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Abstract The spacetime solution for a black hole, sur-
rounded by an exotic matter field, in Rastall gravity, is calcu-
lated in an arbitrary d-dimensional spacetime. After this, we
calculate the scalar quasinormal modes of such solution, and
study the shift on the modes caused by the modification of the
theory of gravity, i.e., by the introduction of a new term due
to Rastall. We conclude that the shift strongly depends on the
kind of exotic field one is studying, but for a low density mat-
ter that supposedly pervades the universe, it is unlikely that
Rastall gravity will cause an instability for the probe field.

1 Introduction

Rastall gravity is inspired by the idea that conservation laws
based on spacetime symmetries has been probed only in the
flat or weak field regime of gravity [1]. Within this approach,
the covariant derivate of the energy-momentum tensor does
not need to vanish, but can be a function of the deriva-
tive of some scalar curvature. One interesting result of this
model is that all electrovacuum solutions of general rela-
tivity are also solutions of Rastall gravity, but as long as
(non-vanishing trace) matter is introduced in the theory, the
spacetime becomes dependent of the Rastall parameter.

This framework has been attracted some attentions over
the last few years, and some results have been already
obtained, both related to astrophysical [2-9] and cosmologi-
cal solutions [10—16]. In particular, black holes solutions sur-
rounded by exotic matter fields have been obtained based on
the idea developed by Kiselev [17], who states that one should
consider astrophysical solutions surrounded by a dark energy
field, in accordance with the recent cosmological observa-
tions about the acceleration of the universe.

In their original work, Kiselev considered black holes
surrounded by a quintessence field, but the approach used
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by the author allows for any kind of isotropic fluid with
a defined equation of state. In the following, Chen et al.
[18] found the solution for higher dimensional black holes
surrounded by quintessence, in general relativity, and Hey-
darzade e Darabi developed the analogue four-dimensional
solution in the framework of Rastall gravity. Our first goal
in this paper is to use the same approach to found the higher
dimensional analogue of [18] in Rastall gravity.

Also in this paper, our aim is to study the stability of
scalar probe fields on the spacetime generated by higher
dimensional black holes surrounded by exotic matter fields
in Rastall gravity. To be more precise, we will study the
scalar quasinormal modes for these black holes. Quasinor-
mal modes are complex numbers that model the emission
of gravitational waves by perturbed objects. Its real part is
related to the frequency of emission, and its imaginary part
is related to its damping (for a review, see [19]).

The study of quasinormal modes has received a great deal
of attention over the last years due to both experimental and
theoretical reasons: the most obvious one is related to the
detection of gravitational waves emitted by compact objects,
such as black holes and neutron stars [20]. Also as a theoreti-
cal tool, we can mention the so-called gauge/gravity dualities,
where the quasinormal modes is related to the poles of a prop-
agator in the dual field theory. Being just a mere theoretical
framework for the study of strong coupled gauge theories,
or a realistic description of a hypothetical holographic uni-
verse, the gauge/gravity dualities has attained a great deal of
attention over the last years.

The quasinormal modes for black holes surrounded by
quintessence in a four-dimensional spacetime governed by
general relativity has already been calculated in [21-25]. We
will perform the calculations in the framework of Rastall
gravity, for higher dimensional black holes.

This work is organized as following. In Sect. 2, we will
introduce the framework of Rastall gravity, and calculate
the spacetime generated by a black hole surrounded by a
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homogeneous and isotropic matter field, for an arbitrary
higher dimension. In Sect. 3 we will briefly present the WKB
approach for the calculation of the quasinormal modes, and
calculate the quasinormal modes for both a quintessence and
a phantom field. Finally, in Sect. 4 we will present our con-
clusions.

