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Abstract We investigate the kurtosis and skewness of net-
baryon number fluctuations in the Polyakov loop extended
Nambu–Jona-Lasinio (PNJL) model, and discuss the rela-
tions between fluctuation distributions and the phase struc-
ture of quark-gluon matter. The calculation shows that the
traces of chiral and deconfinement transitions can be effec-
tively reflected by the kurtosis and skewness of net-baryon
number fluctuations not only in the critical region but also in
the crossover region. The contour plot of baryon number kur-
tosis derived in the PNJL model can qualitatively explain the
behavior of net-proton number kurtosis in the STAR beam
energy scan experiments. Moreover, the three-dimensional
presentations of the kurtosis and skewness in this study are
helpful to understand the relations between baryon number
fluctuations and QCD phase structure.

1 Introduction

The exploration of QCD phase diagram and search for phase
transition signatures of strongly interacting matter are sub-
jects of great interest in high energy nuclear physics. Inten-
sive searches on relativistic heavy-ion collision (HIC) have
been performed in laboratories. The experimental data indi-
cate that the transformation from quark-gluon plasma (QGP)
to hadrons at small chemical potential and high temperature
is a smooth crossover [1], consistent with the calculations of
lattice QCD (LQCD) [2–7]. However, the QCD phase struc-
ture at large chemical potential is still unavailable in LQCD
due to the sign problem in calculation.

The most fundamental issues in the non-perturbed region
of QCD are the chiral symmetry breaking and quark confine-
ment. Some QCD based models (e.g., [8–16]) and the Dyson–
Schwinger equation approach [17–21] show that QGP under-
goes a first-order chiral transition at large chemical potential.
In the endpoint of the first-order transition there exists a crit-
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ical point (CP) connecting with the chiral crossover separa-
tion line. The important questions people concern are that
whether the phase transitions can leave some traces at the
final state in HIC experiments, and what the signatures are
in measurements.

In theory, the particles fluctuations are most powerful and
unique to investigate the properties of a thermal medium.
Therefore, the event-by-event measurements of statistical
distributions of fluctuations of conserved charges are cru-
cial in searching for QCD phase structure [22,23]. The mea-
surement of high-order fluctuations have been already sug-
gested to explore the QCD phase transition (e.g., [24–35]).
Recently, the preliminary result of the first phase of STAR
Beam Energy Scan (BES-I) in Au+Au collisions indicates
that the kurtosis of net-proton number fluctuation presents
a non-monotonic energy dependence and a large deviation
from the Poisson baseline [36–38]. This phenomenon can
be qualitatively explained in the σ field model with a criti-
cal fluctuation of a first-order phase transition [27]. It pos-
sibly means that the experiments in Au+Au collisions with√
s = 7.7–27 GeV pass by the critical region of the first-

order chiral transition.
The measurements of net-proton fluctuation distributions

and fluctuations of electric charge and strangeness greatly
promote the investigation on the critical phenomenon of
QCD phase transition. The baryon number fluctuations
are investigated recently in different models, for exam-
ple, the NJL model [39,40], the Polyakov Loop extended
Quark Meson model [41], the functional renormalization
group approach [42], the DSE approach [18], the inter-
acting hadronic model [43,44] and the holographic QCD
model [45]. Up to now the interpretation of the experimental
results remains controversial [28–31,39,41,43,44] and phase
transformation mechanism leading to the non-monotonic
energy dependence of net proton kurtosis is still not clear.

In this study we will investigate the baryon number fluc-
tuation distributions up to fourth order and discuss how they
are affected by the chiral and deconfinement transitions in
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the PNJL model. The calculation shows that both the chi-
ral and deconfinement transitions are related to the statistical
distributions of net-baryon number fluctuation not only in
the critical region but also in the crossover region. It means
that the QCD phase structure can be deduced to a certain
degree from the kurtosis and skewness of net baryon number
fluctuation distributions. We also for the first time display
the three-dimensional diagrams of kurtosis and skewness of
net-baryon fluctuations in the PNJL model. These diagram-
matic presentations are very helpful to understand the rela-
tions between baryon number fluctuation distributions and
QCD phase structure.

