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Abstract The paper deals with the scale discrepancy
between the observed vacuum energy in cosmology and the
theoretical quantum vacuum energy (cosmological constant
problem). Here, we demonstrate that Einstein’s equation and
an analogy to particle physics leads to the first physical justi-
fication of the so-called fine-tuning problem. This fine-tuning
could be automatically satisfied with the variable cosmolog-
ical term Λ(a) = Λ0 + Λ1a−(4−ε), 0 < ε � 1, where
a is the scale factor. As a side effect of our solution of the
cosmological constant problem, the dynamical part of the
cosmological term generates an attractive force and solves
the missing mass problem of dark matter.

1 Introduction

Direct cosmological experiments could only observe 5% of
the total matter-energy content of the universe. The remain-
ing unknown components dark matter and dark energy are
classified by their gravitational effects. The first component
behaves attractively and constitutes 26% of the matter-energy
density, whereas the dark energy has a fraction of 69% and is
responsible for an accelerated expansion of the universe [1].
Since the 1990s, the cosmological constant Λ in Einstein’s
field equation

Rμν − 1

2
gμνR + Λgμν = κTμν, κ = 8πG

c4 ,

has been used as a simple explanation for an expansion of
the universe (see [2–5] for further details and [6] for nota-
tional conventions). Due to the unknown form of the under-
lying energy, this anti-gravitational mechanism is called dark
energy. From the source point of view the cosmological con-
stant can be written as an energy-momentum tensor

TΛ
μν =

(
ρΛ + pΛ

c2

)
uμuν + pΛgμν, T eff

μν = Tμν + TΛ
μν,
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where pΛ = −Λ/κ, ρΛ = −pΛ/c2 and uμ is the fluid
four-velocity. Hence, in the absence of matter the cosmo-
logical constant could be interpreted as the energy density
of the vacuum. In contrast to the notion of an empty space,
the quantum field theory defines the vacuum as the state of
lowest energy density. A comparison of both concepts by
cosmological observations of Λ and theoretical calculations
of the quantum energy density uncovers a large discrepancy

ρΛ

ρvac
≈ 10−121,

which is “the most striking problem in the contemporary
fundamental physics” [7].

Changing the point of view and defining the cosmological
constant by Λ = κc2ρ, where ρ is a density field which con-
tributes to the vacuum energy density, it is natural to assume
Λ as a dynamical quantity. Furthermore, there are no a pri-
ori reasons why Λ should not vary - as long as the energy
conservation

∇μT eff
μν = 0,

is satisfied (see [8, p. 2]).
The remainder of the paper is organised as follows. In

Sect. 2 we review the pressure-free Friedmann equations
where the cosmological term Λ is a function of the scale
factor a. Section 3 is devoted to a Klein-Gordon equation
for the scale factor. In order to identify the arrived equation
as an Euler-Lagrange equation, the Klein-Gordon equation
is transformed to a scale factor independent space-time met-
ric. Then, the Lagrangian density could be determined and
the related energy-momentum tensor of an empty Friedmann
universe is studied in Sect. 4. This enabled us to establish a
canonical decomposition of the total energy into a cosmolog-
ical and a remainder term. Consequently, the fine-tuning of
the energy densities is justified. Moreover, we demonstrate
with an application of the model Λ(a) = Λ0 + Λ1a−(4−ε),
0 < ε � 1 that the total energy density of an empty Fried-
mann universe equals the quantum zero-point energy. Finally,
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we show that our solution of the cosmological constant prob-
lem explains cosmological observations without the missing
mass of dark matter.

2 A time-dependent cosmological term

Let M be a 4-dimensional manifold equipped with a metric
ḡμν, which determines the space-time interval as follows:

ds̄2 = ḡμνdx
μdxν

= − c2dt2 + a(t)2
(

1

1 − kr2 dr
2 + r2dΩ2

)
,

where dΩ2 = dθ2 + sin2 θdφ2 and k denotes the curvature
parameter of unit length−2. Inserting the metric ḡμν in Ein-
stein’s field equation, we get Friedmann’s equations for the
scaling factor a(t)

ȧ2

a2 − 1

3
Λ + k

a2 = κc2

3
ρ, (1)

3
ä

a
− Λ = −κ

2

(
ρc2 + 3p

)
. (2)

Until now, several decay laws in whichΛ is a function of time,
the scale factor, the Hubble Parameter and the deceleration
parameter have been discussed in the literature (see [8] for
an overview). Here, we consider a cosmological term of the
form

Λ = Λ(a(t)), (3)

It is convenient to include the Λ-term in the energy-
momentum tensor of the right-hand side. Therefore, we
define an effective density and pressure field

ρeff = ρ + ρb, peff = p + pb,

where ρb = Λ(a)/κc2 and pb = −Λ(a)/κ denote the back-
ground fields. Now, Einstein’s field equation can be written
as

