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Abstract We study the effects of Gauss—Bonnet correc-
tions on some nonlocal probes (entanglement entropy, n-
partite information and Wilson loop) in the holographic
model with momentum relaxation. Higher-curvature terms
as well as scalar fields make in fact nontrivial corrections to
the coefficient of the universal term in entanglement entropy.
We use holographic methods to study such corrections. More-
over, holographic calculation indicates that mutual and tripar-
tite information undergo a transition beyond which they iden-
tically change their values. We find that the behavior of the
transition curves depends on the sign of the Gauss—Bonnet
coupling A. The transition for A > 0 takes place in larger sep-
aration of subsystems than that of A < 0. Finally, we examine
the behavior of modified part of the force between external
point-like objects as a function of Gauss—Bonnet coupling
and its sign.

Contents
I Introduction . .. ... ... ... . ........ 1
2 Entanglement entropy for black brane solutions: a
shortreview . . . . .. ... ... ... ... 2
3 Gauss—Bonnet gravity with linear scalar fields . .. 3
3.1 HEEofastrip . . . ... ... ......... 4
3.1.1 Low-thermal excitation m¢* < 1) ... 5
32 HEEofasphere . . . ... ........... 6
33 HEEofacylinder . . . ... .......... 6
4 Holographic n-partite Information and Wilson loop . 7
4.1 Holographic mutual information . . . . .. .. 8
4.2 Holographic tripartite information . . . . . . . 8
43 Wilsonloop . . ... ... ... ... ..... 10
5 Conclusion . . .. ... ... 11
Appendix . . . ... 12
References . . . . . ... ... ... ........ 12

4 e-mail: mtanhayi @ipm.ir

1 Introduction

The Anti-de Sitter (AdS)/conformal field theory (CFT)
correspondence postulates a relationship between quantum
physics of strongly correlated many-body systems and the
classical dynamics of gravity which lives in one higher
dimension [1]. Through this correspondence, a great deal
of progress has been made in understanding the dynamics
of strongly coupled gauge theories and it has also been fur-
ther extended to cover topics related to the condensed mat-
ter theory [2-5]. Actually, understanding the phenomena of
strongly coupled systems in condensed matter physics might
be considered as one important goal of gauge/gravity dual-
ity. Particularly, within the holographic point of view, much
attention has been paid to the description of systems with
momentum relaxation. Generically, on the gravity side, the
solutions of Einstein-Maxwell-dilaton theories have been
frequently employed to address the states of the underlying
field theory. The solutions of such theories have in fact a net
amount of charge and are fully translational invariant, so that
asmall perturbation, such as turning on an electric field, could
result in an infinite DC conductivity. It is obvious that such a
model cannot present a realistic description of real physical
systems. In condensed matter materials, due to impurities or
a lattice structure, the momentum is not conserved, which
leads to a finite DC conductivity. Thus, to give a realistic
description of materials in many condensed matter systems,
translational symmetry must be broken. This can be done,
for example, by breaking the translational invariance prop-
erty [6—13]. In this direction, Andrade and Withers presented
a simple holographic model for momentum relaxation [14].
Their model consists of Einstein-Maxwell theory in (d + 1)-
dimensional bulk space together with d — 1 massless scalar
fields. The neutral scalar fields in the bulk theory are dual
to some operators with spatially dependent sources ¢ (x').
These spatial sources can be chosen in such a way that the
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bulk stress tensor and hence the resulting black brane geom-
etry are homogeneous and isotropic. The momentum relax-
ation concept is realized through these spatially dependent
sources. Precisely, in this case it is shown that the holographic
stress tensor obeys a conservation equation with contribu-
tions from the scalar vacuum expectation value {Oy)

VATV = (04)V/ 9,

which is indeed the modified Ward identity where 7, j label
the boundary space-time directions. Noting that the Ward
identity yields momentum conservation in the translationally
invariant solution, its modification in this sense results in
breaking the translational invariance of the theory.

Inserting scalar fields into the theory in fact leads to a
deformation of states at the corresponding dual field theory
and it would be a relevant question what happens to some spe-
cific concepts coming from holographic computations. For
example some nonlocal measures of entanglement in such a
model have recently been studied in [15] via the holographic
methods.

The entanglement entropy in quantum field theories is an
important quantity but difficult to compute in general. How-
ever, in strongly coupled field theories, one can use holo-
graphic methods to calculate such nonlocal quantities. For
example, to compute the holographic entanglement entropy
(HEE) in the Einstein theory of gravity, there is an elegant
proposal made by Ryu and Takayanagi (RT) [16]. According
to the RT proposal, for a definite entangling region in the
boundary, the entanglement entropy is related to the minimal
surface A, in the bulk whose boundary coincides with the
boundary of the entangling region,

s= A (1.1)
4Gn
where Gy stands for Newton’s constant.! The above formula
only works for CFTs dual to Einstein gravity. In such the-
ories, the central charges are the same, since on the gravity
side there are no extra parameters to distinguish the cen-
tral charges. By expanding the parameter space of the cou-
plings one can address this problem, which can be done by
introducing higher-derivative corrections in the action [18—
23]. Thus, to study general field theories in the context of
holography, higher-derivative terms are in fact needed at the
gravity side. In general, higher-derivative terms could poten-
tially introduce ghost degrees of freedom; however, it is well
known that a special combination of curvature squared terms,
namely the Einstein Gauss—Bonnet theory, leads to second-
order equations of motion and the theory is free of ghosts.
Holographically, the Gauss—Bonnet (GB) term plays the role

! In the extended version of RT proposal named the HRT proposal, for
time-dependent geometries, one should use the extremal surface [17].