The paper is organized as follows. In Sect. 2, we introduce
the thermodynamical description of fluctuations of conserved
charges in a thermal system and the 2 + 1 flavor PNJL quark
model. In Sect. 3, we present the numerical results of the QCD
phase diagram and the statistical distributions of net baryon
number fluctuations. We then discuss the relation between
fluctuation distributions and QCD phase structure, as well as
the experimental results of net-proton number distributions.
A summary is finally given in Sect. 4.

2 Fluctuations of conserved charges

For a grand-canonical ensemble in thermal equilibrium, the
pressure of the system is related to the logarithm of the par-
tition function [46]:

P

T 4 = 1

VT 3 ln[Z(V, T, μB , μQ, μS)], (1)

where V and T are the volume and temperature of the system.
The μB, μQ, μS are the chemical potentials of conserved
charges, the baryon number, electric charge and strangeness,
respectively. The generalized susceptibilities of conserved
charges can be derived by taking the partial derivatives of the
pressure with respect to the corresponding chemical poten-
tials [38]

χ
BQS
i jk = ∂ i+ j+k[P/T 4]

∂(μB/T )i∂(μQ/T ) j∂(μS/T )k
, (2)

The cumulants of multiplicity distributions of the con-
served charges are connected with the generalized suscepti-
bilities by

CBQS
i jk = ∂ i+ j+k ln[Z(V, T, μB , μQ, μS)]

∂(μB/T )i∂(μQ/T ) j∂(μS/T )k
= VT 3χ

BQS
i jk .

(3)

In experiments, observables are constructed by the ratio of
cumulants, which cancel the volume dependence and then
can be compared with theoretical calculations of the gener-
alized susceptibilities.

For an arbitrary distribution we can define the Gaussian
width σ 2 with the non-Gaussian fluctuations. In this study,
we focus on two important statistic quantities, the skewness
(Sσ ) and Kurtosis (κσ 2). For the net baryon number fluctua-
tions, the skewness and Kurtosis are related to the high order
cumulants as

Sσ = CB
3

CB
2

= χ B
3

χ B
2

and κσ 2 = CB
4

CB
2

= χ B
4

χ B
2

. (4)

Similar relations can be derived for the fluctuations of electric
charge and strangeness.

We will calculate the susceptibilities of conserved charges
in the three-flavor PNJL model. The chemical potentials
μB, μQ, μS used in experiments and LQCD simulations are
related to the quark chemical potentials with the following
relations

μu = 1

3
μB + 2

3
μQ, μd = 1

3
μB − 1

3
μQ, (5)

and

μs = 1

3
μB − 1

3
μQ − μS, (6)

where μu,d,s are the quark chemical potentials for up, down
and strange quarks.

The Lagrangian density in the 2 + 1 flavor PNJL model is
taken as

L = q̄(iγ μDμ + γ0μ̂ − m̂0)q

+G
8∑

k=0

[
(q̄λkq)2 + (q̄iγ5λkq)2

]

− K
[
det f (q̄(1 + γ5)q) + det f (q̄(1 − γ5)q)

]

−U (Φ[A], Φ̄[A], T ), (7)

where q denotes the quark fields with three flavors, u, d, and
s; m̂0 = diag(mu, md , ms) in flavor space;G and K are the
four-point and six-point interacting constants, respectively.
The μ̂ = diag(μu, μd , μs) are the quark chemical potentials
which are related to chemical potentials of the conserved
charges through Eqs. (5) and (6).

The covariant derivative in the Lagrangian is defined as
Dμ = ∂μ − i Aμ. The gluon background field Aμ = δ0

μA0 is

supposed to be homogeneous and static, with A0 = gA α
0

λα

2 ,

where λα

2 is SU (3) color generators. The effective potential
U (Φ[A], Φ̄[A], T ) is expressed with the traced Polyakov
loop Φ = (TrcL)/NC and its conjugate Φ̄ = (TrcL†)/NC .
The Polyakov loop L is a matrix in color space

L(x) = Pexp

[
i
∫ β

0
dτ A4(x, τ )

]
, (8)

where β = 1/T is the inverse of temperature and A4 = i A0.
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Table 1 Parameters in the
Polyakov-loop potential [47]

a0 a1 a2 b3

3.51 −2.47 15.2 −1.75

The Polyakov-loop effective potential given in [47] is

U (Φ, Φ̄, T )

T 4 = −a(T )

2
Φ̄Φ + b(T )ln

[
1 − 6Φ̄Φ

+ 4(Φ̄3 + Φ3) − 3(Φ̄Φ)2], (9)

where

a(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2
and b(T ) = b3

(
T0

T

)3
.

