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Abstract A difficult task to deal with is the analytical
treatment of models composed of three real scalar fields,
as their equations of motion are in general coupled and
hard to integrate. In order to overcome this problem we
introduce a methodology to construct three-field models
based on the so-called “extension method”. The fundamen-
tal idea of the procedure is to combine three one-field sys-
tems in a non-trivial way, to construct an effective three
scalar field model. An interesting scenario where the method
can be implemented is with inflationary models, where the
Einstein–Hilbert Lagrangian is coupled with the scalar field
Lagrangian. We exemplify how a new model constructed
from our method can lead to non-trivial behaviors for cos-
mological parameters.

1 Introduction

Since the 1970s, topological defects have been investigated
as promising analytical solutions in high energy physics
and in ferromagnet models [1–3]. In the previous decades,
these defects were applied in several different scenarios, like
braneworld models, condensate matter, besides Einstein–
Hilbert and generalized cosmology [2,4–7]. This enhanced
applicability was accompanied by the emergence of new
mathematical methods to treat topological defects, especially
when we talk about models composed of two or more scalar
fields.

A relevant methodology which should be highlighted
is the so-called BPS (Bogolmon’y–Prasad–Sommerfield)
method [8,9], which enables one to determine analytical
solutions for one or more real scalar field models from first-
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order differential equations, instead standard second order
equations of motion. Moreover, BPS solutions, or BPS states,
are associated with the minimal energetic solutions of static
physical systems. However, when we deal with Lagrangian
densities composed of two or more real fields, even the BPS
first-order differential equations are very hard to integrate, as
they are generally coupled. Thus, we need specific method-
ologies to find analytical defects for two or more scalar field
models.

An interesting method to solve two-field systems was pro-
posed by Bazeia et al. [10]; here, inspired by Rajaraman’s trial
orbit method [11], the authors introduced an approach to find-
ing analytical solutions for the coupled first-order differential
equations of such systems. One of the most popular models
solved by this method is due to Bazeia, Nascimento, Ribeiro,
and Toledo (BNRT) [12] and it has been applied in several
different contexts [4,12–15]. As an alternative for the trial
orbit presented in [10], de Souza Dutra [17] constructed new
orbits for the BNRT models through the so-called “integrat-
ing factor method”. Despite the success of such methodolo-
gies, the challenge of finding new analytical models formed
by one, two or more real scalar fields remains tricky.

In scenarios composed of one scalar field, new analyti-
cal models can be generated with the deformation method
proposed by Bazeia, Losano and Malbouisson [18]. Such a
method is based on a connection between two one-field mod-
els, via the so-called deformation function. So, if we know
the deformation function and an analytical one-field model,
we are able to generate several families of new scalar field
systems [18–20].

Inspired by the deformation method, Bazeia, Losano and
Santos [21] introduced the extension method to construct
analytical two scalar field models, starting from one-field
ones. The advantage of such a methodology is that a possible
set of solutions for the equations of motion of the two-field
model is exactly formed by the solutions of the one-field
systems used in the construction process. The last method
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was applied in the quintessence cosmology, leading to new
sets of analytical cosmological parameters [6].

As a motivation to apply our methodology in the context
of cosmological models, we may point out that multi-field
inflation is able to yield to a proper relation between the
tensor-to-scalar ratio and the spectral index, as pointed out
by Ellis et al. [22]. Moreover, multiple fields allow us to
address new features for the physical systems and for the
cosmological parameters, which cannot be derived from sin-
gle field models, as pointed out very recently in [23,24].

Our aim in the present work is to increase the amount of
analytical three scalar field models inspired by the extension
method. We believe that this approach can overcome several
difficulties related with the integration process of coupled
first-order differential equations. In order to show the appli-
cability of our procedure as well as its robustness, we will
use it to build a three-field quintessence model.

The article is organized as follows: Sect. 2 shows some
generalities of the deformation method and of the BPS
approach for three scalar field models. In Sect. 3 we present
a new version for the extension method, while its appli-
cability is discussed carefully in Sect. 4, where we con-
struct several examples. In Sect. 5 we establish the bases
for our quintessence model, we apply one of our examples
in this context and we analyze the cosmological features of
the effective model. Final remarks and perspectives of this
methodology are reported in Sect. 6.

2 Generalities

We begin our analysis with a review of the generalities which
are in the foundation of our method. Let us start with the so-
called deformation method, first presented by Bazeia, Losano
and Malbouisson [21]. This method proposes a connection
between two one-field Lagrangian densities, which may have
the forms

L = 1

2
∂μ φ ∂ μφ − V (φ) ; Ld = 1

2
∂μ χ ∂ μχ −U (χ),

(1)

where V andU are their respective potentials and μ = 0, 1 if
we are working in 1+1 space-time. The equations of motion
for both theories can be derived in a straightforward way,
yielding

φ ′′ = Vφ ; χ ′′ = Uχ ; Vφ = d V

d φ
; Uχ = dU

d χ
, (2)

if we are dealing with static fields, i.e., φ = φ(x) and
χ = χ(x), and with a metric signature (1,−1). Besides, the
primes mean derivatives with respect to the x-coordinate.

