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Abstract We discuss leptogenesis in a model with heavy
right-handed Majorana neutrinos propagating in a con-
stant but otherwise generic CPT -violating axial time-like
background (motivated by string theory). At temperatures
much higher than the temperature of the electroweak phase
transition, we solve approximately, but analytically (using
Padé approximants), the corresponding Boltzmann equa-
tions, which describe the generation of lepton asymmetry
from the tree-level decays of heavy neutrinos into Standard
Model leptons. At such temperatures these leptons are effec-
tively massless. The current work completes in a rigorous
way a preliminary treatment of the same system, by some
of the present authors. In this earlier work, lepton asymme-
try was crudely estimated considering the decay of a right-
handed neutrino at rest. Our present analysis includes thermal
momentum modes for the heavy neutrino and this leads to
a total lepton asymmetry which is bigger by a factor of two
as compared to the previous estimate. Nevertheless, our cur-
rent and preliminary results for the freezeout are found to
be in agreement (within a ∼ 12.5% uncertainty). Our anal-
ysis depends on a novel use of Padé approximants to solve
the Boltzmann equations and may be more widely useful in
cosmology.

1 Introduction and motivation

A plethora of cosmological measurements, especially those
associated with observations of the cosmic microwave back-
ground radiation (CMB) in the universe [1,2], lead to an
estimate of the observed asymmetry between matter (mostly
baryons) and antimatter of order:

�n(T ∼ 1 GeV) = nB − nB

nB + nB
∼ nB − nB

s

= (8.4 − 8.9) × 10−11 (1)
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in the early stages of cosmic expansion, i.e. for times t <

10−6 s and temperatures T > 1 GeV. In the above formula
nB (nB) denotes the (anti-) baryon density in the universe, and
s is the entropy density of the universe. Moreover, the obser-
vations of the CMB background, indicate that at present the
temperature of the universe is T0 = 2.727 K = 0.235 meV
and the ratio of baryons over photons is

nB

nγ

∼ 5.4 × 10−10, (2)

where nγ is the density of photons in the universe.
At first sight, the asymmetry (1) (and the result (2))

appears to be in conflict with fundamental properties of rel-
ativistic quantum field theories, which form the basis of our
phenomenology of elementary particles. Specifically, in flat
space-time, any unitary and local Lorentz invariant quantum
field theory, which respects unitarity and locality, should be
described by a Lagrangian that is invariant under CPT trans-
formations where C denotes charge conjugation, T denotes
reversal in time andP denotes parity (spatial reflection) trans-
formations. This is the celebrated CPT theorem [3]. For the
physics of the early universe based on any Lorentz invariant
quantum field theory, such a theorem implies that matter and
antimatter should be created in equal amounts after the Big
Bang. If such is the case, the universe today would be filled
with radiation, as a result of matter-antimatter annihilation
processes, in conflict with (2).

Within the context of our current understanding of funda-
mental physics, A. Sakharov [4–7], postulated the following
three necessary conditions for the dominance of matter over
antimatter (baryon asymmetry in the universe (BAU) (1)),
and hence for our very existence:

• Baryon (B) number violation.
• Charge (C) and charge-parity (CP) symmetries need to

be broken.
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• Chemical equilibrium does not hold during an epoch in
the early universe, since chemical equilibrium washes out
asymmetries.

In fact there are two types of non-equilibrium processes in the
early universe that can produce asymmetries between parti-
cles and antiparticles: the first type concerns processes gen-
erating asymmetries between leptons and antileptons (lep-
togenesis) [8–12], while the second produces asymmetries
between baryons and antibaryons directly (baryogenesis)
[13–16].

Unfortunately, within the framework of the Standard
Model (SM), although Sakharov’s axioms can be qualita-
tively reproduced, especially because one has both B and CP
violation in the quark sector, the resulting baryon asymme-
try is several orders of magnitude smaller than the observed
one (1) [17–19]. There are several ideas that go beyond the
SM (e.g. grand unified theories, supersymmetry, extra dimen-
sional models etc.) and provide extra sources ofCP violation,
necessary for yielding the observed magnitude for the asym-
metry. Some of these attempts, involve the elegant mech-
anism of baryogenesis via leptogenesis, in which a lepton
asymmetry is generated first, by means of decays of right
handed sterile neutrinos to SM particles; the lepton asym-
metry is subsequently communicated to the baryon sector
by means of sphaleron processes which violate both Baryon
(B) and Lepton (L) numbers, but preserve the difference B-L
[20–26]. Heavy sterile neutrinos, through the seesaw mecha-
nism [27–31], play another essential rôle in particle physics,
since they provide a natural explanation for the existence of
three light neutrinos with masses small compared to other
mass scales in the SM), as suggested by observed neutrino
oscillations [32,33]. Fine tuning and some ad hoc assump-
tions are involved though in such scenarios, especially in
connection with the magnitude of the CP violating phases
and the associated decay widths. Consequently the quest for
a proper understanding of the observed BAU still requires
further investigation.