2 Higher dimensional BHs surrounded by a perfect
fluid

The idea behind Rastall model is that the well-known conser-
vation laws have been tested only in the weak field regime
of gravity. Adopting this perspective, the covariant deriva-
tive of the energy-momentum tensor does not need to van-
ish, instead it is proportional to the derivative of some cur-
vature invariant. A straightforward choice is to consider
that

VuTH o« V¥R, ey

where R is the Ricci scalar. This leads to a modification of
Einstein’s equations, that can be recast as

Guv +krguwR =Ty, 2)

where « is a constant related to the Newton’s gravitational
constant. Taking the trace of Eq. (2), one gets

R(4kx —1)=«T. 3)

For a vanishing trace of the energy-momentum tensor,
such as the electrovacuum solution, the above equation
requires that kA = 1/4 or R = 0. The former possibility is
not physically acceptable, since it would demands that 7 = 0
for any scalar curvature. This lead us to conclude that for all
matter configuration where the energy-momentum tensor has
null trace, Rastall theory have the same solutions as general
relativity.

This feature of Rastall model has lead some authors to
search for black holes solutions in a background of mat-
ter/energy where its energy-momentum tensor has non-
vanishing trace. This is a physically acceptable procedure,
since the most acceptable explanation for the current accel-
eration of the universe is the presence of a kind of exotic dark
energy, that pervades all the spacetime.

In this paper we will consider two possibilities for this
dark energy, to known, a quintessence field and a phantom
field. If one adopts a Schwarzschild-like line element,

ds®> = f(rydi®> — f(r)"'dr? = r?dQ2q_», )
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where d £2;_» stands for the (d — 2)-dimensional sphere, the
energy-momentum tensor for a homogeneous and isotropic
matter field can be written as [17,18]

TV =T = p(r) ®
and
T =T = =T,

= —d%zp(r)[(d — Do+ 1], (6)

where w is the parameter for the equation of state of the kind
of field we are considering.

Our aim in this section is to solve the gravitational field
equations, Eq. (2), for the above energy-momentum tensor,
considering the line element given by Eq. (4). Considering
the spherical symmetry of the problem, we have only two
independent field equations,

Lz[f/r(d —2)—(d-3)(d—2)(1— f)—kr2f"r?
2r

+4d —2)f'r —2d = 3)d — (1 - f))]
— T ™

and

1
ﬁ[f”r2 +2d =3)f'r—(d—4d~-3)1~f)

-

— 2 A (" 2(d =2 f'r — (d —3)(d —2)(1 — f)]

=«T™, (8)
and two independent functions, f(r) and p(r). This system
can be solved imposing a power law function for the density,

p(r) = Nr#. For the consistency between equations (7) and
(8), one must have that

_ (d=2(d—D)(I+w)~2crd(d—1) (1 +0)

fr)y=1+ ’5—_13 — Nyr @Dsaa it 2 (9)
and

p(r) = 3 P00 -G o)
where

e @d=D[d-1)—2hd -1 +o)|2rd —d+2)(d~2)

)

[(d=2)=2kr(d — D(14+w)]?
(11)

and C; and N are constants, where we set Cj equal to 2M,
so that our solution becomes the Schwarzschild—-Tangherlini
metric for kA — 0. The former is related to the mass of
the black hole, and the latter related to the density of the
exotic matter. In the case where d = 4, the above solution
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reproduces [7], and in the case where k1 — 0, the above
results reproduce [18].

To find the horizons of the metric (4), for which the ggo
coefficient is given by the function (9), one must determine
the zeros of such function. In general, this can be achieved
only by using numerical methods.

For most of our chosen configurations, the metric will
resemble a Schwarzschild—de Sitter spacetime, i.e., will have
an event horizon and a cosmological horizon, and for our pur-
pose one must consider only the spacetime region between
these radial coordinates.

3 Scalar quasinormal modes

The most straightforward method to study perturbations near
a spacetime generated by a black hole is to allow probe fields
to be perturbed by such spacetime, without backreacting on
it. In general, for a scalar field, this means to find solutions
for the Klein—Gordon equation for a well-defined boundary
condition, to known, the condition that waves go into the
event horizon and also to radial infinity.