The previous equations can be integrated once, giving rise
to the following first-order differential equations:

φ ′ = ±√
2 V = ±Wφ(φ) ; χ ′ = ±√

2U = ± ˜Wχ (χ),

(3)

where we defined

V = W 2
φ

2
; U =

˜W 2
χ

2
, (4)

with Wφ = d W/d φ, ˜Wχ = d ˜W/d χ , and W (φ) and ˜W (χ)

are called superpotentials. Both scalar fields are mapped if
we consider φ = f (χ), and χ = f −1(φ), where f is named
the “deformation function”. Therefore, replacing the defor-
mation function in the first-order differential equation for the
field φ, we find the constraints

d φ

d χ
= Wφ(φ)

Wχ (χ)
;

U (χ) = V (φ = f (χ))

f 2
χ

; ˜Wχ = Wφ

f χ

∣

∣

∣

∣

φ= f (χ)

, (5)

with fχ = d f/d χ . Consequently, if we know the potential
and the solution for the model described by L, we can use
these results together with the deformation function to build
the model Ld , which is the deformed Lagrangian density.

Let us now review some basic concepts of the first-order
formalism for a three scalar field Lagrangian density. Assum-
ing the following action:

S =
∫

dt dx L

=
∫

dt dx

[

∑

i

1

2
∂μφi ∂

μφi − V (φ1, φ2, φ3)

]

, (6)

with i = 1, 2, 3, φ1 = φ, φ2 = χ , and φ3 = ξ , we can
minimize it to derive the equations of motion

φ ′ ′ = Vφ; χ ′ ′ = Vχ ; ξ ′′ = Vξ , (7)

for static fields. Withal, the total energy for this static model
is given by

E = −
∫

dx L =
∫

dx

[

∑

i

φ ′ 2
i

2
+ V (φ, χ, ξ)

]

, (8)

where the potential V can be defined as

V = W 2
φ

2
+ W 2

χ

2
+ W 2

ξ

2
; W = W (φ, χ, ξ). (9)

By applying the BPS method [8,9], we are able to rewrite the
total energy as

E = 1

2

∫

dx

[

(φ ′ ∓ Wφ)2 + (χ ′ ∓ Wχ )2

+(ξ ′ ∓ W ξ )
2 ± 2 Wφ φ ′ ± 2 Wχ χ ′ ± 2 W ξ ξ ′

]

, (10)
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therefore, if the first-order differential equations

φ ′ = ±Wφ; χ ′ = ±Wχ ; ξ ′ = ±W ξ , (11)

are satisfied, we find the total energy:

EBPS = |E | =
∫

dx
(

Wφ φ ′ + Wχ χ ′ + W ξ ξ ′)

=
∫

dx
d W

d x
= |�W | , (12)

with

�W = W (∞,∞,∞) − W (−∞,−∞,−∞). (13)

The main difference between Eq. (3) and the first-order
differential equations shown in (11) is that the latter are in
general coupled and hard to integrate (which is what makes
analytical three-field models so hard to find). A well-known
method to integrate equations presented in (11) is the inte-
grating factor, which consists of rewriting them as

d φ

d χ
= Wφ

Wχ

; d φ

d ξ
= Wφ

W ξ

; d ξ

d χ
= W ξ

Wχ

, (14)

with the solutions φ = φ(χ), φ = φ(ξ) and ξ = ξ(χ) being
called “orbits”.

3 The method

The method to construct new analytical three-field models
will be a generalization of the extension method for two scalar
fields, introduced by Bazeia, Losano and Santos [21]. In order
to establish the three-field version for the extension method,
we are going to use two deformation functions to rewrite
the left-hand side of Eq. (5) as the first differential equation
presented in (14). An analogous procedure can be repeated
to generate the other two first-order differential equations
shown in (14).

This mechanism means that we can build a three scalar
field model combining three one-field systems. Moreover,
once we know the solutions of the three one-field models and
the deformation functions, the effective three-field model is
going to be analytically solvable. Such a nice feature agrees
with the results derived in [21].

Thus, establishing φ = f1 (χ), χ = f −1
1 (φ) and φ =

f2 (ξ), ξ = f −1
2 (φ), we can rewrite φ ′ = Wφ(φ) in seven

different but equivalent forms, given by

φ′ = Wφ(φ) ; φ′ = Wφ(χ) ; φ′ = Wφ(φ, χ) ;
φ′ = Wφ(ξ) ; φ′ = Wφ(φ, ξ) ; φ′ = Wφ(χ, ξ) ;
φ′ = Wφ(φ, χ, ξ) . (15)

Analogously, if ξ = f3(χ), χ = f −1
3 (ξ) where f3 =

f −1
2 (φ = f1), the first-order equations χ ′ = Wχ (χ) and

ξ ′ = W ξ (ξ) are also represented as

χ ′ = Wχ (φ) ; χ ′ = Wχ (χ) ; χ ′ = Wχ (φ, χ) ;
χ ′ = Wχ (ξ) ; χ ′ = Wχ (φ, ξ) ; χ ′ = Wχ (χ, ξ) ;
χ ′ = Wχ (φ, χ, ξ), (16)

ξ ′ = Wξ (φ) ; ξ ′ = Wξ (χ) ; ξ ′ = Wξ (φ, χ) ;
ξ ′ = Wξ (ξ) ; ξ ′ = Wξ (φ, ξ) ; ξ ′ = Wξ (χ, ξ) ;
ξ ′ = Wξ (φ, χ, ξ) . (17)

Therefore, with the previous ingredients in hands it is possi-
ble to rewrite d φ/d χ in Eq. (5) as follows:

dφ

dχ
=

[

a11Wφ(χ) + a12Wφ(φ, χ) + a13Wφ(φ) + a14Wφ(ξ)

+ a15Wφ(φ, ξ) + a16Wφ(χ, ξ) + a17Wφ(φ, χ, ξ)

+ c11g(χ) + c12g(φ, χ) + c13g(φ)