(10)

The parameters ai , bi listed in Table 1 are fitted according
to the lattice simulation of QCD thermodynamics in pure
gauge sector. And T0 is found to be 270 MeV as the critical
temperature for the deconfinement phase transition of gluon
part at zero chemical potential [48]. When fermion fields are
included, a rescaling of T0 = 210 MeV is implemented.

In the mean field approximation, the constituent quark
mass can be derived as

Mi = mi − 4Gφi + 2Kφ jφk (i �= j �= k), (11)

where φi stands for quark condensate of the flavor i .
The thermodynamical potential is derived as

Ω = U (Φ̄,Φ, T ) + 2G
(
φu

2 + φd
2 + φs

2
)

− 4Kφu φd φs

− 2
∫

Λ

d3 p

(2π)3 3(Eu + Ed + Es) − 2T
∑

u,d,s

∫
d3 p

(2π)3

×
[
ln(1 + 3Φe−(Ei−μi )/T + 3Φ̄e−2(Ei−μi )/T + e−3(Ei−μi )/T )

]

− 2T
∑

u,d,s

∫
d3 p

(2π)3

[
ln(1 + 3Φ̄e−(Ei+μi )/T

+ 3Φe−2(Ei+μi )/T + e−3(Ei+μi )/T )
]
, (12)

where Ei =
√
p 2 + M2

i is the energy-momentum dispersion
relation.

All the thermodynamic quantities relevant to the bulk
properties of quark matter can be obtained from Ω . In
the calculation a cut-off Λ is implemented in 3-momentum
space for divergent integrations. We take the model param-
eters obtained in [49]: Λ = 603.2 MeV, GΛ2 = 1.835,
KΛ5 = 12.36, mu,d = 5.5 and ms = 140.7 MeV, deter-
mined by fitting fπ = 92.4 MeV, Mπ = 135.0 MeV,
mK = 497.7 MeV and mη = 957.8 MeV of their experi-
mental values.

3 Numerical results and discussions

In this section, we first analyze the QCD phase structure, and
then investigate the statistical distributions of baryon num-
ber fluctuations and discuss their relations with the chiral
and deconfinement transitions. In the calculation, we take
μQ = μS = 0 for simplicity, which is approximately con-
sistent with the experimental measurements [50]. Strange
quark chemical potential is set to zero, which approxima-
tively fulfills the requirement of strangeness conservation in
the process of strong interaction.

3.1 Phase structure in the PNJL model

Since there have been already some researches on the phase
structure in the PNJL model in literature (e.g. [8–11]), for the
convenience of later discussion, here we just focus on some
respects closely related to the baryon number fluctuations.

We show the quark condensate as a function of temper-
ature for different quark chemical potentials in the upper
panel of Fig. 1. It indicates that φl/φ0 decreases continuously
when quark chemical potential μq is equal to 0, 100, 200 and
250 MeV, respectively. This means the chiral phase transition
is a smooth crossover at small chemical potential. For the
case of μq = 320 MeV, there is a jump of chiral condensate,
indicating the appearance of the first-order transition.

The lower panel of Fig. 1 shows the partial derivatives of
φl respect to temperature. The evident features for μq = 0
is that ∂φl/∂T has two maxima. This structure only exists
for small chemical potential. The smaller maximum on the
lower-temperature side will gradually disappear with the
increase of quark chemical potential, as shown in the curves
of μq = 100 and 150 MeV, and finally only a single peak
exists. The chiral crossover separation line can be derived by

Fig. 1 Quark condensate in the upper panel and the partial derivative
of φl respect to temperature in the lower panel
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Fig. 2 Three-dimensional structure of ∂φl/∂T

connecting the peaks of the larger maxima in the T − μq

plane, which will be plotted later in the full QCD phase dia-
gram. We also plot the three-dimensional diagram of ∂φl/∂T
in Fig. 2. This figure clearly demonstrates that how fast the
chiral crossover transition takes place as a function of temper-
ature and chemical potential. It also indicates the existence
of the first-order phase transition at large chemical potentials
where ∂φl/∂T diverges.