In Rastall gravity, it is not possible to determine the exact
field equation a scalar field should obey, since to the present
moment there is no well accepted Lagrangian for the theory,
but one can guess that the Klein—-Gordon equation is a first
approximation to the modified equation. Any correction to
the field equation due to some non-minimal coupling with the
curvature can be ignored in such first approximation. Then,
the corrections on the quasinormal modes due to the addi-
tional Rastall coupling will appear only on the metric.

The dynamics of a massless scalar field @(x), in a
d-dimensional spacetime, is then given by the equation
V., V*@(x) = 0. For the static spherically symmetric line
element defined by Eq. (4), the field equation can be reduced
to a Schrodinger type equation, namely,

d2
(dr*2 +E*— V(r)> &(r) =0, (12)

where the tortoise coordinate is defined as dr/dr* = f(r),
and the effective potential V (r) is given by

d—2)(d - 4) d-2
V(r) = f(r) (Tf(r)‘f'Tf (r)
+1(1+1;—3))’ -
r

with [ being the angular momentum eigenvalue related to the
angular momentum operator L2. We are using E instead of
o for the frequency to avoid confusion with the parameter w
of the equation of state.

In Fig. 1 it is plotted several configurations for the poten-
tial. Let us first note that due to the f(r) term on the

effective potential, it will vanish on both horizons. In the
upper left figure, we vary the angular momentum eigen-
value using @ = —2/3, 2« = 0.1, M = 1,N;, = 0.01
and d = 4. The result is similar the one obtained for the
Schwarzschild metric. In the upper right figure, we vary
the parameter Ny, related to the exotic matter field, using
w=-=2/3,Ak =01,M =1, =2andd = 4. As we
increase the parameter, the radius of the cosmological hori-
zon decreases. For the bottom left figure, we vary the Rastall
parameter kA using w = —2/3, Ny =0.001, M = 1,1 =4
and d = 4. One can note that the cosmological horizon
decreases as we increase the Rastall parameter. For the bot-
tom right figure, we vary the spacetime dimension, using
o = —-2/3,Ak = 02,M = 1I,Nyg = 0.0l and [ = 4.
One can note that the value of the cosmological parameter
increases as we increase the spacetime dimension. It also can
be noted that the event horizon decreases as the spacetime
dimension increases, but this is a well-known feature of the
ild—-Tangherlini metric.

To find the scalar quasinormal modes, one must solve Eq.
(12), together with the following set of boundary conditions,

D(x = —00) = C;PP, B(x — +00) = Cr PP
(14)

Equation (12) can be solved using the familiar WKB
approach, were an approximate WKB solution is found at
approaching both the event and cosmological horizon, and
matched with the approximated solution found around the
peak of the potential. To conciliate the boundary conditions
with the matching, the modes should obey the constraint

- M=n+1/2, (15)

where Q(r) = E* — V(r), and Q) = d*>Q(r)/dr**. The
parameter n is called the tone number of the quasinormal
mode. The Ay’s can be obtained from the potential Q(r)
up to its 2k-derivative, and indicates the order of the WKB
method. The 3rd order WKB was developed in [26] and the
6th order in [27]. An explicit formula for Ay can be found in
the original papers [26,27]. For [ > n, the WKB method is a
good approximation for the quasinormal modes, and in this
paper we will use the 5th order WKB method to calculate
them. Our aim is to determine the (quasinormal) modes E of
the system.

As long this is a paper on Rastall gravity, we will study
how the quasinormal modes change as we change the Rastall
parameter k A. However, the model have a great number of
free parameters, to known, the parameter N; related to the
perfect fluid density, the equation of state w and the dimen-
sion of the theory. We will start studying the effect of the
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Fig. 1 Upper leftt o = —2/3, Ak = 0.1, M = 1, Ny = 0.01 and d = 4. Upper right: ® = —2/3, 2k = 0.1, M = 1,/ = 2 and d = 4. Bottom
left: w = —2/3, Ny = 0.001, M = 1,/ =4 and d = 4. Bottom right: o = —2/3, Ak =02,M =1, Ny =0.0l and/ =4

Rastall parameter on the modes, in respect with a chosen
parameter Nj.