@ Springer

of leading-order corrections to the Einstein gravity and in
the context of AdS/CFT, the GB background is dual to a the-
ory with different central charges, i.e., a- and c-functions; it
is noted that AdS solutions resulting from Einstein—Hilbert
action yield the same a and ¢ [24]. Motivated by the fact
that adding higher-curvature terms into the action may help
to investigate several new aspects of the theory, in this
paper, we consider certain nonlocal probes of entanglement
in momentum relaxation theories when the action contains
GB term. More precisely, we study the holographic entan-
glement entropy (HEE), mutual and tripartite information;
we also make a comment on the potential between external
objects by computing the expectation value of Wilson loop.
We find the semianalytic expression for the coefficient of
universal term in HEE which could introduce a modified ‘c’-
type central charge in the corresponding dual quantum field
theory.

In order to compute HEE in the semiclassical regime when
some higher-order derivative terms are added into the Ein-
stein gravity, RT proposal should be replaced by some other
recipes [19,25-28]. Some related work on this subject can
be found, for example, in [29—32] and the references therein.

In this paper, we will follow the proposal of [26] to study
the HEE which will be reviewed in Sect. 2. We will focus
on GB gravity theory with momentum relaxation and com-
pute the HEE for strip, spherical and cylindrical entangling
regions in Sect. 3. In Sect. 4, other measurements of quantum
entanglement in this setup will be considered, i.e., mutual and
tripartite information and their quantum phase transitions and
also the Wilson loop. In fact, we are interested in the effect
of GB corrections to these quantities in holographic theo-
ries with momentum relaxation. The subject is concluded in
Sect. 5. Finally, in a short appendix we present some mathe-
matical details.

2 Entanglement entropy for black brane solutions: a
short review

Entanglement entropy is an important nonlocal measure of
different degrees of freedom in a quantum mechanical system
[33]. This quantity similar to other nonlocal quantities, e.g.,
Wilson loop and correlation functions, can also be used to
classify the various quantum phase transitions and critical
points of a given system [34].

To define entanglement entropy in its spatial (or geomet-
ric) description, let us divide a constant time slice into two
spatial regions A and B complementing each other. Thus, the
corresponding total Hilbert space can be written in a specific
partitioning as H = H 4 ® H p. By integrating out the degrees
of freedom that live in the complement of A, the reduced den-
sity matrix for region A can be computed as pg = Trp p
where p is the total density matrix. The entanglement entropy
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is given by the Von Neumann formula for this reduced density
matrix as follows:

S = —Tr palogpa. 2.1
For local d-dimensional quantum field theories, the entangle-

ment entropy follows the area law and it is infinite; the struc-
ture of the infinite terms are generally as follows [19,35,36]:

8a—2(A4)

ISR SLC7Y)
ed—2

€

S(V) =

+ g0(Aa) Ine + s(V), (2.2)

where € is the UV cutoff, A4 and V stand for the area and
volume of the entangling region in the boundary, s(V) is
the finite part of entropy and g; (A4) are local and extensive
functions on the boundary of entangling region, which are
homogeneous of degree i. The coefficient of the most diver-
gent term is proportional to the area of the entangling surface
and this is indeed the area law which is due to the infinite cor-
relations between degrees of freedom near the boundary of
the entangling surface. The coefficients of infinite terms are
not physical whereas the coefficient of the logarithmic term
is physical and universal in the sense that it is not affected by
cutoff redefinitions.

Although computing the entanglement entropy in the con-
text of field theory is indeed a difficult task, thanks to the
AdS/CFT correspondence one can use the RT proposal to
find HEE. However, as mentioned in the introduction, for
actions with higher-derivative terms, one should use other
proposals to compute HEE. For example, in the case of cur-
vature squared terms with the following action:

1
/dd+1x«/—g|:R —2A +aR?

T 167Gy
M

+ DR R + ¢Rypo RMP Z(aqs, } (23)

pursuing the proposal of [26], HEE is glven by
A(Z
( ) f Jod® x| 2aR
4GN

4Gy
+b< wnf'n} Z(T KO )
+2¢ ( Muaﬁn f’l I’l ZK:(Z)K:Z])}>:| (24)

In the above equations the cosmological constant is A =

d(d D! , ¢; are the minimally coupled massless scalar fields,
o is the induced metric determinant, n; (i = 1, 2) are the
orthogonal normal vectors on the codimension two hyper-
surface ¥ and IC,W are the extrinsic curvature tensors on X
defined as

S =

K§) =Wl i)y, by =8548 (), (2.5)
i

where £ is 41 for time-like and —1 for space-like vectors. It
is noted that the first term in (2.4) is just the RT formula.

