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Abstract The on-shell diagram is a very important tool in
studying scattering amplitudes. In this paper we discuss the
on-shell diagrams without external BCFW bridges. We intro-
duce an extra step of adding an auxiliary external momen-
tum line. Then we can decompose the on-shell diagrams by
removing external BCFW bridges to a planar diagram whose
top-form is well known now. The top-form of the on-shell
diagram with the auxiliary line can be obtained by adding
the BCFW bridges in an inverse order as discussed in our
former paper (Chen et al. in Eur Phys J C 77(2):80 2017).
To get the top-form of the original diagram, the soft limit
of the auxiliary line is needed. We obtain the evolution rule
for the Grassmannian integral and the geometry constraint
in the soft limit. This completes the top-form description of
leading singularities in nonplanar scattering amplitudes of
N = 4 Super Yang–Mills (SYM), which is valid for arbitrary
higher-loops and beyond the Maximally-Helicity-Violation
(MHV) amplitudes.

1 Introduction

Bipartite diagrams and the associated Grassmannian geom-
etry [2,3] have recently found their way into the scattering
amplitude studies. An amazing discovery was to exploit them
in computing scattering amplitudes in N = 4 SYM the-
ory [4–11]. Planar scattering amplitudes are represented by
on-shell bipartite diagrams and expressed in “top-form” as
contour integrations over the Grassmannian submanifolds.
Planar loop integrands in N = 4 SYM have recently been
constructed in [4,12] along with the introduction of the
Grassmannian and on-shell method. As a result, the “dlog”
form and the Yangian symmetry [13–17] of the scattering
amplitudes are made manifest in the planar limit. It is natural
to extend the construction to non-planar scattering ampli-
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tudes [1,18–20], and theories of reduced (super-) symme-
tries [21–23].

The leading singularities are represented in the top-form
of Grassmannian integrals in which the integrands are com-
prised of rational functions of minors {R(MC )} of the Grass-
mannian C matrices. The top-form is elegant in that the
amplitude structures are simple and compact; and the Yan-
gian symmetry is manifest in the positive diffeomorphisms
of positive Grassmannian geometry [4]. It is therefore crucial
to express the scattering amplitudes in top-form in order to
explore the power to further uncover hidden symmetries and
dualities of the scattering amplitudes. We present in this letter
our successful construction of top-forms for non-planar scat-
tering amplitudes. Our method applies to multi-loop, beyond-
MHV leading singularities.

Recently, exciting progress in N = 4 SYM scatter-
ing amplitude computation (by the on-shell method) was
reported by many research groups in [1,3,18,19,24–28].
Together we have made a step forward in the computation
of nonplanar N = 4 SYM scattering amplitudes, and hope-
fully in the formulation of the AdS/CFT correspondence at
finite N .

2 BCFW-bridge decompositions of leading singularities

The aim of this work is to obtain a simple and compact ana-
lytical expression of leading singularities of scattering ampli-
tudes, valid for arbitrary number of loops, beyond the planar
limit. A general leading singularity can be represented by
a reduced on-shell diagram. BCFW-bridge decomposition
provides an efficient way of constructing on-shell diagrams
in the planar limit. In non-planar cases, we can obtain the
BCFW-bridge decomposition chain by extracting planar sub-
diagrams and computing them recursively [1] as shown in
Fig. 1. For the sub-diagrams that are BCFW-decomposible,
we follow the recipe presented in [1]. There exist, however,
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Fig. 1 a Obtaining the Lth loop amplitude recursively. b Utilizing the
U (1) decoupling relation to turn a nonplanar diagram into a planar
one. c Introduction of an auxiliary external momentum line to form the
BCFW bridge

“No Bridge” (NB) diagrams which do not contain any BCFW
bridges [1,19]. We have presented a method in [1] to trans-
form some NB diagrams, schematically depicted in Fig. 1b,
by applying U (1)-decoupling relations [29].

In this work we present a general method applicable to
any NB diagrams. The key is to add an auxiliary external
momentum line to form an auxiliary BCFW bridge, shown
in Fig. 1c. To regain the original NB diagram we take the soft
limit [30–33], setting the auxiliary momentum to zero. This
way the BCFW-bridge decomposition chain of the reduced
on-shell diagrams beyond the planar limit can be obtained.