In the scenario of Sakharov it is assumed that CPT sym-
metry holds in the very early universe and this leads to the
equal production of matter and antimatter. CPT invariance
is regarded as fundamental since it is a direct consequence
of the celebrated CPT theorem [3]. However, it is possible
that some of the assumptions in the proof of the CPT theo-
rem do not hold in the early universe, leading to violations
of CPT symmetry. Sakharov has stated that non-equilibrium
processes are necessary for BAU in CPT invariant theories.
If the requirement of CPT is relaxed, the necessity of non-
equilibrium processes can be dropped . In a low-energy ver-
sion of quantum gravity Lorentz invariance and unitarity are
likely to emerge since not all degrees of freedom are acces-
sible to a low-energy observer. Lorentz invariance violation
has been singled out in Ref. [34] as a fundamental reason for

inducing CPT violation (CPTV) and vice versa. (However,
such claims have been disputed in [35,36], through coun-
terexamples of Lorentz invariant systems, which violateCPT
through relaxation, for example, of locality.) In our work we
will consider Lorentz invariance violating (LV) backgrounds
in the early universe as a form of spontaneous violation of
Lorentz and CPT symmetry.

If LV is the primary source of CPTV, then the latter can be
studied within a local effective field theory framework, which
is known as the Standard Model Extension (SME) [37]. The
latter provides the most general parametrization for study-
ing the phenomenology of Lorentz violation in a plethora
of physical systems, ranging from cosmological probes, to
particle and precision atomic physics systems. For the cur-
rent era of the universe [38–41] very stringent upper bounds
on the potential amount of Lorentz and CPT violation have
been placed by such systems. However, under the extreme
conditions present in the very early universe, such violations
could be significantly stronger than in the present era (where
they could be extremely suppressed (or absent), in agreement
with current stringent constraints).1 In a previous work [43]
we presented a phenomenological model for generating a lep-
ton asymmetry via CPTV in the early universe. The model
was based on a specific extension of the SM, involving mas-
sive Majorana right-handed neutrinos (RHN), propagating
on a Lorentz and CPTV, constant in time, axial vector back-
ground coupling to fermions. The latter could be traced back
to a specific configuration of a cosmological Kalb–Ramond
(KR) antisymmetric tensor field [44] that appears in the grav-
itational multiplet of string theory [45–49], and plays the rôle
of torsion in a generalised connection, although we do not

1 If one considers, for instance, quark fields in some Lorentz and CPTV
backgrounds (such as those allowed by the SME formalism), it is possi-
ble to induce baryogenesis, as a consequence of the fact that the LV and
CPTV effects induce “chemical potentials” for the quarks [42]. This
leads directly to baryogenesis, given that in the presence of a chemi-
cal potential μ, the populations of quarks and antiquarks are already
different within thermal equilibrium, since the particle and antiparti-
cle phase-space distribution functions f (E, μ), f (E, μ), with E the
energy (and an overline over a quantity denoting that of an antiparticle)
are different (in the presence of a chemical potential, μ, for a particle,
the antiparticle has a chemical potential of opposite sign μ = −μ. In
SME models, of course, even the magnitudes of μ and E may be differ-
ent from those of particles, as a consequence, for example, of different
dispersion relations between particles and antiparticles). All these cause
a difference in the corresponding equilibrium populations

f (E, μ) = [exp(E − μ)/T ) ± 1]−1, f (E, μ̄)

= [exp(Ē − μ)/T ) ± 1]−1, (3)

[where the +(−) will denote a fermionic (bosonic) (anti-)particle]. In
principle, such scenarios can lead to alternative explanations for the
observed matter-antimatter asymmetry, provided that detailed mecha-
nisms for freeze-out of particle interactions in this SME context are pro-
vided.Unfortunately, so far, microscopic models leading to such SME
lagrangians and related phenomena have not been provided.
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restrict ourselves to such an identification.2 The involvement
of sterile RHN in the model is physically motivated primar-
ily by the need to provide a natural explanation for the light
neutrino masses of the SM sector. The lightest RHN may
also have a potential role as (warm) dark matter candidates
[25,26,51–53]. However, in our CPTV models sterile neu-
trinos responsible for leptogenesis have masses in the 105

GeV range or higher [43] and so cannot be considered as
dark matter.