The corresponding equations of motion of (2.3) are given
by

Vozva(pi =0,
1
Ry — zguvR + Aguv

1
- Eg“v (aR® + bRaﬁR"‘ﬁ + cRapyo RPYo)

+2aR, R —4cR,“ Ry
+ 2b 4+ 4¢)R*P Ry + 2¢ R, P Ryup,

b
+ <2a + 5) g Va VR + (b +4¢)Vy V' Ry,

— (2a +b+20)V,V, R

1
+ Z ( v i 0% i — Eamam) =0. (2.6)

It is worth mentioning that the contribution of scalar fields
to the stress tensor is supposed to be homogeneous, thus one
gets a homogeneous and isotropic black brane solution. The
solution can be written as

ds* = L2
,0

where f(p) is a certain function of p and we will return to
this solution later.

Since we are specifically interested in studying the GB
corrections in holographic theories with momentum relax-
ation, in what follows, we will limit ourselves to the five-
dimensional GB gravity in the bulk with three specific scalar
fields which are responsible for breaking the translational
invariance in the dual field theory.

— f(p)dt® +md,o +de, ) 2.7

3 Gauss—Bonnet gravity with linear scalar fields

The GB gravity can indeed be obtained by settinga = ¢ =
—%2 = 212 in (2.3), where A is a dimensionless coupling
constant that controls the strength of the GB term. The five-
dimensional GB gravity is the simplest example of a Love-
lock action and it is itself important because, in a given back-
ground, the equations of motion for a propagating perturba-
tion contain only two derivatives.

We work with the following Einstein GB scalar gravita-

tional action:

@ Springer
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1
7= dxJ/—g| R
1671GN/ * g[ *
M
AL2

+ =5 (Rupo RM7 — 4Ry, R + R?)

1 3
—52(8@)2],
i=1

where the action contains massless scalar fields to incorporate
momentum relaxation in the system and they are considered
to be linearly dependent on spatial coordinates, i.e.,

3.D

¢i = aix1 + bixy + cix3. (3.2)
Such an ansatz for massless scalar sources guarantees the
solution to be homogeneous and isotropic. According to
AdS/CFT dictionary, massless scalar fields are dual to
marginal operators of the corresponding field theory and it
was argued in [14] that such a spatially dependent scalar field
in the bulk modifies the Ward identity, which leads to break-
ing of the translational invariance in the dual field theory.
The relevant equations of motion for (3.1) can simply be
obtained from (2.6) and the theory admits an asymptotically
AdSs5 black brane solution as (2.7) in which f(p) is given by

1 - JT—%g(p)

flp) = 7 ,

(3.3)

where
2.2 2,2
asp 4 1 o pp
=1—— —mp*, m= 1 - , (34
g(p) g Tmen m p;;“( ) ) (34

with p;, being the radius of the horizon and the constants
a;, b; and ¢; satisty the following relations:

3 3 3

Zaiz = Zb,z = chz =a2,
i=1 i=1 i=1

3 3 3

Zaibi = Zaici = Zbici =0.
i=1 i=1 i=1

It is noted that f(p;) = 0 and the UV boundary is defined
as p — 0 and the temperature of the black brane is given by

1 2.2
T:_<1_w>,
T Pp 8

There is an interesting feature for the momentum relax-
ation methods, i.e., at zero temperature one gets f(pp) =
% f()p=p, = 0, which is an extremal black brane.
Although there is no U (1) charge to produce an extremal
black brane solution in this case, the momentum relaxation

(3.5)

(3.6)
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parameter gives us such a feature similar to the case of the
RN-AdS black brane.

In the model that we are considering there are two defor-
mations in the field theory due to the momentum relaxation
parameter and GB term. In the following, we will develop
the behavior of HEE of a quantum field theory whose states
are in fact under the excitation of both momentum relaxation
and GB term.

3.1 HEE of a strip

In order to compute HEE, let us consider the following strip
entangling region:

14 L
—— <X =X< -,
2

5 (3.7)

. H
—— < xpand x3 < —,
2 7 355

where we assume H > ¢ and H plays an infrared regula-
tor distance along the entangling surface. The corresponding
codimension two hypersurface in a constant time slice can
be parametrized by x; = x(p); therefore, the induced metric
becomes

L2
dsty = ?[(x/2 + f7hdp? + dx2? + dxs?], (3.8)

where the prime stands for the derivative with respect to p.

After doing some computation which are partially given in
the appendix, the entropy functional is found as follows>:

H2Lg/\ /x/2+f 1

4G N
8 <1 f(fx Qpx" +3x") +3) — ,Of)‘ 3.9)
1+ fx'°

The next step is minimizing the entropy functional (3.9)
in order to find the profile of the hypersurface which has
been parametrized by x(p). It is noted that x(p) is sup-
posed to be a smooth differentiable function with the condi-
tion x(0) = £/2. To proceed, one may consider the entropy
functional as a one-dimensional action in which the corre-
sponding Lagrangian is independent of x(p), which leads
to a conservation law. In other words, let us write (3.9) as
= f dpL; thus the equation of motion becomes

o (dL oL . oL
— —|—)=¢C, with — =0,
ap \ ax” ax’ dx

2 GB gravity is a special form of curvature squared action and it was
shown that for five-dimensional GB gravity, the proposal of computing
HEE presented in [26] reduces to [19,25] and the results are the same.
Note that, taking into account the boundary term, only modifies the
coefficient of the leading UV-divergent term.