In the rest of this letter we present a recipe for construct-
ing an analytical expression, the top-form, for a nonplanar
leading singularity using the BCFW-bridge decomposition
chain [1] after adding an auxiliary external momentum line.

3 Construction of the top-form

The top-form of an on-shell diagram is obtained once the
geometric constraints, Γ , and the integrand, f (C), are deter-
mined. A non-planar leading singularity in the form [4]

T =
∮

Γ

dCk×n

Vol(GL(k))

δk×4(C · η̃)

f (C)
δk×2(C · λ̃)δ2×(n−k)(λ · C⊥)

requires one to calculate f (C) and Γ under the BCFW shifts
and to take the soft limit of the auxiliary BCFW bridges.

Let us study the BCFW shifts. The integrand, f (C), must
contain those poles equivalent to the constraints in Γ ; oth-
erwise the contour integration around Γ will vanish. Each
BCFW bridge removes one pole in f (C) by shifting a zero
minor to be nonzero: in general the poles in the integrand
must change their forms and the integrand changes its func-
tional form accordingly. To see this we parametrize the con-
straint matrix, C , using the BCFW parameter, α. In a BCFW
shift, a column vector X is shifted: X → X̂ = X + αY,

with several minors of f (C) become functions of α. After
the shift, there exists at least one constraint M0(X) = 0 being
shifted to M0(X̂) = M0(X) + αR(Y ) if there is a top-form.
This is demonstrated in the following section. Meanwhile

Fig. 2 An MHV example

Table 1 The evolution of the geometric constraints

(7, 1)1 (2, 3, 4)2 (4, 5, 6)2 (6, 1, 2)2

(5, 7) (1, 5, 7)2 (2, 3, 4)2 (4, 5, 6)2 (1, 2, 6)2

(3, 7) (2, 3, 4)2 (4, 5, 6)2 (1, 2, 6)2

the factor M0(X̂) should be present in the dominator to con-
tribute a pole at α = 0. In other words α = M0(X̂)/R(Y ) is
then a rational function of Ĉ and can be subtracted from the
other shifted minors to obtain some shift-invariant minors of
Ĉ , Mi (X) = Mi (X̂ − αY ). In summary, attaching a BCFW
bridge, the integrand is

f (Ĉ) = M0(X̂)
∏
i

Mi (X̂ − αY ) ×
(

minors
without α

)
. (1)

3.1 An MHV example

A six-point three-loop MHV example has been analyzed in
[19]. Here, for comparison, we provide our calculation by
attaching the auxiliary BCFW bridges. We attach an auxil-
iary external momentum line, in Fig. 2, and form an auxiliary
BCFW bridge-(3, 7). This on-shell diagram can be decom-
posed to an identity as follows: (1, 7) → (2, 6) → (3, 5) →
(2, 3) → (3, 4) → (12) → (2, 3) → (5, 7) → (3, 7).
Before adding bridge-(5, 7), the on-shell diagram is still pla-
nar. The Grassmannian constraints and the top-form can be
obtained directly from the permutation [4] shown in the
first row of Table 1. Adding bridge-(5, 7), the constraint
(7, 1)1 → (1, 5, 7)2, as shown in the second row of Table
1. Here we use (i1, i2, · · · , im)r , where m, r are positive
integrals, to denote the matrix of rank r constructed by the
columns i1, · · · , im in the C matrix. (i1, i2, · · · , im)r also
characterize the (r − 1)-dimensional hyperplane in the k-
dimensional projective space. Adding bridge-(3, 7), the con-
straint (1, 5, 7)2 disappears.

Before attaching bridge-(5, 7), the top-form is

1

(123)(234)(345)(456)(567)(671)(712)
,
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where we use (i1i2 · · · ik) to denote the minor of the matrix
which is formed by the columns i1 · · · ik inC . When attaching
(5, 7), the contour integral around the pole (712) = (̂712) −
α(512) is replaced by dα

α
with α = (̂712)

(512)
. All the minors with

column 7 except (712) are affected by the bridge,

(567) → (56(̂75)∩(12))
(512)

= (56̂7)

(671) → (6(̂75)∩(12)1)
(512)

= (̂715)(126)
(512)

,

where (̂75)∩ (12) denotes the intersection point between the
two lines characterized by (̂75) and (12). Then the top-form
integrand becomes

(125)

(123)(234)(345)(456)(567)(157)(126)(127)
.