We present the value of Φ and its derivative respect
to temperature in Fig. 3. This figure shows that Φ and
∂Φ/∂T changes continuously for μ = 0, 100, 150, 200 and
250 MeV. There is a jump for μ = 320 MeV, which is
induced by the restoration of chiral symmetry accompanied
with the first-order chiral transition. The deconfinement tran-
sition line can be derived by the requirement that ∂Φ/∂T
takes the maximum value.

However, there is a special case that we needs to pay atten-
tion to. Along the first-order transition line, although Φ and
∂Φ/∂T are discontinuous for μq much larger than the criti-
cal chemical potential of chiral transition, the deconfinement
still does not occur. The main reason is that the values of Φ

are quite small on the both sides of the chiral first-order tran-
sition at low temperature. This forms the quarkyonic phase
in which the chiral symmetry is restored but quarks are still
confined. As a matter of fact, there also exists the other local
maximum of ∂Φ/∂T at a higher temperature above the first-
order transition, as shown in Fig. 3 with μ = 320 MeV. If
we connect these points with those obtained in the crossover
region with ∂Φ/∂T taking the local maximum, we can obtain
the deconfinement transition line in the full QCD phase dia-
gram, as plotted in Fig. 5.

Fig. 3 Polyakov loop Φ (upper panel) and its partial derivative respect
to temperature (lower panel)

Fig. 4 Three-dimensional structure of ∂Φ/∂T

The derivative of Φ respect to T in the lower panel of
Fig. 3 reflects the width of the deconfinement transition. We
visualize ∂Φ/∂T as a function of temperature and chemical
potential in the three-dimensional diagram in Fig. 4, which
clearly presents the features of the deconfinement transition.
We notice that the peak of ∂Φ/∂T above the first-order tran-
sition line becomes quite flat.

Figures 1, 2, 3 and 4 indicate that the chiral and decon-
finement transitions at small chemical potentials occur in a
wide range of temperature. To indicate the relation between
chiral and deconfinement transition, we plot the complete
phase diagram in Fig. 5. The black solid line is the chiral
first-order transition line, and the black dash line is that of
the chiral crossover separation line. The red dash curve is the
deconfinement transition line obtained with ∂Φ/∂T taking
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Fig. 5 Full QCD phase diagram in the PNJL model

the maximum. The area filled with oblique lines is roughly
the region of chiral crossover, and the yellow band is region
of rapid chiral crossover (corresponding to the green peak in
Fig. 2). For the deconfinement transition, the rapid transition
region lies in the blue band.

Figure 5 indicates that the chiral and deconfinement transi-
tions can be approximately separated in the crossover region,
but they almost overlap near the critical region. Comparing
with the chiral transition, we find the blue band of the rapid
deconfinement almost overlaps with the smaller peak of chi-
ral transition, as shown in Fig. 2. This means the rapid decon-
finement leads to the partial restoration of chiral symmetry
at small chemical potential, but it is not strong enough to
force the complete restoration of chiral symmetry. With the
increase of chemical potential, it becomes difficult to sepa-
rate the two kinds of phase transitions, in particular, in the
critical region. For the spinodal structure (the gray area in
Fig. 5) of chiral first-order transition, one can refer to Ref.
[11] for a detailed description.

3.2 Kurtosis and skewness of baryon number fluctuations

In this subsection, we investigate the kurtosis and skewness
of net-baryon number fluctuations and discuss their relations
with the chiral and deconfinement transitions.

We show the contour map and three-dimensional land-
scape of the kurtosis κσ 2 of net-baryon number fluctuation
in Figs. 6 and 7, respectively. In Fig. 6, the values of κσ 2

are negative in the red area and positive in the rest area. This
figure has the same topological structure as the contour map
derived in the σ field model [27] and the NJL model [39,40].
However, the main difference in the PNJL model is that there
are two branches of the net-baryon number kurtosis in the
contour map, and they converge in the critical region. One
branch is along the chiral transition line, as derived in the NJL

Fig. 6 Contour lines of the net-baryon kurtosis in the T − μq plane.
κσ 2 is negative in the red area and positive in the rest area

Fig. 7 Three-dimensional structure of net-baryon kurtosis as a func-
tion of temperature and quark chemical potential

model (Only this branch exists in the NJL model) [39,40].
For this branch, the value of κσ 2 is universally negative in
a narrow region (red area in Fig. 6) when the critical point
is approached on the crossover side of the chiral transition
line. The higher order fluctuations become more and more
intensive in the vicinity of the critical point.