(3.10)
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where C is a constant which can be fixed by imposing the
condition that at the turning point p; of the hypersurface in the
bulk one has x’(p;) — oo. After minimizing the functional
of (3.9) and using the condition of the hypersurface turning
point, one gets the following conserved quantity along the
radial profile:

21)

IHfeE-om P
32 T 53

f(f— @3.11)
+

In principle, the above equation allows us to find x’(p). In
general, it is a difficult task to solve (3.11) to find a proper
profile since it is a cubic equation for x’(p). However, in some
special cases, the semianalytic solutions might be obtained.
Up to the leading order of A and «, and after making use of
the following expression:

Y2 Pt ,
—=/0 x'(p)dp,

> (3.12)

one obtains

2 3 2
_ ﬁ(1+fx)r(3)p L <
r(5) 2"

3 3
e LARCRE)

which can be inverted to find the turning point of the proposed
hypersurface in the bulk as follows:

4
I (3) r(3) i
27T (3) 19272T

" B3
st (1)’

(3.14)

Plugging the results into (3.9), one gets the HEE as follows:

H?*L3
S =

3.15
4GN ( )

¢
( +blog—+ >+O(k2,a4),
€

where € stands for the UV scale which has been defined by
the radial profile and

5,
a= ) y
23 e
b—4(1 2)»)05,
47321 (2)°
c:_ﬂ (33) (14_2)\)
r(3) 2

The leading divergent term in (3.15) is in fact the usual area
law; on the other hand, the second term which is the universal
logarithmic term is interesting. For a strip entangling region
in CFTy~», in principle, there is no such a universal term
in the HEE. Nevertheless, due to the momentum relaxation
parameter and GB coupling, up to O(1%, a*) one obtains a
logarithmic universal term as follows:>

(3.17)

Suniv, =

This term is physical and universal in the sense that it is not
affected by a cutoff redefinition and can be used to intro-
duce a modified ‘c’-type central charge in the corresponding
dual quantum field theory. Using holographic entanglement
entropy for the strip geometry, Myers and Singh [24] intro-
duced a candidate for a c-function in arbitrary dimensions.
In a CFTy it goes as follows:

2 380
— 3.18
H2 o¢ (3.18)

where S(£) denotes the entanglement entropy for an interval
of length ¢ and the precise value of § has been identified by
holographic calculations which is given by

)

(3.19)
16x32r (2)°

In our setup by applying (3.18) and in the vicinity of A = 0,
one obtains

a202(2 — 30T (g)3>
where ¢(0) = g5~ G . Note that by turning off the momentum

relaxation one gets the modified version of this function due
to the GB term at the linear level, which was found in [24].

¢ = ¢(0) (1 + 24 (3.20)

2 64321 (2)°

3.1.1 Low-thermal excitation (m€* < 1)

In a special case of setting « = 0, we recover the five-
dimensional GB AdS black brane solution with a Ricci-flat
horizon which was found in [37]. On the other hand, for low-
excited state of CFT and near the UV boundary, (2.7) reduces
to

1:2
ds®> = = p ( g(p)dt* + ——dp* +dX2+dX2+dX3>

(3.21)

( )

3 This was first observed in [15] and (3.17) is indeed its A-correction.

@ Springer
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where g(,o) =1- m,o4 + O(@mA) and the modified AdS
radius L is defined by

- L2 1 —/1—4x
L2 = —, where foo=—7—7—.

; o) (3.22)

An excited state due to such a deformation in CFT is called a
thermal excitation. Thus, in particular, for the limit of me* «
1, the change of entropy can be obtained via the following
relation:

AS—H2]:2/d 5S LA
= 4Gy P 59 g=148,

where S, up to the leading order of GB coupling, is the inte-
grand of entropy functional (3.9) given by

VI @) 427 (p)
e
. (1 2 OGN ©)Cp"(0) £33'(0) +3) ~

(1+ g(o)x (0D’

(3.23)

pg/(p)) .

(3.24)
Therefore, one obtains
- 2
H2 L3 (1 —60f)T(5)T(3) ,
ASZSm#()—S()=4G ) me=,
vo40yar(3)°T(3)
(3.25)

where Sy is the HEE for the vacuum case or pure AdS, namely
a =i =m =0, and it is given by

H2 (1 47T ()]
=\ T e Ty )
r(s)

6

(3.26)

The HEE (3.25) for low-thermal excitation due to the GB
term will reproduce the result in [21].

3.2 HEE of a sphere

In this case, let us use the metric (2.7) with > dxi2 =dr’ +
r2dQ3 in which £ (p) is given by (3.3). On the boundary, the
entangling region is a sphere with radius r < ¢; therefore,
the corresponding codimension two hypersurface in the bulk
is realized by t = 0 and r = F(p). With this assumption,
the induced metric becomes

L2
dsiy = F[(F/2 + " Ydp? + r2de? + r*sin® 6d¢?).
3.27)

@ Springer

Pursuing our previous example on strip entangling region,
the corresponding entropy functional reads

_nL3/ F2 /1+fF’2

(1—}—‘f—F/2)2<f F(4,0F/2—2,0FF// 3FF/)

2
+pf!(F = pF') + %

F/Z
—2pF" + pF > —3fF>].