Similarly after attaching bridge-(3, 7) the top-form integrand
becomes

(135)2

(123)(234)(345)(456)(156)(357)(157)(126)(137)
.

To obtain the top-form of the original diagram, we parametrize
the C ′ as⎛
⎝ C 0

0
0 0 c3 c4 c5 c6 1

⎞
⎠ .

Then we expand all the minors in C ′ in terms of those in C ,

(126) = (12)c6 (234) = −c3(24) + c4(23)

(123) = (12)c3 (456) = c4(56) − c5(46)

(156) = −(16)c5 (135) = −c3(15) + c5(13)

(137) = (13) (345) = c3(45) − c4(35) + c5(34)

(357) = (35) (157) = (15) .

The top-form becomes

(−c3(15) + c5(13))2

−(12)(35)(15)(12)(13)(16)c3c6c5(−c3(24) + c4(23))

× 1

(c3(45) − c4(35) + c5(34))(c4(56) − c5(46))
.

The additional pole is characterised by (126), (234), (456).
The contour integration gives c6 → 0, c3 → (23)

(24)
c4, c5 →

(56)
(46)

c4 and

[(56)(13)(24) − (23)(15)(46)]2

(23)(12)(24)(26)(45)(34)(16)(56)(35)(15)(13)(46)

consistent with the MHV example in [19]. This can be sim-
plified further,

− f p(125364) + f p(125463) − f p(134265)

+ f p(126543) − f p(132465) − f p(123564),

with f p denoting the planar amplitudes of the corresponding
orders.

4 Construction of the top-from of NB diagram

Now we discuss the new Grassmannian geometry structures
in the NB diagrams [1,19]. For the sub-diagram structure
in Fig. 1b, the top-form is obtained by imposing U (1)-
decoupling relation in [1]; in this work we focus on the auxil-
iary BCFW bridges which is suitable for the general diagrams
as shown in Fig. 1c. The top-forms of those diagrams con-
taining auxiliary BCFW bridges can be obtained using the
above method. We discuss presently how they return to the
top-forms of the original NB diagrams upon taking the soft
limits.

The on-shell diagram Ak+1
n+1 with one auxiliary line as

shown in Fig.1c can be written in two equivalent forms:

∫
d2λI d 2̃λI d4η̃I

vol(GL(1))

Ak+1
n+2〈I Ī 〉3

〈n̄ I 〉2 〈
Ī n̄

〉 δ([n̄ I ])δ4(̃ηn̄ + 〈 Ī n̄〉
〈 Ī I 〉 η̃I ),

(2)∮
Γ̄

dCk×ndck+1 · · · dcn
Vol(GL(k))

(1 · · · k)
f (C, ci )

×δk×4(C · η̃)δk×2(C · λ̃)δ2(n−k)(λ · C ′⊥)

×δ2

(
n∑

i=k+1

ci λ̃i + cn̄ λ̃n̄

)
δ4

(
n∑

i=k+1

ci η̃i + cn̄ η̃n̄

)
, (3)

where cn̄ = 1 and n̄ denote the index of the auxiliary line.
Equation (2) is obtained directly from Fig.1c by integrating
over the internal line Ī . Equation (3) is a general top-form of
Ak+1

n+1, where we choose a particular parametrization of the
Grassmannian matrix C ′ as

C ′ =

⎛
⎜⎜⎜⎝

0

C
...

0
0 · · · 0 ck+1 · · · cn 1

⎞
⎟⎟⎟⎠ .