R̄μν = κ

(
T̄ eff

μν − T̄ eff

2
ḡμν

)
, (4)

where

T̄ eff
μν =

(
ρeff + peff

c2

)
uμuν + peffḡμν,

is the effective energy-momentum tensor. The theory is well-
defined if

∇μT̄ eff
μν = 0,

is satisfied. Moreover, a straightforward calculation gives

d

da

(
ρeffa

3
)

+ 3
peff

c2 a2 = 0, p′
eff = 0, (5)

or equivalent

d

da

(
ρa3

)
+ 3

p

c2 a
2 = −a3 d

da
ρb, p′

eff = 0. (6)

Equation (5) is solved in the case of a matter dominated
universe by p = 0 and

ρ = F

a3 + 3

∫ a
Λ(α)α2 dα

κc2a3 − Λ(a)

κc2 . (7)

Therefore, it follows

ȧ2

a2 −
∫ a

Λ(α)α2 dα

a3 + k

a2 = κc2

3

F

a3 , (8)

3
ä

a
− 3

2
Λ(a) + 3

2

∫ a
Λ(α)α2 dα

a3 = −κc2

2

F

a3 . (9)

3 Conformally-related trace equation

In this section we provide the ground for a total energy dis-
cussion of an empty Friedmann universe which is compati-
ble with quantum field theory. To do so, we have to establish
the notion of total energy on a Lagrangian density such that
the Euler–Lagrange equation is consistent with Friedmann’s
equations. Therefore, we have to find a space-time metric
which is independent of the scale factor. In order to do so,
we start from the field equation for the Robertson–Walker
metric ḡμν and consider the transformed equation for the
conformally-related metric gμν.

Let u be a strictly positive C∞(M)−function. The met-
ric gμν = u−2 ḡμν is said to be conformally-related to ḡμν.

Introducing the notation ∇μ for the covariant derivative,
Δ = gμν∇μ∇ν and |∇u|2 = gμν∇μu∇νu, we note down
the relation for the Ricci scalar (see [6, p. 446])

u4 R̄ = u2R − 6uΔu.

Inserting the relation for the Ricci scalar into the trace of
Eq. (4), we see that

−6uΔu + Ru2 = −κu4T̄ eff,

which leads to

Δu − R

6
u + 2

3
Λ(a)u3 = − κ

6

(
ρc2 − 3p

)
u3.

Up to now the above considerations are valid for every strictly
positive u ∈ C∞(M). Fixing this function by u = a, we get
R = 6k and a Klein-Gordon equation which allows constant
coefficients

Δa − ka + 2

3
Λ(a)a3 = −κ

6

(
ρc2 − 3p

)
a3.

By using the conformal time dτ = dt/a(t), the conformally-
related metric gμν transforms to a curved Minkowski metric

ds2 = ημνdx
μdxν = −c2dτ 2 + 1

1 − kr2 dr
2 + r2dΩ2,

123



Eur. Phys. J. C (2018) 78 :126 Page 3 of 4 126

and the Klein–Gordon equation could be written in the form

− ä(τ ) − dV (a)

da
= −κ

6

(
ρc2 − 3p

)
a3,

V (a) = 1

2
ka2 − 2

3

∫ a

Λ(α)α3 dα + V0. (10)

Note that, by settingΛ(a),one can realise the usual potentials
from scalar field theory.

4 Vacuum energy

In this section we investigate the total energy density
of an energy-momentum tensor which is generated by
the Lagrangian density of an empty Friedmann universe.
According to [5,9], Lorentz invariance implies that the
energy density of the vacuum (zero-point energy) acts like a
cosmological constant. Hence, there has to be a decomposi-
tion of the form

ρΛ = ρzpe + ρnew, (11)

where the total zero-point energy density is defined as the
lowest energy (ground state) and can be expressed by

ρzpe = h̄k4
max

16π2c
= c2

16π2Gl2p
= 1

2πκl2pc
2 ,

(cf. [2,5]). Here, kmax = 1/ l p denotes a cut-off wave-number
and l p is the Planck length. Using the observed value for ρΛ

(cf. [1]), this requires a fine-tuning of 121 orders of mag-
nitude. Until now, no physical justification for Eq. (11) is
known.

Since ημν is independent of a, Eq. (10) is the Euler–
Lagrange equation of the Lagrangian

L = 1

κ

(
1

2
ȧ(τ )2 − V (a)

)
, (12)

and

T a
μν = 1

κ

(
ȧ(τ )2 + gμνL

)
, (13)

is the related energy-momentum tensor (cf. [10, p. 65]). Inter-
preting the energy-momentum tensor for a perfect cosmic
fluid, we get the total energy density and pressure

c2ρa = 1

κ

(
1

2
ȧ(τ )2 + V (a)

)
,

pa = 1

κ

(
1

2
ȧ(τ )2 − V (a)

)
. (14)

Further ȧ(τ ) depends on the coefficients of V (a). Using Eq.
(1), we get

ȧ(τ )2 = −ka2 + 1

3
Λ(a)a4.