Figure 6 shows that the second branch of κσ 2 of net-
baryon number fluctuation appears only in the crossover
region. The peaks of the contour lines of this branch lie
in the region of rapid deconfinement transition, as shown
in Fig. 5. Such a structure can also be seen in the three-
dimensional diagram in Fig. 7. The appearance of this branch
can be attributed to the partial restoration of chiral symmetry
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induced by the rapid deconfinement transition, as discussed
in the last subsection.

The existence of two branches of κσ 2 indicates that both
the chiral and deconfinement transitions are important to the
density fluctuations. It is not difficult to understand such a
structure in the PNJL model. Different from the NJL model
and the σ field model, in the PNJL model there are two kinds
of order parameters, quark condensates and Polyakov loop
in the quark distribution function (closely related to the den-
sity fluctuations). The separation of the chiral and deconfine-
ment transitions leads to the appearance of the branch in the
crossover region. Figures 6 and 7 indicate that the statistical
distributions of baryon number fluctuation are related to both
the chiral and deconfinement transitions, which can be taken
to explore the QCD phase structure in experiments.

The numerical results in Figs. 6 and 7 show that the value
of κσ 2 deviates from unity in a wide region. κσ 2 increases
quickly in the critical region and diverges at the critical point.
It indicates that the magnitude of deviation from unity of κσ 2

depends on the distance from the critical point. If the chem-
ical freeze-out curve passes by the critical region, even not
very close to the critical point, a large deviation of baryon
number kurtosis from unity possibly appears. The contour of
net-baryon number kurtosis derived in the PNJL model can
qualitatively explain the deviation from the Poisson base-
line and the non-monotonic behavior of net-proton number
kurtosis [36–38]. On the other hand, we note that the actual
location of the QCD critical point is currently unknown due to
the limitation of LQCD at large chemical potential. However,
the topological structure of kurtosis of density fluctuation is
universal for a system with a first-order phase transition and a
critical point [51]. As for how the critical fluctuations propa-
gates, it involves the dynamics of fluctuation in an expanding
system [52–54]. More investigations on hydrodynamics and
non-equilibrium effect are needed for the critical fluctuations
[55,56].

Finally, we demonstrate the numerical results of the skew-
ness Sσ of net baryon number fluctuation in Figs. 8 and 9.
Figure 8 indicates that the value of Sσ is negative in a slen-
der region close to the chiral transition line on the right side,
and the Sσ increases quickly in the critical region on the
left side of the chiral transition line. Figure 9 demonstrates
the three-dimensional structure of the skewness as a func-
tion of temperature and chemical potential. From this fig-
ure it is easy to understand the increase of net-proton Sσ in
experiments with the decrease of collision energy [36–38].
Similar to the distribution of κσ 2, in the crossover region
the partial restoration of chiral symmetry induced by the
rapid deconfinement also affects the distribution of Sσ . In
general, the value of Sσ is smaller than κσ 2, therefore the
measurement of κσ 2 in experiments is more effective to
investigate the critical phenomenon of QCD phase transi-
tion.

Fig. 8 Contour lines of skewness of net-baryon number fluctuation in
the T − μq plane. Sσ is negative in the red region and positive in the
rest region

Fig. 9 Three-dimensional structure of kurtosis of net-baryon number
fluctuation as a function of temperature and quark chemical potential

4 Summary

We investigated the kurtosis and skewness of net-baryon
number fluctuations within the PNJL model, and discussed
their relations with the QCD phase structure. The calculation
indicates that the QCD phase structure is mainly determined
by the chiral and deconfinement transitions, as well as their
coincidence and separation. It also shows that the statisti-
cal distributions of baryon number fluctuations are closely
related the QCD phase structure.

Therefore, the measurement of the statistical distributions
of particle fluctuations can provide important information
about the QCD phase transition, in particular, the critical
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phenomenon. Compared with the preliminary result of the
STAR beam energy scan, the calculation shows that the con-
tour map of net-baryon number kurtosis in the PNJL model
can qualitatively explain the deviation from the Poisson base-
line of net-proton number kurtosis and the non-monotonic
energy dependence. The three-dimensional presentations of
baryon number multiplicity distributions in this study are
helpful to understand the relations between baryon number
fluctuation distributions and QCD phase structure. Further
investigations with more fundamental theory are needed to
give a quantitative description of the experimental data.
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