+ c14g(ξ) + c15g(φ, ξ) + c16g(χ, ξ) + c17g(φ, χ, ξ)

]

×
[

b1Wχ (χ) + b2Wχ (φ, χ)

+ b3Wχ (φ) + b4Wχ (ξ) + b5Wχ (φ, ξ)

+ b6Wχ (χ, ξ) + b7Wχ (φ, χ, ξ)

+ c21 f̃ (χ) + c22 f̃ (φ, χ)

+ c23 f̃ (φ) + c24 f̃ (ξ)

+ c25 f̃ (φ, ξ) + c26 f̃ (χ, ξ) + c27 f̃ (φ, χ, ξ)

]−1

= Wφ

Wχ

,

(18)

where ai j , b j , ci j for i = 1, 2, and j = 1, 2, 3, 4, 5, 6, 7 are
real constants which obey the constraints a11 + a12 + a13 +
a14+a15+a16+a17 = 1, b1+b2+b3+b4+b5+b6+b7 = 1,
c11+c12+c13+c14+c15+c16+c17 = 0 and c21+c22+c23+
c24 + c25 + c26 + c27 = 0. We also have Wφ and Wχ without
specific functional dependence representing the derivatives
of an effective three-field superpotential W = W (φ, χ, ξ) in
respect to φ and χ , respectively. Then we see that Eq. (18)
has the same form as the left-hand side expression in (14).

Moreover, the functions f̃ and g are responsible for con-
necting the fields φ and χ in this effective three-field model
via the additional constraint

Wφχ = Wχφ; (19)

thus, using Eq. (18) in this previous equation leads to

a11Wφχ (χ) + a12Wφχ (φ, χ) + a16Wφχ (χ, ξ)

+ a17Wφχ (φ, χ, ξ) + c11gχ (χ) + c12gχ (φ, χ)

+ c16gχ (χ, ξ) + c17gχ (φ, χ, ξ) = b2Wχφ(φ, χ)

+ b3Wχφ(φ) + b5Wχφ(φ, ξ) + b7Wχφ(φ, χ, ξ)

+ c22 f̃φ(φ, χ) + c23 f̃φ(φ) + c25 f̃φ(φ, ξ)

+ c27 f̃φ(φ, χ, ξ). (20)
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This previous procedure can be repeated for d ξ/d χ and for
d φ/d ξ , yielding

dξ

dχ
=

[

a21Wξ (χ) + a22Wξ (φ, χ) + a23Wξ (φ) + a24Wξ (ξ)

+ a25Wξ (φ, ξ) + a26Wξ (ξ, χ) + a27Wξ (φ, χ, ξ)

+ c31g̃(χ) + c32 g̃(φ, χ) + c33g̃(φ)

+ c34 g̃(ξ) + c35g̃(φ, ξ) + c36g̃(χ, ξ) + c37g̃(φ, χ, ξ)

]

×
[

b1Wχ (χ) + b2Wχ (φ, χ) + b3Wχ (φ) + b4Wχ (ξ)

+ b5Wχ (φ, ξ) + b6Wχ (χ, ξ) + b7Wχ (φ, χ, ξ) + c21 f̃ (χ)

+ c22 f̃ (φ, χ) + c23 f̃ (φ) + c24 f̃ (ξ)

+ c25 f̃ (φ, ξ) + c26 f̃ (χ, ξ) + c27 f̃ (φ, χ, ξ)

]−1

= Wξ

Wχ

,

(21)

with g̃ as another connection function, a21+a22+a23+a24+
a25+a26+a27 = 1, c31+c32+c33+c34+c35+c36+c37 = 0
and

dφ

dξ
=

[

a11Wφ(χ) + a12Wφ(φ, χ) + a13Wφ(φ) + a14Wφ(ξ)

+ a15Wφ(φ, ξ) + a16Wφ(χ, ξ) + a17Wφ(φ, χ, ξ)

+ c11g(χ) + c12g(φ, χ) + c13g(φ)

+ c14g(ξ) + c15g(φ, ξ) + c16g(χ, ξ) + c17g(φ, χ, ξ)

]

×
[

a21Wξ (χ) + a22Wξ (φ, χ)

+ a23Wξ (φ) + a24Wξ (ξ) + a25Wξ (φ, ξ)

+ a26Wξ (ξ, χ) + a27Wξ (φ, χ, ξ) + c31g̃(χ)

+ c32 g̃(φ, χ) + c33g̃(φ) + c34 g̃(ξ)

+ c35g̃(φ, ξ) + c36g̃(χ, ξ) + c37g̃(φ, χ, ξ)

]−1

= Wφ

Wξ

.

(22)

As in the first application of the extension method, Eqs. (21)
and (22) impose the extra constraints

Wξχ = Wχξ ; (23)

a21Wξχ (χ) + a22Wξχ (φ, χ) + a26Wξχ (ξ, χ)

+ a27Wξχ (φ, χ, ξ) + c31g̃χ (χ) + c32 g̃χ (φ, χ)

+ c36g̃χ (χ, ξ) + c37g̃χ (φ, χ, ξ) = b4Wχξ (ξ)

+ b5Wχξ (φ, ξ) + b6Wχξ (χ, ξ) + b7Wχξ (φ, χ, ξ)

+ c24 f̃ξ (ξ) + c25 f̃ξ (φ, ξ) + c26 f̃ξ (χ, ξ)

+ c27 f̃ξ (φ, χ, ξ), (24)

and

Wφξ = Wξφ ; (25)

a14Wφξ (ξ) + a15Wφξ (φ, ξ) + a16Wφξ (χ, ξ)