Our method of adding the auxiliary line can be verified by
comparing (2) and (3). Noting that

δ2

(
n∑

i=k+1

ci λ̃i + cn̄ λ̃n̄

)
= δ

(
n∑

i=k+1

ci
[i1]
[n̄1] + 1

)
δ([n̄ I ]),

(2) and (3) can therefore be proved to contain the term

δ([n̄ I ])δ4(̃ηn̄ + 〈 Ī n̄〉
〈 Ī I 〉 η̃I ),

which can be removed from the overall constraint delta func-
tion. The remaining part of (2) corresponds to the NB diagram
Ak

n in the limit λn̄ → 0. On the other hand, after taking the
soft limit (3) yields
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Ak
n =

∮
Γ̄

dCk×ndck+1 · · · dcn
Vol(GL(k))

(1 · · · k)δk×4(C · η̃)

f (C, ci )

×δk×2(C · λ̃)δ2×(n−k)(λ · C⊥)δ

(
n∑

i=k+1

ci
[i1]
[n̄1] + 1

)
.

(4)

This is easily proven by counting the degrees of freedom
of the associated on-shell diagram in which only one ele-
ment c f among ci is a free parameter. As we shall prove
in the following section, a given NB diagram to have a top-
form requires that ci/cr = R(MC ). Using this relation, the
integration

∫
dcr
cr

δ

(
n∑

i=k+1

ci
[i1]
[n̄1] + 1

)

gives 1. Finally, we obtain the top-form of Ak
n by expanding

the minors of C ′ into C minors in the integrand.

5 Rational top-forms and rational soft limit:

Now we study which kind of nonplanar on-shell diagrams can
have rational top-forms. We address this question by building
an equivalent relation between the rational top-form and the
rational soft limit. If the soft limit of an auxiliary line leads
to additional constraints such that ci

c j
is a rational function of

C-minors for all non-vanishing ci in the added row of C ′, we
call this soft limit a rational soft limit.

When the soft limit of the auxiliary line is a rational soft
limit, then the NB diagram with auxiliary line has a rational
top-form if and only if the original NB diagram has a rational
top-form.

We first consider the free parameters α in the top-form
integrand f (C) as shown in Eq. (1). The C matrix param-
eters αC that can be expressed as R(MC ) are also of the
form R(MC ′). The additional C ′ elements ci are of the form
crR(αC ) (indicating a rational soft limit for cr �= 0). Since cr
is naturallyR(MC ′), all free parameters inC ′ are then rational
functions of minors, i.e. the top-form is rational. Inversely,
given the linear auxiliary bridge and rational soft limit, any
C parameter denoted by R(MC ′) can be expanded as R(MC )

directly according to the procedure above.
Then let us study the geometry constraints. Geometry con-

straints are linear relations among columns of theC matrix. In
fact, the total space is taken as the (k−1)-dimensional projec-
tive space. Each column labeled by the index of the external
line can be mapped to a point in the projective space. For
the diagram which can be constructed by attaching BCFW
bridges, the constraints are all coplanarity constraints for the
points of external legs [1]. For the NB diagrams, after attach-
ing the auxiliary lines, the geometry constraints inC ′ are still

coplanarity constraints. Hence we only need to discuss how
the geometry constraints evolve in the rational soft limit.

The simplest case is that the geometry constraints in C ′
are all untangled. Then the coplanarity constraints are of the
form

(i1, i2, · · · , im)m−1.

If one of the indices, e.g. im , in the above constraint denotes
the auxiliary line, then the geometry constraint becomes
(i1, i2, · · · , im−1)

m−2 in the soft limit. If none of the indices
denotes the auxiliary line, then the geometry is invariant for
m < k. Since k → k − 1 in the soft limit, the geometry
constraints for m = k do not exist any more.

In general the geometry constraints are still coplanarity
constraints in the soft limit. However, this is not obvi-
ous for the tangled cases. We will leave the explana-
tion of the soft limit behavior for tangled geometry, e.g.
((i1i2

⋂
i3i4), i5, · · · , im)r , to future work. For now we

focus on the algebraic form of these geometry constraints,
which is enough to obtain the top-form.

In a general case, the geometry constraints in C ′ can be
expanded as

F ′
1 =

n∑
i=k+1

ci F
ci
1 , F ′

2 =
n∑

i=k+1

ci F
ci
1 ,

· · · F ′
n−k−1 =

n∑
i=k+1

ci F
ci
n−k−1,

· · · F ′
S =

n∑
i=k+1

ci F
ci
S , (5)

where S is an integer. There are no higher order terms with
respect to ci ’s. In fact if there are higher order terms, they
can be factorized into linear polynomials either with rational
minors of C as coefficients or with non-rational minors. For
the former case, one of the linear polynomials can be rede-
fined as the geometry constraints. For the latter case, some
ci/c j are non-rational, which is beyond the scope of this
paper.