In [43] we only gave a qualitative and rather crude estimate
of the induced CPTV lepton asymmetry, based on the decay-
ing right handed Majorana neutrino being at rest. In this way
it was possible to estimate the lepton asymmetry, without
following the standard procedure of solving the appropri-
ate Boltzmann equation that determines correctly the asym-
metry value at decoupling of RHN. In the early universe
the heavy right-handed neutrinos are not at rest but have a
Maxwell-Boltzmann momentum distribution. The purpose
of this article is to properly take into account this momentum
distribution in the calculation of the lepton asymmetry.

The structure of the article is as follows: in the next Sect.
2 we review the model of [43] and an earlier estimate of the
CPTV-background induced lepton asymmetry, which shall
be compared with the much more accurate result of the
present article, obtained by solving the appropriate Boltz-
mann equations analytically. We commence our analysis by
considering the lepton asymmetry associated with the decays
of the RHN into charged leptons. In Sect. 3, we construct the
appropriate system of Boltzmann equations in the presence
of a weak CPTV axial background involved in the problem,
and compare it with the standard CP violating case [20–26].
In Sect. 4, we solve the Boltzmann equations using Padé
approximants [54], which is an approximation popular in
several fields of physics, ranging from statistical mechanics
to particle physics and quantum field theory [55–60]. In this
way, we manage to compute the induced lepton asymmetry
at RHN decoupling analytically, avoiding numerical treat-
ment. It should be remarked, that setting up and solving such
a system of differential equations is a highly non-trivial and
algebraically complicated task. Our analytical results agree
(within ∼ 12.5% accuracy) with our earlier preliminary esti-
mates of the freezeout point, as outlined, in [43]. In view of

2 In four space-time dimensions, the field strength of the KR field is
dual to a massless pseudoscalar (axion-like) field. In the recent litera-
ture [50] axion-based approaches to leptogenesis, involving an effective
CPT-violating coupling between the (temporal component of the) lep-
ton number current and the time derivative of a (time-dependent) axion
field (which is quite different from our KR axion which couples to axial
fermion currents), have been proposed. This interaction breaks time
translation invariance and, thus, generates an effective chemical poten-
tial which differentiates between leptons and anti-leptons. The presence
of this effective chemical potential allows for the generation of a lepton
asymmetry by means of RHN-mediated �L = 2 scattering processes
in that model.

this, we consider our system of Boltzmann equations as pro-
viding another efficient use of Padè approximants, this time
with relevance to cosmology. The lepton asymmetry that we
find in our analytic treatment is slightly larger (by a factor
of about 2) than the estimate of [43]; this is to be expected,
since non-zero momentum modes of the RHN have been
included. In Sect. 5 we complete our analysis by including
the contributions to the Boltzmann equations and the lep-
ton asymmetry coming from the decays of the RHN into the
neutral Higgs and active neutrinos. Our calculations show
that the resultant lepton asymmetry increases by a factor ∼ 2
compared to the one based on the RHN decays to charged
leptons only. Conclusions and outlook are given in Sect. 6. A
review of the formalism and derivations of the corresponding
decay amplitudes and thermally averaged rates used in the
Boltzmann equations, are presented in several Appendices.

2 Review of the CPT violating model for leptogenesis

It will suffice for our purposes to consider a single species of
RHN as in [43]. If the phenomenology is required to include
the seesaw mechanism it is necessary (and possible) to add
more species of RHN. The option of using a single species of
RHN is not available within the standardCPT conserving but
CP violating scenario, where to obtain a lepton asymmetry
one needs more than one species of RHN [20,21,24]. Our
Lagrangian is given by [43]:

L = i N /∂N − M

2

(
NcN + NNc)

−N /Bγ 5N − yk Lk φ̃N + h.c. (4)

where N is the Majorana field, φ̃ is the adjoint (φ̃i = εi jφ j )
of the Higgs field φ, and Lk is a lepton (doublet) field of
the SM sector, with k a generation index. yk is a Yukawa
coupling, which is non-zero and provides a non-trivial inter-
action between the RHN and the SM sectors via the Yukawa
type interaction (“Higgs portal”): LYUK = yk Lk φ̃N + h.c.
In our case of a single Majorana neutrino species we take
k = 1 to label the first generation, and from now on we set

y1 = y. (5)

Since in SM the leptons have definite chirality, the Yukawa
interactions LYUK can be rewritten as

LYUK = −yL1φ̃

(
1 + γ 5

2

)

N − y∗N φ̃†

(
1 − γ 5

2

)

L1

= −yL1φ̃

(
1 + γ 5

2

)

N − y∗Lc
1φ̃

†

(
1 − γ 5

2

)

N .