+ a17Wφξ (φ, χ, ξ) + c14gξ (ξ) + c15gξ (φ, ξ)

+ c16gξ (χ, ξ) + c17gξ (φ, χ, ξ) = a22Wξφ(φ, χ)

+ a23Wξφ(φ) + a25Wξφ(φ, ξ) + a27Wξφ(φ, χ, ξ)

+ c32 g̃φ(φ, χ) + c33g̃φ(φ) + c35g̃φ(φ, ξ)

+c37g̃φ(φ, χ, ξ), (26)

respectively.
In order to determine unique forms for g, f̃ and g̃, we

need to establish some restrictions for constraints (20), (24)
and (26). Such restrictions may yield different forms for the
effective three-field model. Below we are going to show two
different scenarios which can be generated from these restric-
tions.

As a first scenario, let us choose c14 = c15 = c16 = c17 =
c22 = c23 = c25 = c27 = c31 = c32 = c36 = c37 = 0 in
(20), (24) and (26), leading to

a11Wφχ (χ) + a12Wφχ (φ, χ) + a16Wφχ (χ, ξ)

+ a17Wφχ (φ, χ, ξ) + c11gχ (χ) + c12gχ (φ, χ)

= b2Wχφ(φ, χ) + b3Wχφ(φ)

+ b5Wχφ(φ, ξ) + b7Wχφ(φ, χ, ξ), (27)

a21Wξχ (χ) + a22Wξχ (φ, χ) + a26Wξχ (ξ, χ)

+ a27Wξχ (φ, χ, ξ) = b4Wχξ (ξ) + b5Wχξ (φ, ξ)

+ b6Wχξ (χ, ξ) + b7Wχξ (φ, χ, ξ)

+ c24 f̃ξ (ξ) + c26 f̃ξ (χ, ξ), (28)

a14Wφξ (ξ) + a15Wφξ (φ, ξ) + a16Wφξ (χ, ξ)

+ a17Wφξ (φ, χ, ξ) = a22Wξφ(φ, χ) + a23Wξφ(φ)

+ a25Wξφ(φ, ξ) + a27Wξφ(φ, χ, ξ)

+ c33g̃φ(φ) + c35g̃φ(φ, ξ), (29)

where we still need to decide if c11 = 0 or c12 = 0, if c24 = 0
or c26 = 0, and if c33 = 0 or c35 = 0, in order to have unique
equations for the arbitrary functions g, f̃ and g̃.

The second scenario is built taking c11 = c12 = c16 =
c17 = c24 = c25 = c26 = c27 = c32 = c33 = c35 = c37 = 0
in (20), (24) and (26), resulting in

a11Wφχ (χ) + a12Wφχ (φ, χ) + a16Wφχ (χ, ξ)

+ a17Wφχ (φ, χ, ξ) = b2Wχφ(φ, χ)

+ b3Wχφ(φ) + b5Wχφ(φ, ξ) + b7Wχφ(φ, χ, ξ)

+ c22 f̃φ(φ, χ) + c23 f̃φ(φ), (30)

a21Wξχ (χ) + a22Wξχ (φ, χ) + a26Wξχ (ξ, χ)

+ a27Wξχ (φ, χ, ξ) + c31g̃χ (χ) + c36g̃χ (χ, ξ)

= b4Wχξ (ξ) + b5Wχξ (φ, ξ)

+ b6Wχξ (χ, ξ) + b7Wχξ (φ, χ, ξ), (31)

123
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Fig. 1 Parametric graphics for the analytical orbits approached in examples I (left panel), I I (right panel), all plotted with a = b = 1

a14Wφξ (ξ) + a15Wφξ (φ, ξ) + a16Wφξ (χ, ξ)

+ a17Wφξ (φ, χ, ξ) + c14gξ (ξ) + c15gξ (φ, ξ)

= a22Wξφ(φ, χ) + a23Wξφ(φ)

+ a25Wξφ(φ, ξ) + a27Wξφ(φ, χ, ξ) . (32)

As in the first scenario, we have to impose c22 = 0 or c33 = 0,
c31 = 0 or c36, and c14 = 0 or c15 = 0, as we are looking
for unique forms for f̃ , g̃ and g. After the calculation of g,
f̃ and g̃, we can substitute all the ingredients into Eqs. (18),
(21) and (22) to derive Wφ , Wχ and Wξ . The next section
exemplifies the applicability of our methodology and unveils
new analytical three scalar field models.

4 Examples

4.1 Example I: φ 4 versus χ 4 I versus ξ 4 I

Our first example is the coupling between a φ 4 model with
χ 4 I , and ξ 4 I , where I stands for “inverted”. The first-order
differential equations for each one of these models are

φ ′ = Wφ(φ) = a(1 − φ2) ;

χ ′(χ) = Wχ (χ) = −aχ

√

1 − χ2

b2 ;

ξ ′ = Wξ (ξ) = −aξ

√

1 − ξ2

b2 , (33)

with a and b real constants whose solutions are

φ = tanh(ax) ; χ = b sech(ax) ; ξ = b sech(ax) . (34)

The deformation functions (as well as their inverse func-
tions), connecting the previous models, have the forms

φ = f1(χ) =
√

1 − χ2

b2 ; χ = b
√

1 − φ2 ; (35)

φ = f2(ξ) =
√

1 − ξ2

b2 ; ξ = b
√

1 − φ2 ; (36)