Among the constraints in Eq. (5), we can choose arbitrary
n−k−1 equations to solve for the ci/cr . For other equations,
we can substitute the solutions of ci/cr to get all the geometry
constraints for C after taking the soft limit.

6 More Examples

6.1 An MHV example

In this subsection we give an example of a different situation
using an MHV example (Fig. 3) for illustration an auxiliary
line connected to a white vertex. Attaching an auxiliary line
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Fig. 3 An MHV example

Table 2 Geometry constraints evolution for MHV example

(2, (3, 4, 5)2, 6)3 (3, 4, 5)2 (5, 6, 7, 1)3 (7, 1, 2, 3)3

(7, 5) (2, 3, 4, 6)3 (3, 4, 5, 7)3 (5, 6, 7, 1)3 (7, 1, 2, 3)3

(7, 3) (3, 4, 5, 7)3 (5, 6, 7, 1)3 (7, 1, 2, 3)3

enables the BCFW-decomposition to identity by the follow-
ing chain: (7, 3) → (7, 5) → (3, 4) → (2, 3) → (4, 5) →
(3, 4) → (1, 3) → (4, 6) → (3, 7). Before adding bridge-
(7, 5) the on-shell diagram is planar. The Grassmannian con-
straints (the first row of Table 2) and the top-form can be
obtained directly from the permutation [4]:

1

(1234)(2345)(3456)(4567)(5671)(6712)(7123)
.

The transformation of constraints after adding the bridges
(7, 5) and (7, 3) is shown in the second and third rows of
Table 2. The top-form of A4

7 becomes

−(2467)2

(2347)(1246)(2456)(3457)(2346)(4567)(1567)(1267)(1237)
.

Without loss of generality, we choose the first four columns
of the Ĉ matrix as the identity:

⎛
⎜⎜⎝

e1 e2 e3 e4 c

1 0 0 0 ∗ ∗ c1

0 1 0 0 ∗ ∗ c2

0 0 1 0 ∗ ∗ c3

0 0 0 1 ∗ ∗ c4

⎞
⎟⎟⎠.

Then the last column can be represented by these four
columns by

c = c1e1 + c2e2 + c3e3 + c4e4.

This way we can rewrite the minor with column-7 as

(1237) = c4(1234)(1567) = c2(1256) + c3(1356),

(1267) = c3(1263)(2467) = c1(2461) + c3(2463),

(2347) = c1(1243)(3457) = −c1(1345) − c2(2345),

(4567) = −c1(1456) − c2(2456) − c3(3456).

Fig. 4 A non-planar NMHV 4-loop leading singularity

Considering the three poles of A4
7, since there is no con-

straint in the top-form of A4
6, we should integrate around all

of the three poles and remove three coefficients. Finally, there
is only one coefficient left and others can be represented by it:
c4 → 0, c1 → − (2345)

(1345)
c2, c3 → − (1256)

(1356)
c2. The remaining

coefficient in the top-form is dc2
c2

and can be fixed by one of

the columns in Ĉ⊥ (noting that Ĉ⊥ has one more column than
C⊥, which can be removed directly). Finally, the top-form
of A4

6 is

1

f p

−[(2345)(1246)(1356) − (1256)(2346)(1345)]2

(1246)(2456)(1345)(2346)(1356)(1235)
,

where f p = (1234)(2345)(3456)(4561)(5612)(6123). This
can also be simplified as

− f p(142356) − f p(143265) + f p(132456)

− f p(132654) + f p(123465) − f p(123465).

6.2 An NMHV NB diagram example

In this subsection we present the details in the calculation
and simplification in the NMHV example (Fig. 4).

Since this diagram cannot be decomposed of BCFW
bridges directly we introduce an auxiliary external momen-
tum line, the leg-8. The diagram transforms to a planar
one by removing the bridges (2, 8), (6, 8) and (4, 2). The
total decomposition chain is (2, 8) → (6, 8) → (4, 2) →
(1, 2) → (2, 3) → (2, 4) → (4, 5) → (4, 6) → (6, 7) →
(1, 6) → (6, 8).