By extremizing the obtained entropy functional and after
making use of proper boundary conditions and for small
parameters, the perturbative profile is found as follows*:

A
F(p) =\/p[2—p2[1 -3

2 1

Pt
——— Y, W R P B (—)
24(,0,2—,02)3/2( S

+(2p,2—p2)< p? — p2(p* +5p7)

p——

From the identity of £ = F(0) one can obtain the turn-
ing point in terms of the entangling region length. Thus, a
semianalytic computation results in the following HEE for a
sphere:

+ fp <4F/ (3.28)

+6p> log ( (3.29)

S =

L3 —-130)0 1 a??
2¢2

Q2130 — —
2Gy 2 )~ 3

1 . 20
+4 01+ 0% — 4)log — |. (3.30)

3.3 HEE of a cylinder

In the case of the cylinder, let us parameterize the metric (2.7)
as

ds2=L2( F(p)dt* + ! —dp?
p? f(p)

+dz> 4+ dr? + r2d¢2). (3.31)
The entangling surface is a cylinder » = € onthe t = 0
surface in this boundary geometry. We also introduce a regu-
lator length H for the z direction which is along the cylinder
length. By taking the profile as r = F(p), the entropy func-
tional becomes

4 In the case of spherical and cylindrical entangling regions, we will
consider the terms up to O(Az, ot a?, m).
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THL? F [1+4 F’2
= 2GN / ,0_ f )\]:cyl)

£, = MF (F(zpF”+3F)—2p(F ) +pf (0F' —
cyl. —

2F) +2f(p(pF" —

2F') +3F)

F(I+ fF2)?

(3.32)

Minimizing the above expression results in the following
equation of motion:

2f3F2(@rpF? + F(—4\pF" — 60LF +3F"))
+2f2[F (pF'(F? +2))

+6F(F"? — 1)) — pF"(6)ApF' + F(F"”
+0o(f2xp — FF) +2)

— fT4p(F?(pf = 1) + 1)

+ F(F'(pf'(F”* = 61) — 6) + 2pF")] = 0,

—21))]

(3.33)

which should be solved to obtain a proper profile, which is
indeed a difficult task. However, to identify the universal con-
tribution, the near boundary behavior of the minimal surface
would be sufficient. Thus, the asymptotic solution of this
equation can be considered as

F(p) =ci+cp+ep*+---, (3.34)
for which one finds

= =0 _ + +O(x2 4, (3.35)
=4, =V, (3= 40 a0 o .

after making use of the boundary condition F(0) = ¢. By
substituting the asymptotic form of the profile in (3.32), the
universal part of HEE for the cylinder is finally obtained as
follows:

THL? —2+7x 4 20202 | 1 (3.36)
og —. .
2Gx 16¢ g

Suniv. =

It is well known that the holographic computation of the
Weyl anomaly could relate the gravity parameters G y and A
to the central charges of dual CFTs [23]. In two dimensions,
the central charge is related to the conformal anomaly via
(T“ ) = 55 R, where R is the Ricci scalar. In principle there
are two trace anomaly coefficients in four-dimensional CFTs,
namely c- and a-functions
(T} ~ —aEq + cWopyn WP, (3.37)
where E4 and Wy, are, respectively, the Euler density and
Weyl tensor. In this way it is argued that for a spherical entan-
gling region the universal part of the HEE would be propor-
tional to a while for a cylindrical entangling region it relates
to c-function [38]. However, for all AdS backgrounds, one
obtains

S 7L e 2~ aan for sph
. = T~ —_— = — (o) —, Or sphnere,
univ. 2Gn g a g P
nl3 H £ E .
univ. = 16GN @ —1lo g - = —57 log —, for cylinder,

(3.38)

which means for all theories dual to Einstein gravity that one
gets the same central charges, namely a = ¢ = SG . On
the other hand, for higher-curvature gravity theories these
coefficients get modified due to stringy corrections (see [39]
for GB gravity). In our setup, a holographic computation
shows that the coefficients of universal logarithmic terms
have been modified as follows:

‘¢t = c<1 — %)t — a2€2>,

‘a‘ = a(l — %)\, — %a2€2>.

This means that deforming the theory by adding higher-
curvature terms and some specific scalar fields to break the
momentum conservation results in a change of the universal
terms of the dual field theory. And the corresponding coeffi-
cients may be interpreted as the corrected (modified) central
charges of the dual theory.

(3.39)

4 Holographic n-partite Information and Wilson loop

In addition to entanglement entropy, the n-partite information
and also the Wilson loop are in fact useful quantities devel-
oped in the framework of gauge/gravity duality. In the case of
two and three entangling regions, the n-partite information is
equivalent to holographic mutual and tripartite information,
respectively. These quantities indicate the amount of shared
information or, more precisely, the correlation, between the
entangling regions [40]. On the other hand, the Wilson loop
is in fact another nonlocal operator which can be used as
an important probe for studying phase structures of gauge
theories. Investigating the effect of higher-order terms and
momentum dissipation on these quantities is the main task
of this section.
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Sdis. : Q Secon. : Q

A1 A2 Al A2

Fig. 1 Schematic representation of two different configurations for
computing S (A1 U Az). In the case of a disconnected diagram S(A1 U
Ay) = 2S8(¢), whereas for a connected diagram S(A; U Ay) = S(2¢ +
h) + S(h)