ξ = f3(χ) = χ ; χ = ξ, (37)

where the previous connections establish a three-dimensional
orbit between the fields, which can be viewed in the left panel
of Fig. 1. Then we are able to use the deformations and their
inverse functions to rewrite Wφ(φ), Wχ (χ) and Wξ (ξ) in
different but equivalent expressions, as we show here:

Wφ(φ) = a(1 − φ2) ; Wφ(χ) = aχ2

b2 ,

Wφ(φ, χ) = a

⎛

⎝1 − φ

√

1 − χ2

b2

⎞

⎠ ;

Wφ(ξ) = aξ2

b2 ;

Wφ(φ, ξ) = a

⎛

⎝1 − φ

√

1 − ξ2

b2

⎞

⎠ ;

Wφ(χ, ξ) = a

⎛

⎝1 −
√

1 − χ2

b2

√

1 − ξ2

b2

⎞

⎠ ;

Wφ(φ, χ, ξ) = a

(

1 − φ

√

1 − χξ

b2

)

; (38)

Wχ (χ) = −aχ

√

1 − χ2

b2 ; Wχ (φ) = −abφ
√

1 − φ2 ;
Wχ (φ, χ) = −aχφ ;

Wχ (ξ) = −aξ

√

1 − ξ2

b2 ;

Wχ (χ, ξ) = −aξ

√

1 − χ2

b2 ;

Wχ (φ, ξ) = −ab
√

1 − φ2

√

1 − ξ2

b2 ;

Wχ (φ, χ, ξ) = −ab
√

1 − φ2

√

1 − χξ

b2 ; (39)
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and

Wξ (ξ) = −aξ

√

1 − ξ2

b2 ;

Wξ (φ) = −abφ
√

1 − φ2 ; Wξ (φ, ξ) = −aξφ ;

Wξ (χ) = −aχ

√

1 − χ2

b2 ; Wξ (χ, ξ) = −aχ

√

1 − ξ2

b2 ;

Wξ (φ, χ) = −ab
√

1 − φ2

√

1 − χ2

b2 ;

Wξ (φ, χ, ξ) = −ab
√

1 − φ2

√

1 − ξχ

b2 . (40)

The next step is to use these ingredients to derive the con-
nection functions g, f̃ and g̃. In order to do it, let us consider
the two possible scenarios that we pointed out in the last sec-
tion, then we can compare the similarities or the differences
between these approaches.

First approach

As we are interested in polynomial potentials, we are going
to choose a12 = a15 = a16 = a17 = b1 = b3 = b4 = b5 =
b6 = b7 = a21 = a22 = a23 = a24 = a26 = a27 = 0,
in order to avoid rational exponents. Such choices result in
the constraints a11 + a13 + a14 = 1, b2 = 1 and a25 = 1.
Moreover, substituting these ingredients in (27), we have

a11
2aχ

b2 + c11 gχ (χ) + c12 gχ (φ, χ) = −aχ. (41)

We choose c12 = 0 as we want a unique equation to deter-
mine g. So, integrating the last with respect to χ we find

c11 g(χ) = −aχ2
(

1

2
+ a11

b2

)

. (42)

The previous choice implies in c11 = −c13, and the defor-
mation function allows us to rewrite g(χ) as

c11 g(φ) = −a(1 − φ2)

(

b2

2
+ a11

)

. (43)

Moreover, substituting the set of constraints in Eqs. (28) and
(29) we can observe that f̃ = 0, and that

c35 g̃φ(φ, ξ) = a14
2aξ

b2 + aξ, (44)

for c 33 = 0. Again, we would like to avoid rational exponents
in our effective model, so we are going to take a14 = −b2/2,
which means that g̃ = 0. Then, putting g, f̃ , g̃, (38), (39)
and (40) back into Eqs. (18), (21) and (22) yields

Wφ = −a

2

(

χ 2 + ξ 2
)

+ a
(

1 + b2
) (

1 − φ 2
)

;
Wχ = −aχφ ; W ξ = −aφξ. (45)

Now, let us integrate the results presented in (45) in respect
to φ, χ and ξ , respectively. Such a procedure results in the
effective three-field superpotential

W = a
(

1 + b2
)

(

φ − φ3

3

)

− a

2
φ

(

χ2 + ξ2
)

. (46)

A very interesting case occurs when constants a and b are

a = 2r ; b =
√

1

2r
− 1, (47)

with r ∈ (0, 1/2), leading us to

W =
(

φ − φ3

3

)

− r φ
(

χ2 + ξ2
)

, (48)

whose analytical solutions have the forms

φ = tanh(2r x) ; χ =
√

1

2r
− 1 sech(2r x) ;

ξ =
√

1

2r
− 1 sech(2r x) . (49)

This is the three-field version for the BNRT model [12] pre-
sented in [4] and we highlight that it is the first time that such
a model is constructed via one scalar field systems.