Before adding bridge-(4, 2) the planar diagram top-form
is

1

(1234)(2345)(3456)(4567)(5678)(6781)(7812)(8123)

with constraints shown in the first row of Table 3.
After attaching all the BCFW bridges, we obtain the top-

form integrand

123
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Table 3 Geometry constraints evolution for NMHV example

(1, 2, 3)2 (3, 4, 5)2 (5, 6, 7)2 (7, 8, 1)2

(4, 2) (1, 2, 3, 4)3 (3, 4, 5)2 (5, 6, 7)2 (7, 8, 1)2

(6, 8) (1, 2, 3, 4)3 (3, 4, 5)2 (5, 6, 7)2 (6, 7, 8, 1)3

(2, 8) (1, 2, 3, 4)3 (3, 4, 5)2 (5, 6, 7)2

1

(1234)(2345)(3456)(4567)(1567)(8672)(6781)

× (1347)(6721)3

(7812)(3167)(1237)(1247)(1286)
, (6)

with geometry constraints as shown in the last row of Table
3. Then we expand the rank-4 minors into rank-3 minors

(1234) = (123)c4(2345) = −(235)c4 + (234)c5,

(1237) = (123)c7(3167) = −(317)c6 + (316)c7,

(1286) = −(126)(6721) = −(721)c6 + (621)c7,

(8672) = −(672)(3456) = (356)c4 − (346)c5,

(6781) = −(671)(1347) = −(137)c4 + (134)c7,

(7812) = (712)(1247) = −(127)c4 + (124)c7,

(1567) = (167)c5 − (157)c6 + (156)c7,

(4567) = (467)c5 − (457)c6 + (456)c7.

Solving all the additional constraints inherited from the aux-
iliary line and the attached vertex, we get c4 → 0, c5 →
0, c7 → (457)

(456)
c6 and the final top-form integrand,

1

f p

(134)(357)[(457)(126) − (456)(127)]3

(124)(126)(135)(145)(267)(367)(457)2 ,

where f p = (123)(234)(345)(456)(567)(671)(712). Using
the Plüker relations the integrand 1

f (C)
is

(125)

(124)(126)(167)(235)(257)(143)(345)(567)

+ (125)

(124)(127)(165)(235)(267)(143)(345)(567)

+ (125)

(123)(126)(167)(234)(145)(257)(345)(567)

+ (125)

(123)(127)(165)(234)(145)(267)(345)(567)
. (7)

It is hard to simplify the form further by using the Plüker
relations directly. A simpler technique is to para-metrize the
C matrix as

⎛
⎝

1 2 3 4 5 6 7

∗ ∗ ∗ ∗ 0 ∗ ∗
∗ ∗ ∗ ∗ 0 ∗ ∗
c1 c2 c3 0 1 0 c7

⎞
⎠

and expand the three-column minors in the two-column
minors. Then the first term in (7) can be written as

−(12)(36)

(124)(126)c7(16)(23)(27)c3(14)(34)(67)(36)

= −1

(124)(126)(27)c3(14)(34)(67)c7(36)

+ 1

(124)(126)c7(16)(37)c3(24)(34)(67)

= −1

(124)(126)(257)(134)(345)(567)(367)

− 1

(124)(126)(167)(234)(357)(345)(567)
. (8)

Similarly we can rewrite the second term to the fourth term
in (7) as

(I I ) = 1

(124)(127)(167)(346)(235)(345)(567)

+ 1

(124)(127)(134)(267)(356)(345)(567)
; (9)

(I I I ) = 1

(123)(126)(143)(467)(275)(345)(567)

+ 1

(123)(126)(243)(467)(175)(345)(567)
; (10)

(I V ) = 1

(123)(127)(143)(267)(456)(345)(567)

+ 1

(123)(127)(234)(167)(456)(345)(567)
. (11)

6.3 An on-shell diagram with two auxiliary lines

Our method can also deal with the on-shell diagrams to which
we need add more than one auxiliary lines. We consider the
diagram in Fig. 5 where k = 4 and n = 10. After attaching
the BCFW bridges recursively,

(C8) → (A8) → (62) → (42) → (34) → (23) → (12) → (45)

→ (34) → (46) → (37) → (78) → (27) → (79) → (7A)

→ (AB) → (2A) → (AC),

we can get the integrand f (C ′) of the top-form directly

1

(56789A)(6789AC)(5679AB)(789ABC)

× 1

(89ABC1)(BC1246)(ABC134)(9ABC13)

× 1

(BC1236)(BC1234)(C12346)(BC1345)(123456)

× (5679AC)3(BC1346)3

(234567)(5678AC)(45679A)(345679)(56789C)
.