4.1 Holographic mutual information

For two separated systems, e.g., A1 and A3, the mutual infor-
mation would be a proper measure for quantifying the amount
of entanglement (or information) that these two systems can
share. It is shown that, for two separated systems, the mutual
information is a finite quantity and is given by [41]
I (A, A2) = S (A1) + S5(A2) — S(A1UAy), 4.1
where S (A U A») is the entanglement entropy for the union
of two entangling regions. In quantum field theory, mutual
information is used as a geometrical regularization of entan-
glement entropy. It is shown that holographic mutual infor-
mation undergoes a first-order phase transition due to a dis-
continuity in its first derivative [42]. Holographically, this
phase transition has in fact a simple geometrical explana-
tion, e.g., for the union of two strips with the same length
¢ separated by distance h, there are two different configu-
rations which are schematically shown in Fig. 1. It is worth
mentioning that we have restricted ourselves to the case in
which the entanglement entropy is an increasing function of
the entangling region. Therefore, the mixed configurations
have not been considered [43].

Depending on the value of //¢ the corresponding mini-
mal configurations may change from one to another and this
defines a critical ratio as r.,j;. = h/£, in which

h
Seon. 0 < 7 < Tcrit.

h
Sdis. Terit. = 7

S(AL U Ay) = { 42)

Consequently, the holographic mutual information vanishes
or takes a finite value which can be written as

I(Ay, Ay)

_ {ZS(Z) —Sth)—Sh+2), 0< % < r;.lm., @3)
0, Terit. = s
where in an AdS5 background one obtains r,j;, = V3-1.1t
is noted that in each case S stands for HEE of the correspond-
ing entangling region which is given by (3.15). Now the aim
is to study the effect of « and A on the mutual information
and its phase transition. In the presence of momentum dissi-
pation and a GB term, let us write the mutual information as

@ Springer

I (A1, Ay) =1y (A1, Ay) + Al (A1, Ay), 4.4)

where Iy (A, A>) stands for the mutual information when
a = A = 0, and after making use of the corresponding
entanglement entropies for ¢, & and 2¢ + h regions from
(3.15), it is obtained as follows:

H?L3
I = 0,
0= %Gy °
. 4713/2F(%)3( 1 2) 4.5)
ip = — —— ). .
0 r(dy \aecrn? "0
6
On the other hand, the correction part becomes
H?L3 3 9
Al (A, Ay) = 1— 2 )a?ip + =i
(A1, Az) rem << 2>al1+210)
+00%, at), (4.6)
where
62
i1 = 4.7

—log —.
4 h(2¢4h)

As shown in Fig. 2, by turning on the momentum relax-
ation parameter, the mutual information between two regions
decreases, whereas for a fixed momentum relaxation param-
eter, the mutual information linearly increases by the GB
parameter.

Moreover, Fig. 3 shows the normalized curves of the phase
transition as a function of GB and momentum relaxation
parameters. One observes that, for a fixed momentum relax-
ation parameter, the phase transition of holographic mutual
information takes place at larger distance by increasing the
GB parameter (left plot in Fig. 3). The general behavior of
the phase transition is decreasing by «, though depending
on the sign of the GB coupling 1, it behaves differently; for
A > 0 the phase transition occurs in larger 2 compared to the
cases of A < 0.

4.2 Holographic tripartite information

Besides mutual information, in a three-body system with
topological order, tripartite information might be utilized as a
quantity to characterize entanglement in the states of the sys-
tem. It was first introduced in [44] as the topological entropy
and defined by

1B (A1, Ay, A3) = S (A1) + S (A2) + S (A3)
—S(A1UA) — S(A1UA3)
—S(A2UA3))+S(ATUAU Az),
4.8)

where S (A1 U Az U A3) is the entanglement entropy for the
union of three subsystems. It is shown that the tripartite infor-
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Fig. 2 Left plot: the behavior of mutual information as a function of GB parameter for different fixed values of «. Right plot: the behavior of
mutual information as a function of momentum relaxation parameter for different fixed values of A. It is noted that in both of the figures we set
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A a
Fig. 3 Leftplot: normalized transition curve 7, = :;i‘o as a function of A for fixed values of . Right plot: normalized transition curve 7erit. = r’;%‘o

crit.
as a function of « for different values of A. It is noted that in both of the figures we set £ = 1

crit.

oo L N

A A Az

5, OO 55®Q

Fig. 4 Schematic representation of competing configurations in the computation of S(A; U A;) and S (A} U Ay U A3)

mation is always finite even when the regions share bound-
aries. To compute the holographic tripartite information, the
union terms of S(A; UA ;) and S (A1 U Az U A3) deserve to
be discussed further. For three strips, A, A> and A3 of the
same length ¢ separated by distance /, Fig. 4 shows schemat-
ically all possible diagrams for computing the union parts of
the tripartite information. The rest of the configurations can
be obtained by rearranging these.
Accordingly one obtains

28 (0) = S,
SQC+h)+ S (h) =S,
S (3¢ +2h) + S (£ +2h) = Ss,

38 (0) = Su,
S (3C+2h) + S (£+2h) + S (£) = Ss,
SQRL+h)+S®) + S(h) =S,

S (30 +2h) +2S (h) = Sy.

