Δp)2 + β〈 p̂〉2

]
, (3)

which implies the existence of a non-zero minimal uncer-
tainty in the position Δxmin = h̄

√
β.

Unfortunately, in this scenario the eigenstates of the posi-
tion operator are not physical sates2 and, consequently, the
representation in position space can no longer be used, that is,
an arbitrary state vector |ψ〉 cannot be expanded in the basis
of state eigenvectors of the position operator {|x〉}. Hence the
obvious way to go ahead is to make use of the representation
in momentum space:

〈p|x̂ |ψ〉 = i h̄
(

1 + βp2
) ∂ψ̃(p)

∂p
, (4)

〈p| p̂|ψ〉 = pψ̃(p). (5)

However, the representation in momentum space is not
suitable in some cases, such as, for example, when the wave
function has to satisfy a boundary condition at specifics
points. So, the representation in quasiposition space [56],

〈xML |x̂ |ψ(t)〉 = xψqp(x, t), (6)

〈xML | p̂|ψ(t)〉 = −i h̄

(
1 − βh̄2 ∂2

∂x2

)
∂ψqp(x, t)

∂x
, (7)

to first order in the β parameter, is more appropriate.3 |xML 〉
are state vectors of maximal localization which satisfy [10]

〈xML |x̂ |xML 〉 = x, with x ∈ 
, (8)

(Δx)|xML 〉 = Δxmin = h̄
√

β, (9)

2 That is because the uncertainty ΔA of an operator Â in any of its state
eigenvectors |ψA〉 must be zero, which is not the case for the position
operator, since Δxmin > 0.
3 Pedram [56] has proposed a representation in which x̂ = x̂o and

p̂ = tan(
√

β p̂o)√
β

, where x̂o and p̂o are ordinary operators of position and

momentum, which obey the canonical commutation relation [x̂o, p̂o] =
i h̄.
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and

〈xML |xML 〉 = 1. (10)

The time-independent Schroedinger equation for a non-
relativistic particle of mass m in the quasiposition space rep-
resentation takes the form

− h̄2

2m

d2ϕqp(x)

dx2 + β
h̄4

3m

d4ϕqp(x)

dx4

+V (x)ϕqp(x) = Eϕqp(x). (11)

The above modified Schroedinger equation shows that
GUP effects are performed by the fourth-order derivative
term. This term modifies the probability current as follows4

[23]:

J = − i h̄

2m

(
ψ∗ ∂ψ

∂x
− ψ

∂ψ∗

dx

)

+ iβh̄3

m

[(
ψ∗ ∂3ψ

∂x3 − ψ
∂3ψ∗

∂x3

)

+
(

∂2ψ∗

∂x2

∂ψ

∂x
− ∂2ψ

∂x2

∂ψ∗

∂x

)]
, (12)

but it does not modify the probability density,5

ρ = |ψ |2. (13)

3 Dirac δ-function potential

In this section, we consider a non-relativistic particle of mass
m in the presence of the Dirac delta-function potential in a
minimal-length scenario. According to Eq. (11) we have

− h̄2

2m

d2ϕ(x)

dx2 + β
h̄4

3m

d4ϕ(x)

dx4 − V0δ(x)ϕ(x)

= Eϕ(x), (14)

where V0 > 0 is a constant.
Integrating Eq. (14) between −ε and ε (with ε arbitrarily

small and positive), and then taking the limit ε → 0, we
obtain
[
dϕI I (0)

dx
− dϕI (0)

dx

]
− 2

3
βh̄2

[
d3ϕI I (0)

dx3 − d3ϕI (0)

dx3

]

+2mV0

h̄2 ϕ(0) = 0, (15)

where ϕI (x) and ϕI I (x) are the solutions of Eq. (14) for
x < 0 and x > 0, respectively.

Since the third derivative of ϕ(x) at x = 0 has a finite
discontinuity (that is to say, a jump by a finite amount), we

4 From now on, we are going to omit the qp superscript of the wave
function for the sake of simplicity.
5 That is because the authors assume that there are no changes in the
time-dependent part of the Schroedinger equation.

require that the second and first derivatives are continuous at
x = 0. Consequently, Eq. (15) turns into [39,58]

β

3

[
d3ϕI I (0)

dx3 − d3ϕI (0)

dx3

]
= mV0

h̄4 ϕ(0). (16)

As is well known, taking into account the sign of the
energy, two cases can then arise: (i) bound states when E < 0
and (ii) scattering states when E > 0.