(12)

The geometry constraints are also obtained immediately
seen,
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(3, 4, 5)2, (9, A, B)2, (8, A, B,C)3, (2, 4, 5, 6)3,

(5, 6, 7, 8, A,C, )3, (1, 4, 5, 6, 7, 9)5,

(B,C, 1, 2, 4, 6)3, (7, A, B,C, 1, 3)5. (13)

We first take the soft limit of line-2. We use the gaugeGL(k+
2)/GL(k + 1) to set the C ′′ as

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 A B C

∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 1 0 c4 c5 c6 c7 c8 c9 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We pick up five linear independent equations with variables
ci , i ∈ [4, 9] from the constraints (3, 4, 5)2, (9, A, B)2,

(8, A, B,C)3, (7, A, B,C, 1, 3)5, (5, 6, 7, 8, A,C)3 in Eq.
(13),

(35x1x2x3)c4 − (34x1x2x3)c5 = 0

(BAx1x2x3)c9 = 0

(CABx1x2)c8 = 0

(3ABC1)c7 = 0

(C678A)c5+(5C78A)c6+(56C8A)c7+(567CA)c8 = 0,

(14)

where xi denotes an arbitrary index of the external line in each
constraint equation. Obviously the chosen x should leave the
coefficients of ci in the above equations non-vanishing. We do
not use the constraint containing line-2 in Eq. (13), since they
do not generate any constraints for the ci . In the top-form,
after taking the contour integration of dc4 · · · dc9 around the
pole generated by the above equations, we get c7 → 0, c8 →
0, c9 → 0, c4 → (34x1x2x3)

(35x1x2x3)
c5, c6 → (678AC)

(578AC)
c5 and we

are left with one integration dc5. The poles of the contour
integration in Eq. (12) are reduced as follows:

(5678AC) = (578AC)(c6 − (678AC)

(578AC)
c5),

(789ABC) = −(89ABC)c7,

(89ABC1) = −(19ABC)c8,

(9ABC13) = −(13ABC)c9,

(BC1345) = −(135BC)(c4 − (BC134)

(BC135)
c5). (15)

The other minors in Eq. (12) are reduced by substituting the
solutions of Eq. (14),

(123456) = (13456), (234567) = −(34567),

(BC1246) = (146BC), (BC1236) = (136BC),

Fig. 5 An N 4MHV example with two auxiliary lines

(BC1234) = (134BC), (C12346) = −(1346C),

(345679) = (34579)(678AC)

(578AC)
c5,

(56789C) = (5678C)(789AC)

(578AC)
c5,

(56789A) = (5678A)(789AC)

(578AC)
c5,

(6789AC) = (789AC)(678AC)

(578AC)
c5,

(5679AB) = (5679A)(79ABC)

(579AC)
c5,

(ABC134) = (13ABC)(3479A)

(3579A)
c5,

(5679AC) = − (567AC)(789AC)

(578AC)
c5,

(BC1346) = − (134BC)(378AC)(5678C)

(578AC)(3578C)
c5,

(45679A) = (4579A)(378AC)(5679A)

(3579A)(578AC)
c5.

Then we get the top-form of the on-shell diagram in Fig. 5
after taking the soft limit of line-2,

1

(13456)(1346C)(136BC)(13ABC)(146BC)(19ABC)

× 1

(34567)(34579)(4578C)(5678A)(79ABC)(89ABC)

× (134BC)(379AC)2(5678C)2(567AC)3

(579AC)(3578C)2(5679A)2(678AC)2 . (16)

The geometry constraints are

(3, 4, 5, 6)2, (9, A, B)2, (8, A, B,C)3,

(B,C, 1, 4, 6)4, (1, 5, 6, 7, 9)4. (17)

We then take the soft limit of line-8. We use the gaugeGL(k+
1)/GL(k) to set the C ′ as
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⎛
⎜⎜⎜⎜⎝

1 3 4 5 6 7 8 9 A B C

∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗
c1 c3 0 0 c6 0 1 0 cA cB cC

⎞
⎟⎟⎟⎟⎠.