Second approach

In the second scenario we also need to consider a12 = a15 =
a16 = a17 = b1 = b3 = b4 = b5 = b6 = b7 = a21 =
a22 = a23 = a24 = a26 = a27 = 0 as we would like to avoid
rational powers in the effective potential (or superpotential).
Consequently we keep the constraints a11 + a13 + a14 = 1,
b2 = 1 and a25 = 1. Now, putting these ingredients back
into Eq. (30) we obtain

c22 f̃φ(φ, χ) = aχ + a11
2aχ

b2 , (50)

with c23 = 0. Besides, here we must take a11 = −b2/2
to avoid rational exponents in our potential, which means
f̃ = 0. Looking at Eq. (31) we directly see that the previous
constraints impose g̃ = 0. Moreover, Eq. (32) unveils that

a14
2ξa

b2 + c14 gξ (ξ) = −aξ, (51)

for c15 = 0 (c14 = −c13). So, integrating it in respect to ξ

yields

c14 g(ξ) = aξ2

2b2

(

b2 + 2a14

)

. (52)

Then we are able to use the deformation function to rewrite
the last equation as

c14 g(φ) = a(1 − φ2)

2

(

b2 + 2a14

)

. (53)
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All these ingredients enable us to use (18), (21) and (22)
to find

Wφ = −a

2

(

χ 2 + ξ 2
)

+ a
(

1 + b2
) (

1 − φ 2
)

;
Wχ = −aχφ ; Wξ = −aφξ . (54)

Now, integrating the last equations in respect to their fields,
it is possible to derive

W = a
(

1 + b2
)

(

φ − φ3

3

)

− a

2
φ

(

χ2 + ξ2
)

(55)

as the effective three-field superpotential for this scenario.
We note that Eqs. (55) and (46) are the same. Therefore, as
far as we verified, there are no differences in the final form
of the superpotential W if one chooses the first or the second
approach or even other possible scenarios for Eqs. (19), (23)
and (25). Based on this, we are going to consider just the first
scenario approach for the next examples.

4.2 Example II: φ 4 versus χ 4 I versus ξ 4

In this example we work with a combination of φ4, with an
inverted χ 4 I and with ξ4. The first-order differential equa-
tions and their solutions are

φ ′ = Wφ = a(1 − φ2) ; χ ′ = Wχ = −aχ

√

1 − χ2

b2 ;

ξ ′ = Wξ = a(1 − ξ2) ; (56)

φ = tanh(ax) ; χ = b sech(ax) ; ξ = tanh(ax), (57)

respectively. So, the deformation functions (and their inverse
functions)

φ = ξ ; ξ = φ ; (58)

φ =
√

1 − χ2

b2 ; χ = b
√

1 − φ2 ; (59)

ξ =
√

1 − χ2

b2 ; χ = b
√

1 − ξ2 (60)

connect these three one-field models. The three-dimensional
parametric plot for the effective orbit connected by these
solutions is shown in the right panel of Fig. 1.

As in the previous examples, we can use these ingredi-
ents to rewrite Wφ(φ), Wχ (χ) and Wξ (ξ) in the following
equivalent forms:

Wφ(φ) = a(1 − φ2) ; Wφ(χ) = aχ2

b2 ;
Wφ(φ, χ) = aχ

b

√

1 − φ2 ; Wφ(ξ) = a(1 − ξ2) ;
Wφ(φ, ξ) = a(1 − ξφ) ;
Wφ(χ, ξ) = aχ

b

√

1 − ξ2 ; Wφ(φ, χ, ξ) = aχ

b

√

1 − ξφ ;
(61)

Wχ (χ) = −aχ

√

1 − χ2

b2 ;

Wχ (φ) = −abφ
√

1 − φ2 ; Wχ (φ, χ) = −aχφ ;
Wχ (ξ) = −abξ

√

1 − ξ2 ;
Wχ (χ, ξ) = −aξχ ; Wχ (φ, ξ) = −abφ

√

1 − ξ2 ;

Wχ (φ, χ, ξ) = −ab

√

1 − χ2

b2

√

1 − ξφ ; (62)

Wξ (ξ) = a(1 − ξ2) ; Wξ (φ) = a(1 − φ2) ;
Wξ (φ, ξ) = a(1 − ξφ) ;
Wξ (χ) = aχ2

b2 ; Wξ (χ, ξ) = aχ

b

√

1 − ξ2 ;
Wξ (φ, χ) = aχ

b

√

1 − φ2 ;
Wξ (φ, χ, ξ) = aχ

b

√

1 − ξφ . (63)

Since we would like to avoid rational powers in our polyno-
mial potential, we need to take a12 = a16 = a17 = b1 =
b3 = b4 = b5 = b7 = a22 = a26 = a27 = 0. Besides,
we choose to work with c12 = 0, leading to the constraints
a11 +a13 +a14 +a15 = 1, b2 +b6 = 1, a23 +a24 +a25 = 1
and c11 = −c13. Therefore, Eq. (27) yields

c11 gχ (χ) = −b2aχ − a11
2aχ

b2 , (64)

whose integration with respect to χ gives

c11 g(χ) = −aχ2

2b2

(

b2b
2 + 2a11

)

. (65)

Now, we are able to use the deformation function to rewrite
the previous equation as

c11 g(φ) = −a(1 − φ2)

2

(

b2b
2 + 2a11

)

. (66)

Besides, we need to impose the requirement that a21 = b6 =
0 to avoid rational exponents in the effective potential, which
means that f̃ = 0 (see Eq. (28)). Moreover, taking c33 = 0
in Eq. (29) we directly determine that

− 2a14aξ − a15aφ = −2a23aφ − a25aξ + c35 g̃φ(φ, ξ),

(67)

which can be integrated with respect to φ, giving rise to

c35 g̃(φ, ξ) = a (a25 − 2 a14) ξ φ − a

2
(a15 − 2 a23) φ 2 .