3.1 Bound states

In this case, the general solution of Eq. (14) is given by

ϕI,I I (x) = AI,I I e
kx + BI,I I e

−kx

+CI,I I e
kβ x + DI,I I e

−kβ x , (17)

where, to first order in β,

k := k0

(
1 + 1

3
βh̄2k2

0

)
, (18)

kβ :=
√

3

2h̄2β

(
1 − 1

3
βh̄2k2

0

)
, (19)

and

k0 :=
√

2m|E |
h̄2 . (20)

The coefficients can be found, except by one normaliza-
tion constant, requiring that the solutions remain finite when
x → ±∞ and the continuity of the solution and of its first
and second derivatives at x = 0. We arrive at the result⎧⎨
⎩

ϕI (x) = Aekx − k
kβ

Aekβ x , x < 0

ϕI I (x) = Ae−kx − k
kβ

Ae−kβ x , x > 0,
(21)

where A is the normalization constant.
From Eq. (16) we can find the bound state energy up to

order β as

E = −mV 2
0

2h̄2 +
√

2β

3

m2V 3
0

h̄3 − 2β
m3V 4

0

h̄4 , (22)

which is in agreement with Ferkous’s result [53]. It is inter-
esting to note that the first correction brought about by the
introduction of a minimal-length scenario is O(

√
β).

For an electron, the relative difference between the bound
state energy arising from the introduction of a minimal length
and the absolute value of the ordinary energy of the bound
state is showed as a function of the minimal length for the
energy about 1 eV in Fig. 1 and as a function of E0 (1 eV
≤ E0 ≤ 1 keV) for Lmin = 10−20 m in Fig. 2. In Fig. 1
we choose the 10−17 m upper value for the minimal length
because it is in accordance with that commonly found in
the literature [15,55,57] and it is consistent with the one
at the electroweak scale [9,22,23]. For the Planck length,
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Fig. 1 Bound state: ΔE
E0

as a function of Lmin in units of meter, for
E0 ≈ 1 eV

Fig. 2 Bound state: ΔE
E0

as a function of E0 in units of eV, for Lmin =
10−20 m

ΔE
E0

≈ 8.4 × 10−26, unfortunately a virtually unmeasurable
effect in quantum gravity using current technology.

3.2 Scattering states

In this case, the general solution of Eq. (14) is given by

ϕI,I I (x) = AI,I I e
ikx + BI,I I e

−ikx

+CI,I I e
k′
β x + DI,I I e

−k′
β x , (23)

where

k′
β :=

√
3

2h̄2β

(
1 + 1

3
βh̄2k2

0

)
. (24)

Now we demand there is no reflected wave function for
x > 0, consequently BI I = 0. From the requirement that
solutions remain finite when x → ±∞ we have DI = 0 and
CI I = 0. In this case, the continuity of the solution and of
its first and second derivatives at x = 0 do not suffice to find
the coefficients. It is also necessary to use the discontinuity
of the third derivative at x = 0, Eq. (16). After some algebra,

we have⎧⎨
⎩

ϕI (x) = Aeikx + ik′
β

k
A
b e

−ikx − A
b e

k′
β x , x < 0,

ϕI I (x) = aA
b e−ikx − A

b e
−k′

β x , x > 0,

(25)

where

a := 1 + 2βh̄4k′
β

3mV0

(
k′2
β + k2

)
, (26)

b := a − i
k′
β

k
, (27)

and A is a normalization constant.
Consequently, the reflection and transmission coefficients

are given by

R =
(
k′
β

k

)2
1[

1 + 2βh̄4k′
β

3mV0

(
k′2
β + k2

)]2

+
(

k′
β

k

)2 (28)

and

T =
(
k′
β

k

)2

[
1 + 2βh̄4k′

β

3mV0

(
k′2
β + k2

)]2

[
1 + 2βh̄4k′

β

3mV0

(
k′2
β + k2

)]2

+
(

k′
β

k

)2 . (29)

Note that R + T = 1, as it must.
It is instructive to write the reflection and transmission

coefficients up to first corrections. We have

R=
(

1+ 2h̄2|E |
mV 2

0

)−1
⎡
⎣1−

√
2β

3

2mV0

h̄

(
1+ mV 2

0

2h̄2|E |

)−1
⎤
⎦

(30)

and

T =
(

1+ mV 2
0

2h̄2|E |

)−1
⎡
⎣1+

√
2β

3

m2V 3
0

h̄3|E |

(
1+ mV 2

0

2h̄2|E |

)−1
⎤
⎦ .

(31)

The above results show that the reflection and the trans-
mission coefficients are no longer the same in the cases of
a delta-function well (V0 > 0) and a delta-function bar-
rier (V0 < 0). Therefore the presence of a minimal length
decreases the chances of tunneling.

It is also interesting to note that the first correction brought
about by the introduction of a minimal-length scenario is
O(

√
β) in the same way as in the bound state energy.