As can be seen in Fig. 1, at top right, the second zero of
the potential (the cosmological horizon) is smaller for smaller
values of the parameter Ny. On the same graph, at the left
bottom, the cosmological horizon is smaller as we increase
the Rastall parameter. This indicates that the quasinormal
modes will be more affected for small values of the parameter
Nj, coupled with larger values of the Rastall parameter. This
behaviour can indeed be seen in Figs. 2 and 3. In these figures,
we keep the parameters M, w and d fixed, and vary the Rastall
parameter for two values of the parameter Ny, to known,
Ns; = 0.001 in Fig. 2 and N = 0.0001 in Fig. 3. When N =
0.001, small values of the Rastall parameter induce a larger

@ Springer

variation on the modes than great values of it when N =
0.0001. In fact, for larger values of the Rastall parameter than
the ones plotted on these graphs, the event horizon is too close
to the cosmological horizon, and so we cannot trust the results
of the WKB method. If we increase the Rastall parameter a
little bit more, there is no more horizons, and so there is no
black hole. For values of the parameter « A smaller than the
ones we used in our study, it is not possible to measure the
difference between Rastall and Einstein’s gravity, at least in
the context of the WKB method.

To push the discussion further, one can change the dimen-
sion of the theory or the equation of state. We will start chang-
ing the dimension of the theory, and look how the modes
change as we change the Rastall parameter. We did the calcu-
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Fig. 2 Scalar quasinormal modes for the parameters M = 1, N =
0.001 and d = 4. We are using / = 4, and the dots indicate, from top do
bottom, n = 0, 1, 2 and 3. The blue, green and red lines were calculated
for kA = 0.0,0.2 and 0.4
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Fig. 3 Scalar quasinormal modes for the parameters M = [, N =
0.0001 and d = 4. We are using / = 4, and the dots indicate, from
top do bottom, n = 0, 1, 2 and 3. The blue, green and red lines were
calculated for kA = 0.0, 0.4 and 0.6

lation for two values of the parameter N, and the behaviour
of the modes is shown on Table 1. We are not so interested in
the values of the modes, but the shift of the modes as related
to the spacetime dimension. Table 1 contains five columns:
the dimension, the value of the parameter N;, the value of the
Rastall parameter and the shift of the mode between the value
obtained with this Rastall parameter in relation with the one
obtained in GR (kA — 0), for its real and imaginary parts.
For the obtained values, weused M = 1,w = —2/3,1 =4
andn = 0.

As can be seen on Table 1, the shift on the modes is smaller
as we decrease the parameter N, and increase the dimension
of the spacetime. The result due the parameter N was already

Table 1 Shift on the real and imaginary parts of the QNMs, compared
with the QNMs measured in GR (kA — 0). The five columns are:
dimension (d), used value for the parameter Ny, used value for the
parameter « A, modulus the difference between the calculated quasinor-
mal modes and the same correspondent modes on GR, both the real
part and imaginary part. The others parameters were [ = 4, n = 0 and
w=-2/3

d N KA [8(Ere)l 18(Eim|)
5 0.001 0.6 0.0483 0.0118
5 0.0001 0.6 0.0047 0.0013
6 0.001 0.6 0.0236 0.0066
6 0.0001 0.6 0.0024 0.0007
7 0.001 0.6 0.0173 0.0052
7 0.0001 0.6 0.0017 0.0005