(68)

This expression is also represented as

c35 g̃(ξ) = a
(

a23 + a25 − a15

2
− 2 a14

)

ξ 2, (69)

via the deformation function.
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Thus, applying all these results in Eqs. (18), (21) and (22)
we have

Wφ = a a13

(

1 − φ 2
)

+ a a14

(

1 − ξ 2
)

+
+ a a15 (1 − ξ φ) − a

2
χ2 + a

2

(

b 2 + 2 a11

) (

1 − φ 2
)

;
Wχ = −aφχ ; Wξ = a

(

1 − ξ 2
)

+
− 2 a a14 (φ − ξ) ξ − a

a15

2

(

φ 2 − ξ 2
)

, (70)

whose corresponding superpotential is

W = a

(

a11 + a13 + b2

2

) (

φ − φ 3

3

)

+ a a14
(

1 − ξ 2) φ

+ a a15

(

1 − ξ

2
φ

)

φ − a

2
χ 2 φ

+ a

(

ξ − ξ 3

3

)

+ a

3

(

2 a14 + a15

2

)

ξ 3 + κ, (71)

where κ is a real integration constant, and a11 + a13 + a14 +
a15 = 1. This effective three-field superpotential is a new
model in the literature and has Eq. (57) as the analytical
solutions of its equations of motion.

An interesting feature of this new model is that it rep-
resents two domain walls with an internal structure. Models
like this emerged before in the work of Shifmann et al., where
the authors investigated localization of gauge fields inside of
domain walls [25]. Besides, the model here derived comple-
ments the discussions presented by Bazeia et al. in [26],
where the authors worked with an analytical model com-
posed of one domain wall with an internal structure formed
by two other fields. Another special aspect about both, our
model and the one from [26], is that they represent a natu-
ral bridge for the four-field model introduced by Callen and
Volkas [27], which has two domains walls plus an internal
structure composed of two other fields.

The resultant potential can be derived combining (70)
with (9), and one can see that it has Z2 symmetry (φ →
−φ, χ → −χ, ξ → −ξ ), securing the stability of this topo-
logical configuration of fields [27]. The Z2 symmetry implies
that our model has the same features of the Dirichlet domain
walls introduced by Carroll and Trodden [28]. Such a sym-
metry also matches with the behavior of the model studied by
Bazeia et al. in [26], moreover, we can follow the ideas pre-
sented in the mentioned work to discuss the physical features
of the internal structure of our model.

Firstly, from (70), we can see that inside both walls we
have

Wφ(0, χ, 0) = a

(

1 + b 2

2
− χ 2

2

)

;
Wχ (0, χ, 0) = 0 ; Wξ (0, χ, 0) = a2; (72)

therefore, χ = √
b 2 + 2 in order to maximize V at this

region. Furthermore, the projections of V inside and outside
both walls are

V (0, χ, 0) = a 2

8

[

4 + (2 + b 2 − χ 2) 2
]

; (73)

V (±1, χ,±1) = a 2

8
χ 2

(

4 + χ 2
)

, (74)

respectively. Thus, these previous equations yield the fol-
lowing masses for the scalar meson related with the internal
structure:

m 2
in = Vχ χ (0,

√

2 + b 2, 0) = a 2 (b 2 + 2) ;
m 2

out = Vχ χ (±1, 0,±1) = a 2 ; Vχ χ = ∂ 2V

∂ χ 2 , (75)

leading to the ratio

m 2
in

m 2
out

= b 2 + 2 . (76)

The last ratio unveils that the scalar meson prefers to live
outside the domain walls.

5 Analytical three-field cosmological model

A potential application of our method consists in the
study of cosmological models, where the Einstein–Hilbert
Lagrangian is coupled with a three scalar field Lagrangian
density. Such an approach can be used to describe different
dynamical stages that the Universe has passed through. In
order to implement this discussion, let us consider the fol-
lowing action:

S =
∫

d 4 x
√−g

[

− R

4
+ L(φi , ∂μφi )

]

;

L =
3

∑

i=1

[

1

2
∂μ φ i ∂

μ φi − V (φ1, φ2, φ3)

]

, (77)

with i = 1, 2, 3, φ1 = φ(t), φ2 = χ(t), φ3 = ξ(t), 4 π G =
1, c = 1 and signature (+,−,−,−).

The minimization of the previous action with respect to
the metric yields the Einstein equations,

Rμν − 1

2
gμν R = 2 Tμν, (78)

where Tμν is the energy-momentum tensor whose explicit
form is

Tμν = 2
∂ L

∂ g μν
− gμν L, (79)
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and it has components (ρ,−p,−p,−p), where ρ and p
are the density and the pressure related with the scalar field
model. From the previous equation, we are able to compute

ρ =
3

∑

i=1

φ̇ 2
i

2
+ V ; p =

3
∑

i=1

φ̇ 2
i

2
− V . (80)

Moreover, a flat Friedmann–Robertson–Walker metric leads
to the Friedmann equations,

H 2 = 2

3
ρ ; Ḣ + H 2 = −1

3
(ρ + 3 p) , (81)

where H is the Hubble parameter.
Equation (81) can be rewritten as

H 2 = 1

3

(

φ̇ 2 + χ̇ 2 + ξ̇ 2 + 2 V
)

;
Ḣ = −

(

φ̇ 2 + χ̇ 2 + ξ̇ 2
)

. (82)

Besides the Hubble parameter, another interesting quantity
to analyze is the so-called equation of state (EoS) parame-
ter, which is the ratio between pressure and density of the
observed Universe, i.e.,

ω = p

ρ
. (83)

A first-order formalism is implemented by defining

H = −W (φ, χ, ξ), (84)

which means that

Ḣ = −Wφ φ̇ − Wχ χ̇ − W ξ ξ̇ . (85)

By substituting H and Ḣ into (82), we find the first-order
differential equations

φ̇ = Wφ ; χ̇ = Wχ ; ξ̇ = W ξ , (86)

and the potential

V = 3

2
W 2 − 1

2

(

W 2
φ + W 2

χ + W 2
ξ

)

. (87)

Moreover, the minimization process of the action (77) with
respect to the fields yields the equations of motion

φ̈ i + 3 H φ̇ i + Vφ i = 0 ; i = 1, 2, 3, (88)

which need to be satisfied by the solutions of (86).
Let us apply our new model, introduced in (71), in such

a cosmological scenario. The solutions, which are going to
satisfy the first-order equation (86), are

φ(t) = ξ(t) = tanh (a t + τ) ; χ(t) = b sech (a t + τ) ,

(89)

where a, b and τ are real constants.