S(Al'UAj)

S(A1UAU Az)

Therefore, one can write the following expression for the
tripartite information:
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1BV (A1, Ay, A3) = 35 (0) — 2min (S}, S2)
—min {Sy, $3} + min {S4, S5, S¢, S7} .

4.9
As a special case when o = 0, Eq. (4.9) reduces to
1A, A2, A3)
S =25 +20)+S5S2h+3), 0< % <ry,
=1 25(h)—-3SO+SQh+30), r=%<nr,
0, r<t
(4.10)

where in the AdSs background one finds two critical dis-

tances: r| = V3 —1and Iy = @, where the value of the
tripartite information has been changed identically.

Similar to the mutual information, one can investigate that,
in the presence of momentum relaxation parameter, the tran-
sition curves show a decreasing behavior with respect to «
and X, and for positive (negative) value of A, the phase tran-
sition in tripartite information happens in a larger (smaller)
ratio than the case of A = 0.

We end this subsection with a comment on a special prop-
erty of tripartite information in holographic theories. The
tripartite information can be written in terms of the mutual
information as follows:

131 (Ay, Ay, A3) =1 (A1 U Ap)

+1 (A1 UA3) —I(Ay, Ay U A3).
411

For arbitrary states of systems, tripartite information has no
definite sign, namely, depending on the underlying field the-
ory, this quantity can be positive, negative or zero [41,45,46].
However, in strongly coupled CFTs with holographic duals
it is argued that tripartite information is always negative
[47,48], and this property is related to the monogamy of the
mutual information.’ In principle, it can be concluded that the
holography leads to a constraint on this quantity and its sign
might be employed in a variety of work (see for example
[49,50]). In Fig. 5, we have plotted the tripartite informa-
tion as a function of momentum relaxation parameter and
GB coupling. One observes that it always remains negative.
This behavior also holds when one changes the length of
entangling regions for the given (fixed) values of momentum
relaxation and GB coupling parameters.

5 In the context of quantum information theory, the inequality of the
form F(A1, A2) + F(Ay, A3) < F(A1, ApUA3) is known as the
monogamy relation. This feature of measurement is related to the secu-
rity of quantum cryptography indicating that entangled correlations
between A; and Aj cannot be shared with a third system Az without
spoiling the original entanglement [45].

@ Springer

4.3 Wilson loop

The Wilson loop has some properties similar to the entangle-
ment entropy and it can be used to investigate the phase transi-
tions in quantum systems. Namely this quantity characterizes
phases of gauge theories in terms of the potential between
electric charges. The expectation value of the Wilson loop,
which is related to the effective potential between a quark
and antiquark pair, can be approximated by the gauge/gravity
correspondence as [51]

A(T)

(W) ~ e 2nd,

(4.12)

where (2ra’) ! is the string tension, ¥ is the string world
sheet that extends in the bulk and A(X) stands for the
Nambu—Goto action for the string which by saddle point
approximation reduces to the minimal surface of the clas-
sical string. Thus, for a rectangular Wilson loop of width ¢,
the corresponding potential between the quark and antiquark
is given by

L> (P p? f(p)
V=ca | 3\ oot — ot
T Je p=\ fp)os —p

where f(p) is defined by (3.3). After doing the same com-
putation as in the previous section, we find that

2
21 2r(3)"1
V:VOAdS+AV=—|:—— (4) ]

(4.13)

“lerayt
2| r 3)2 2
+L_/|: (T)Zﬁ_n(3x+2)je] @1
o Lr(y°t 1921(3)

Therefore, after regularization and subtracting the effective
potential of the AdS vacuum, the first-order correction of
force between the quark and antiquark in this model is found
as follows:

d L? 1“(4%)2 A
AF = _ﬁAV = —/ 1 2£—2
LT (3)

n 71(3)»+2)052:|'

1921 (3)*
(4.15)

Noting that from the regularized part of AdS one receives
an attractive force between these external particles, the cor-
rection due to the momentum relaxation is always repulsive
and independent of ¢, which is in agreement with the results
in [15]. However, the contribution of GB coupling is some-
how nontrivial. The A-correction part depends on separation
£ and according to the sign of GB coupling could be either
positive or negative which results in decreasing or increasing
attractive force between quark and antiquark, respectively.
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Fig. 5 Left plot: contour plot of tripartite information for £ = 1 and & = 0.7. Right plot: tripartite information for « = 0.3, . = —0.194 (solid
curves) and A = 0.09 (dashed curves). In all ranges that we have considered / Bl <0

5 Conclusion

In principle, in the holographic models, considering higher-
curvature terms in the gravity action is well motivated for
several reasons; in particular, addressing different types of
central charges could be an example. The Lovelock gravity
is indeed the simplest set of higher-derivative terms in which
various Euler densities appear as higher-derivative interac-
tions in the gravity theory.