Table 2 Shift on the real and imaginary parts of the QNMs, compared
with the QNMs measured in GR (kA — 0). The five columns are:
dimension (d), used value for the parameter Ny, used value for the
parameter « A, modulus the difference between the calculated quasinor-
mal modes and the same correspondent modes on GR, both the real
part and imaginary part. The others parameters were [ = 4, n = 0 and
w=-4/3

d N KA [8(Ere)l 8 (Eim)|
4 0.001 1.0 0.0344 0.0009
4 0.0001 1.0 0.0033 0.0002
5 0.001 1.0 0.0166 0.0007
5 0.0001 1.0 0.0016 0.0001
6 0.001 1.0 0.0138 0.0003
6 0.0001 1.0 0.0014 0.0005

clear on the relation between Figs. 2 and 3, and the results
due to the increasing on the spacetime dimension, although
not obvious, is consistent with the potentials plotted on Fig.
1. There we can see that, as we increase the spacetime dimen-
sion, the cosmological horizon also increases. This indicates
that the Rastall parameter, that is in someway related to the
value of the cosmological horizon, will be less important for
larger dimensions.

To study other kinds of exotic matter, one can change the
equation of state, w. Here we will do the same analysis as
sketched above for @ = —4/3, a kind of field usually known
as phantom field (w < 1). The calculated values are shown in
Table 2, where, once more, we are interested on the shift of
the modes relative to the values obtained in GR. We can note
the same kind of behaviour found for the quintessence, but
now we have been able to use values for the Rastall parameter
close to unity, and could use even larger, without collapsing
both horizons. The reason is that black hole solutions, with a
cosmological horizon, exists for larger values of the Rastall
parameter compared with the quintessence. As long as the
Rastall parameter should be unique, the existence of black
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holes surrounded by a perfect fluid, in Rastall theory, should
be a function of the parameter Ny, that depends on the density
of the field configuration.

Our study could be enlarged to calculate the quasinormal
modes for other kinds of exotic matter, but it is expected
that the same behaviour will be realized. The main result of
this study on black holes in higher dimension, surrounded by
quintessence, in Rastall gravity, is that its existence imposes
some bounds on the Rastall parameter, and this bound is
strongly dependent on the density of the field, and the kind of
exotic matter. For a phantom field, for example, the existence
of black holes and the shift on the modes are less affected
by the Rastall parameter than for a quintessence field, for the
same energy density configuration.

4 Conclusions

In this paper, we found the spacetime generated by a black
hole, surrounded by an exotic matter field, in Rastall gravity,
for an arbitrary d-dimensional spacetime. Our main goal was
to study the scalar quasinormal modes generated by pertur-
bation on a probe field by such spacetime.

Due to the large number of free parameters of the model,
such as the equation of state of the exotic matter, the energy
density of the field, the dimension of spacetime, and the
Rastall parameter of the theory « A, we focus on the impor-
tance of the Rastall parameter for the existence of black holes,
and the shift that such modification of the gravitational the-
ory would impose on the quasinormal modes as calculated
on the framework of general relativity, where kA — 0.

We have shown that the existence of black holes strongly
depends on the relation between all the free parameters of
the theory. For a quintessence field (w = —4/3), the param-
eter Ny must be small, otherwise the cosmological and event
horizons will be too close to provide a real scenario for an
astrophysical object. In this regime, the shift on the quasi-
normal modes are weak. The case of a phantom field allows
for larger values on the parameter N or for a fixed parameter
N, allows for larges values of the Rastall parameter.

When we increase the dimension of the spacetime, the
effect of both the parameters N, and the Rastall parameter
become weaker relative to the lower dimensional case. This
means that, for the same set of parameters Ny and x A, higher
dimensions induce a lower shift on the quasinormal modes,
compared with general relativity.

As long it is expected that the density of the exotic matter
that supposedly pervades the universe is low, and the Rastall
parameter should be of order unity, the measured shift on
the quasinormal modes is not enough to allow some kind
of instability on the system. To confirm such statement, one
should study perturbations on the Rastall equations itself,

@ Springer

and calculate the tensor quasinormal modes of the theory.
We hope to proceed with this calculation in the near future.
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