Fig. 2 Time evolution of the analytical acceleration parameter derived
from a three-field model

These previous solutions together with (71) allow us to
determine the Hubble parameter

H(t) = 1

6

[

a
(

b2 + 4
)

tanh3(at + τ) + 3a tanh(at + τ)

×
(

b2sech2(at + τ) − b2 − 4
)

− 6κ

]

. (90)

From (90), we are able to plot the acceleration parameter
q̄ = H−1(α̈/α̇), defined so that positive values of q̄ indicate
an accelerated expansion of the Universe, while negative val-
ues indicate a decelerated expansion. The evolution of q̄ in
time is shown in Fig. 2, where we assumed a = 3, b = 3.5,
κ = −16.98 and τ = −2.5. It is relevant that such param-
eters were chosen in order to derive a viable cosmological
scenario. However, the values adopted by a, b, κ , and τ are
not extremely constrained, or, in another words, small vari-
ations of these values do not change too much the physical
aspects of the cosmological parameters.

The previous results enable us to determine V in Eq. (87)
and the EoS (83), respectively, as

V = 1

24

[

− 3 a2
(

− 2 φ2 (a14 + a15 − 1)

+ 2 a14 ξ2 + 2 a15 ξ φ + b2 (

φ2 − 1
) + χ2 − 2

)2

− 3a2
(

(4 a14 + a15 − 2) ξ2 − 4 a14 ξ φ − a15 φ2 + 2

)2

− 12 a2 χ2 φ2

+
(

a
[

φ
(

2 φ2(a14 + a15 − 1) − b2 (

φ2 − 3
) − 3 χ2 + 6

)

+ ξ3 (4 a14 + a15 − 2) − 6 a14 ξ2 φ + ξ
(

6 − 3 a15 φ2)] + 6 κ

)2]

;
(91)

ω = −
{

a2 b4 cosh(6(at + τ)) + 8 a2 b2 cosh(6(at + τ))

+ 3
(

a2
(

5 b4 − 24 b2 − 48
)

+ 45 κ2
)

cosh(2(at + τ))

− 6
(

a2
(

b4 + 4 b2 − 16
)

− 9 κ2
)

cosh(4(at + τ))

− 2 a2
(

5 b4 − 44 b2 + 176
)

+ 16 a2 cosh(6(at + τ))
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Fig. 3 Time evolution of the analytical EoS parameter derived from a
three-field model

−18 a b2 κ sinh(2(at + τ)) + 6 a
(

b2 + 4
)

κ sinh(6(at + τ))

+ 9 κ2 cosh(6(at + τ)) + 216 a κ sinh(2(at + τ)) + 90 κ2

+ 144 a κ sinh(4(at + τ))

}

{

2
(

a
(

b2 + 4
)

sinh(3(at + τ))

− 3 a
(

b2 − 4
)

sinh(at + τ) + 12 κ cosh3(at + τ)
)2

}−1

.

(92)

The behavior of the EoS parameter can be visualized in Fig.
3. We may point out that the graphics presented in Figs. 2
and 3 agree, showing two inflationary eras for the early and
late times, besides a decelerated era between the two stages
of acceleration. We also see that ω ≈ −1 in both of these
accelerated eras, simulating a dark energy domination as time
passes by [29]. Furthermore, we can use V (91) together with
W (71) and the solutions (89) to prove that the equations of
motion (88) are satisfied.

6 Conclusion

A mechanism to generate new models with three scalar fields
was presented in this work. We started the method coupling
three analytical one-field models via a deformation proce-
dure, introduced in [21]. The non-trivial combinations of
these one-field systems unveiled effective three-field mod-
els. As a first example we were able to derive a well-known
three-field version for the BNRT model [4]. Another interest-
ing feature is that the new models are automatically satisfied
by the solutions of the one-field systems, corroborating the
results derived in [21].

The superpotentials here derived are all polynomial, but
we also can use this methodology to build three-field models
with functional potentials, like combinations involving sine-
Gordon potentials, for instance. Besides, with this superpo-
tential in hands we are able to find the total energy related with

the correspondent defects solutions, as well as the potential
V (φ, χ, ξ).

The mechanism has shown to provide an interesting cos-
mological scenario, able to predict two accelerated eras,
including a late time accelerated one, which simulates the
dark energy era. The acceleration and EoS parameters for the
decelerated stages of the Universe have also been obtained,
which leads us to conclude that from the deformation pro-
cedure applied to a scenario with three scalar fields, one is
able to obtain a complete cosmological scenario, with the
transition stages being described continuously.

We believe that the method here presented can be applied
in compactons-like defects [30], in braneworld [4,30] and
in other cosmological scenarios [6,7,31]. It is going to be
an interesting task to observe the consequence of such new
analytical three-field systems for the physical parameters like
the cosmological ones or the warp factor. Some of these ideas
are under investigation and we hope to report on them in the
near future.
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