In this paper, we studied the effect of higher-order deriva-
tive terms on some nonlocal probes in the theories with
momentum relaxation parameter. There are in fact two kinds
of deformation in the states of dual field theory in this model:
the higher-curvature terms, which could address the low-
energy quantum excitation corrections, and the deformation
due to scalar fields, which are responsible for the momen-
tum conservation breaking. We used holographic methods to
obtain the corresponding changes due to these deformations
in the coefficient of the universal part in the entanglement
entropy. Higher-order gravity theories are interesting in the
sense that they provide us with an effective description of
quantum corrections and one may probe the finite coupling
effects and the a- and c-theorems via making such corrections
to the Einstein gravity theory in the bulk space. We used five-
dimensional Einstein GB gravity together with three spatially
dependent massless scalar fields to obtain the corrections to
universal and finite parts of HEE for strip, spherical and cylin-
drical entangling regions. For an interval of length ¢ on an
infinite line, Myers and Singh introduced a candidate for the
c-function in a d-dimensional CFT which is the coefficient
of the finite term in entanglement entropy. This expression
in d = 4 is given by (3.18) and it can be considered as a
function of the anomaly coefficients in the underlying CFT.

We showed that, in the presence of the momentum relaxation
parameter and GB coupling, this expression has been mod-
ified as (3.20). Moreover, in computing the HEE for a strip,
a universal logarithmic term appears due to the momentum
relaxation parameter which has been modified by the GB
coupling. This universal term vanishes at A = 0.66; how-
ever, noting that the GB coupling is constrained to a small
range, i.e. —0.194 < 1 < 0.09 [39,52], one gets a positive
valued universal term due to both the momentum relaxation
and the GB term in the present range.°

In the case of spherical entangling region, the coefficient
of the universal term in HEE could potentially address the
a-central charge of the corresponding dual conformal field
theory whereas the c-central charge is related to the coeffi-
cient of the universal term in HEE for the cylindrical entan-
gling region. For theories dual to Einstein gravity one obtains
a = c;however, in the case of GB gravity one obtains unequal
a and c, this is indeed the main motivation of considering
such a term in the gravity action. We obtained the modified
coefficients of universal terms which can be interpreted as
‘c’-type central charge of dual field theory.

In the context of quantum information theory and also
quantum many-body systems, for two disjointed systems,
the mutual information is usually used as a measure of the
quantum entanglement that these two systems can share; the
mutual information can also be utilized as a useful probe
to address certain phase transitions and critical behavior in
these theories. For example, it is well known that mutual

It is worth mentioning that considering the GB terms non-
perturbatively leads to the violation of causality in any pure Gauss—
Bonnet gravity [53]. Moreover, we assume that momentum relaxation
does not change the constraints on the GB coupling. We thank the ref-
eree for his/her useful comment on this point.
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information undergoes a transition beyond which it is identi-
cally zero; this kind of transition, which is called a disentan-
gling transition, is in fact a universal qualitative feature for all
classes of theories with holographic duals [54]. In this paper,
we considered the effect of the GB term on such a phase tran-
sition in both the mutual and the tripartite information and it
was shown that the behavior of such a phase transition is dif-
ferent, depending on the sign of GB coupling. For two strips
with the same length separated by distance h, we showed
that, for a fixed momentum relaxation parameter, the phase
transition of holographic mutual information takes place at a
larger distance by increasing the GB parameter. The general
behavior of the phase transition is decreasing by «, though
for A > 0 the phase transition occurs in larger 4 compared
to the cases of A < 0. For A > 0 this transition happens at
a larger value than the case of A < 0. We also showed that
the tripartite information has a negative value in our setup,
which means that mutual information is monogamous.

Moreover, by considering the holographic Wilson loop,
we found that the sign of A plays a crucial role in the compu-
tation of the effective potential and its corresponding force
between point-like external objects. The result shows that
both momentum dissipation and GB coupling parameters
can lead to a correction of the potential and the correspond-
ing force between quark and antiquark. Noting that from
the regularized part of AdS one receives an attractive force
between these external particles, the correction due to the
momentum relaxation is always repulsive and independent
of ¢, which is in agreement with the results in [15]. However,
the contribution of GB coupling is somehow nontrivial. The
A-correction part depends on the separation ¢ and according
to the sign of GB coupling could be either positive or nega-
tive, which results in a decreasing or an increasing attractive
force between quark and antiquark, respectively.
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Appendix
In this appendix, we write down some related computation

of finding the entropy functional (3.9). In the present case
there are two orthogonal normal vectors as follows:
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VfL
T1:t=0 n1={i,0,0,0,0}a
0
/L L
Toix;—x(p) =0 ny={0, ——— , :0,0

PSR oy fx
(5.1)

The corresponding extrinsic curvatures of the hypersurface
are given by

0 0 0 0

0
0 C1f_ Cix’ 00
K =0 K@=L]0 cix' Cifx*>0 0], (52
0 O 0 Cp O
0 O 0 0 C
where
C = 204 X)) fx' — p(f'x" +2fx")
2p%(1 + f)c/z)s/2
!
I . S (5.3)
P21+ fx'?

Consequently, for a strip entangling region, the entangle-
ment entropy of (2.4) for a general five-dimensional higher-
curvature gravity theory becomes

2713 I x
_ ML f (1+A+B)

4Gy

54)

where

—8(10a +2b 4 ¢) f + (32a + Tb + 4c)pf’ — (4a + b)p* f"

A=
212
L [Bb+40pf = (b +400” f"1fx”
2L2(1 4 fx'2) '
g PR +Ci+ £ +4cQ2C% + €120 + fx) )

212
(5.5)

By fixing the coupling constants of higher-order terms in
(5.4), according to five-dimensional GB gravity, one obtains
the entropy functional (3.9).
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