Therefore, the total energy density yields

c2ρa = 1

κ

(
1

6
Λ(a)a4 − 2

3

∫ a

Λ(α)α3 dα + V0

)
. (15)

Using the setting V0 = 0, Eq. (15) is the physical justifi-
cation of Eq. (11) and yields

ρΛ(a) = Λ(a)

κc2 ,

ρzpe,Λ(a) = 6ρa

a4 ,

ρnew,Λ(a) = 4
∫ a

Λ(α)α3 dα

κc2a4 .

(16)

Hence, the fine-tuning happens automatically if an appro-
priate Λ(a) can be found that identifies the total energy of
the vacuum in quantum field theory and general relativity.
Therefore, we identify the zero-point energy of a quantum
system with the total energy density of an empty Friedmann
universe. In order to do that, we consider the model

Λ(a) = Λ0 + Λ1a
−r , r > 0, (17)

which was also investigated in [11]. Using Eqs. (15) and (16),
it follows that the total energy density is independent of Λ0,

i.e.

ρzpe,Λ = Λ1

κc2

r

r − 4
a−r , r �= 4.

Identifying the total energy densities and using the conven-
tion a0 = a(t0) = 1 for today’s scale factor, we get

Λ1 = r − 4

2πrl2p
. (18)

If one can fit (17) with present cosmological observations
(Λ(a)c2/3H2

0 is of order unity), then 4
∫ a

Λ(α)α3 dα/κc2a4

is identified as the cancellation mechanism which cancels 121
decimal places. As the consequence, there is no scale discrep-
ancy between the total energy densities and the cosmological
constant problem is solved.

It remains to consider some observational constraints. The
dynamics of the universe are determined by the Eqs. (7) and
(8), which depend on the term
∫ a

Λ(α)α2 dα

a3 = Λ0

3
+ Λ1

3 − r
a−r . (19)

Therefore, we get for the matter density and r �= 3

ρ = F

a3 + Λ1

κc2

r

3 − r
a−r , (20)

which is always positive if Λ1/(3 − r) > 0. Moreover, we
assume an initial singularity. From Eqs. (8) and (19), we can
see that a has an initial singularity if Λ1/(3 − r) > 0 is
satisfied again.

It remains to discuss some choices for the parameter r.
First, let 0 < r < 3. Since (18) leads to Λ1/(3 − r) < 0, we
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neglect this case. Further we have 3 < r < 4, which gives
the compatiblility condition Λ1/(3 − r) > 0. In [11,12],
this case was excluded from the considerations because it
was assumed without further substantiation that Λ1 is always
positive. In order to analyse the acceleration behavior, we
have to discuss the term

3

2
Λ(a) − 3

2

∫ a
Λ(α)α2 dα

a3 = Λ0 + 3

2
Λ1a

−r r − 2

r − 3
, (21)

from Eq. (9). Obviously, it follows from the considered
parameter range that the dynamical part of (21) has a dif-
ferent sign than the usual cosmological constant term. Con-
sequently, the solution of the cosmological constant problem
yields a cosmological term with the attractive effect of dark
matter.

Finally, using the settings

Ωk = − kc2

a2
0 H

2
0

, Ωm = κc4

3

F

a3
0H

2
0

,

ΩΛ = Λ0c2

3H2
0

, Ωdm = Λ1

3 − r

c2

ar0H
2
0

, (22)

where H0 denotes the actual Hubble constant, Eq. (8) could
be written as

1 = Ωk + Ωm + ΩΛ + Ωdm .

To relate the last equation with observations (cf. [1]), we
consider (Ωk,Ωm,ΩΛ,Ωdm) = (0, 0.05, 0.69, 0.26) and
H0 = 67.74 km

s Mpc . Using r = 4− ε, it follows from (18) and
(22) that the compatibility condition is fulfilled by

2.288 · 10−122 = 2πl2pH
2
0 Ωdm

c2 = ε

(4 − ε)(1 − ε)
≈ ε

4

which is satisfied by ε = 9.151 · 10−122. Moreover, for the
remaining parameters Λ0 and Λ1 we get

Λ0 = 1.110 · 10−52, Λ1 = −1.394 · 10−53.

5 Concluding remarks

In this paper, the solution of the cosmological constant prob-
lem is demonstrated by an application of a variable cosmo-
logical term Λ(a) = Λ0 +Λ1a−(4−ε). It has been shown that
the expansion field a satisfies the Klein-Gordon equation in
a non-dynamical space-time and that a variational cosmo-

logical term can realise the usual potentials from particle
physics. Further it was confirmed that the total energy den-
sity of an empty Friedmann universe is related to the cosmo-
logical term such that the fine-tuning problem was avoided
by the setting Λ1 = −ε/2π(4 − ε)l2p. As a consequence of
the constraint 0 < ε < 1, the initial singularity is guaran-
teed and the dynamical part of the cosmological term gen-
erates the attractive force of dark matter. Finally, the setting
of ε = 9.151 · 10−122 generates the missing mass of dark
matter which constitutes 26% of the matter-energy density.
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