Figures 3 and 4 show the relative difference between the
transmission coefficient arising from the introduction of a
minimal length and T0 (ordinary transmission coefficient) for
the cases of a Dirac-delta well (dashed line) and of a Dirac-
delta barrier (continuous line). Figure 3 is for electrons scat-
tering of energy about 1 eV and V0 = 2 eVÅ. For the Planck
length, ΔT

T0
≈ 8.9 × 10−27, again a virtually unmeasurable
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Fig. 3 Scattering state: ΔT
T0

as a function of Lmin in units of meter, for
E0 ≈ 1 eV

Fig. 4 Scattering state: ΔT
T0

as a function of Lmin in units of meter, for
E0 ≈ 1 MeV

effect. Figure 4 is for proton scattering of energy about 1
MeV and V0 = 3 × 10−2 MeVÅ. For the Planck length,
ΔT
T0

≈ 4.7 × 10−17. Note that Lmin ∼ 10−17 m results in
significant effects, which may be an indication that Lmin is
far from the electroweak scale.

3.3 Remarks

1. It is easy to see that in the limit β → 0 we recover
the results known for the Dirac δ-function potential in
ordinary quantum mechanics.

2. A more detailed analysis shows that kβ and k′
β do not

vanish even if m = 0. Therefore, e−kβ |x | and e−k′
β |x |

solutions still persist since e−kβ |x |, e−k′
β |x | → e

−
√

3
2h̄β

|x |

when m = 0. Consequently, this leads us to presume that
such solutions are “background solutions” caused by the
introduction of an effective description of the effects of
quantum gravity. However, since their coefficients in Eqs.
(21) and (25) vanish when m = 0, they are not present
in the bound state and the scattering states solutions.

3. It is important to point out that now the first derivative at
x = 0 is no longer discontinuous. However, in the limit
β → 0 the discontinuity at x = 0 is recovered. Moreover,
if the term of O(β2) is considered in the Schroedinger
equation the third derivative will turn into a continuous
one at x = 0, and so on.

4. e−kβ |x | and e−k′
β |x | solutions are only significant for very

small values of x , that is, at high energy. Thus we could
assume that they lie far outside the validity range at which
the Schroedinger equation may consistently work and
throw them away. However, that is a naive assumption,
because they lead to the emergence of traces of quan-
tum gravity in low energy physics, as the previous results
show. Note that they provide the continuity of first and
second derivatives at x = 0.

5. It is well known, at least since Frost’s work of 1954 [41],
that the ground state energy of the hydrogen atom (1s
state) is identical to the bound state energy of a Dirac δ-
function potential in the one-dimensional case when V0 is
replaced by the fine structure constant, α. Thus, assuming
that this identity is kept in a minimal-length scenario,6

the result (22) predicts a leading correction for ground
state energy of the hydrogen atom of O(

√
β), whereas

the result commonly found in the literature using pertur-
bative methods is of O(β) [15–18,55].
It is important to add that using a non-pertubative
approach Fityo et al. [20] and Bouaziz and Ferkous [21]
have also found a first correction of O(

√
β).

Now, we can make a rough estimate of an upper bound
for the minimal-length value comparing our result with
experimental data [55]. Using the data obtained in Ref.
[59], in which the accuracy of about 4, 2 × 10−14 eV has
been obtained, we find that Δxmin ≤ 10−25 m. Hence,
in the case of the proton scattering, from the previous
subsection, we find ΔT

T0
∼ 10−17 for Lmin ∼ 10−25 m,

which is a more representative result.

4 Conclusion

In this work, we solve, in quasiposition space, the Schroe-
dinger equation for a Dirac δ-function potential. Our result
for the bound state energy is in agreement with that calculated
by Ferkous in momentum space. Moreover, we find that for
a leading correction for the reflection and transmission coef-
ficients of the scattering states, the bound state energy and
ground state of the hydrogen atom are of order of the minimal
length, O(

√
β). We also show that in the presence of a mini-

mal length the coefficients of reflection and transmission for
the Dirac delta-function well and the Dirac delta-function
barrier are no longer the same. There is a decrease in the
chances of tunneling.

Although different physical systems can be modeled by a
Dirac δ-function potential, we have to ask ourselves about the
validity of the results, since the Dirac δ-function potential is
already an approximation to an actual physical system. That

6 Since the symmetry of the 1s state must remain the same in the two
cases.
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is, are the minimal-length effects smaller than the ones due to
the modeling by the Dirac δ-function potential? Probably the
answer is yes, though it is difficult to be sure. What we can
claim is that the estimates of a upper bound for the minimal-
length value are acceptable, in the sense that even though the
corrections for a more realistic potential can be greater than
the ones due to the minimal-length effects, that only leads
to upper bound values being even smaller. However, that is
not very different from other systems we have studied in a
minimal-length scenario.
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