Here we choose c4 = c5 = c7 = c9 = 0. Using the con-
straints (3, 4, 5)2, (4, 5, 6)2, (9, A, B)2, (B,C, 1, 4, 6)4,

(1, 5, 6, 7, 9)4, we can find the poles at c3 → 0, c6 →
0, c1 → 0, cA → (9Ax1x2)

(9Bx1x2)
cB, cC → (146C)

(146B)
cB , which are

shown in the integrand as

(13456) = (3456)c1,

(34567) = −(3457)c6,

(34579) = (4579)c3,

(136BC) = (136B)(cC − (136C)

136B
cB),

(79ABC) = (79BC)(
cA +

(
(146C)(79AB)

(146B)(79BC)
− (79AC)

(79BC)

)
cB

)
.

Similar to the soft limit of line-2, the other minors are reduced
as

(3578C) = −(357C), (4578C) = −(457C),

(678AC) = (67AC), (89ABC) = (9ABC),

(5678A) = −(567A), (5678C) = −(567C),

(134BC)

(146BC)
= (134B)

(146B)
,

(1346C) = (1346)(146C)

(146B)
cB,

(5679A) = (5679)(9A13)

(9B13)
cB,

(13ABC) = − (1369)(13AB)(13BC)

(139B)(136B)
cB,

(19ABC) = − (1469)(14BC)(19AB)

(146B)(149B)
cB,

(579AC) = − (579A)(1469)(14BC)

(149B)(146B)
cB,

(379AC) = − (379A)(1469)(46BC)

(469B)(146B)
cB,

(567AC) =
(

(567A)(146C)

(146B)
− (567C)(9A13)

(9B13)

)
cB .

Then we get the integrand of the original on-shell diagram
without auxiliary lines,

1

(1346)(1369)(3456)(3457)(4579)(5679)(579A)

× (134B)

(146C)(37AB)(13BC)(19AB)(79BC)(9ABC)

× ((367C)(379A)(146B) − (567A)(146C)(379B))3

(146B)3(67AC)2(357C)2 ,

with the geometry constraints (3, 4, 5, 6)2, (9, A, B,C)2.

7 Summary and outlook

We have obtained the top-form integrands for nonplanar lead-
ing singularities by BCFW decompositions. In the cases that
one cannot attach a BCFW bridge we add an auxiliary exter-
nal momentum line judiciously to enable the application of
the chain of BCFW decompositions and take the soft limit
on the auxiliary momentum line to recover the original dia-
grams. This combination of strategies is efficient in comput-
ing the leading singularity of nonplanar diagrams of arbitrary
loops. We have also classified nonplanar on-shell diagrams
according to whether they possess rational top-forms, and we
proved the equivalence to linear BCFW bridges (and ratio-
nal soft limit for diagrams with no external BCFW bridges).
With the chain of BCFW-bridge decompositions obtained
the rational top-forms of the nonplanar on-shell diagrams
can be derived in a straightforward way. This method applies
to leading singularities of nonplanar multi-loop amplitudes
beyond MHV.

An immediate question is whether all on-shell diagrams
representing nonplanar leading singularities belong to this
class, so that all leading singularities can be expressed in the
rational top-forms.

The top-form, being simple and compact, is a useful tool to
uncover hidden symmetries (e.g. generalized Yangian sym-
metry beyond planarity [25]), which are otherwise highly tan-
gled in nonplanar leading singularities. When combined with
the generalized unitarity cuts, the top-form holds promise in
constructing the integrals as well as revealing the symmetries
and dualities of the loop-level scattering amplitudes.

Mathematically our method of performing the BCFW
decompositions is related to the toric geometry arising in the
characterization of a matroid stratification. Further explo-
ration on the relationship between BCFW decompositions
and matroid stratification will also shed light on the geome-
try of underlying Grassmannian manifolds.
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