(6)
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where in the last equality we used the properties of the charge
conjugation matrix and the Majorana condition Nc = N . The
two hermitian conjugate terms in the Yukawa Lagrangian are
also CPT conjugate. This is to be expected on the basis of
the CPT theorem. In fact CPT violation is introduced only
by interactions with the background field.

The background field /B ≡ γμ Bμ is assumed at most a
function of the cosmic time, so as to respect the isotropy
and homogeneity of the early universe, where such back-
grounds are non-trivial. We note at this point that, if the
axial background field Bμ is to be identified [43] with the
totally antisymmetric field strength (Hμνρ = ∂μBρσ + cyclic
permutation of indices) of the Kalb–Ramond [44] spin-one
field Bμν , that appears in the massless gravitational multi-
plet of string theory [45–47], then the latter is viewed as part
of a torsion background [48]: Bμ = εμνρλ Hνρλ. In such
a case one should also consider the coupling of the axial
field Bμ to all other fermions of the SM sector, ψ j ( j =
leptons, quarks) via a universal minimal prescription, with
the coupling with all fermionic species ψ being the same :
ψ j γ

5 /B ψ j . In four space-time dimensions the Hνρλ field is
dual to a pseudoscalar field b(x) [48,49]: Hμνρ ∝ εμνρλ ∂λb.
There is an exact cosmological solution in the bosonic string
theory [49], in which the H -torsion background is identi-
fied with a homogeneous and isotropic cosmological Kalb–
Ramond axion, linearly dependent on the cosmic time [49].
The solution satisfies the corresponding conformal invari-
ance conditions of the associated σ -model, thus constituting
a consistent background of strings. The resultant axial back-
grounds are constant in time and have non-trivial temporal
components only

B0 = const �= 0, Bi = 0, i = 1, 2, 3. (7)

In [43] we have generalised the above solution (7) in theo-
ries with fermions, in which the latter condensed in the early
universe. Such backgrounds can then be viewed as sponta-
neously breaking Lorentz and CPT symmetry in the system
and are consistent with isotropy and homogeneity of the early
universe. In what follows we shall consider the Lagrangian
(4) in the generic background (7), without specifying further
its microscopic origin. The form of the Lagrangian coin-
cides with one of the simplest forms of the so-called Stan-
dard Model Extension (SME) [37], namely that in which the
temporal component of the so-called bμ coefficient assumes
a constant value.

There are stringent constraints [38–41] (coming from a
plethora of measurements ranging from astrophysical to lab-
oratory precision tests of Lorentz and CPT symmetries) for
today’s value of b0 ≤ 0.02 eV (and much suppressed spa-
tial components bi < 10−32 GeV). Although in our model
in the frame of Robertson–Walker (cosmic microwave back-
ground) the axial background is assumed to have only the

temporal component (7), nevertheless the slightest motion
of the observer with respect to that frame will generate a spa-
tial component by means of a Lorentz transformation. It is
therefore essential that any current value of B0 is severely
suppressed today, and also during the nucleosynthesis era. In
[43] we have provided arguments in favour of scenarios in
which the universe undergoes a phase transition soon after
the decoupling of heavy neutrinos, so that the background B0

ceases to be a constant, and decreases with the temperature
according to the scaling law T 3. The qualitative estimates of
[43], have indicated that for Yukawa couplings yk of order
10−5 (assumed in [43]), the decoupling temperature of the
heavy neutrino TD of order TD � mN ∼ 100 TeV, implies
a phenomenologically consistent leptogenesis for B0 ∼ 1
MeV at T � TD . The cooling law

B0 ∼ T 3, (8)

implies for the present era a negligible B0 = O(10−44) meV
today, and also a very small value during the nucleosynthesis
era.

As we shall be interested in high temperatures T � TD ∼
100 TeV, which are much higher than the electroweak phase
transition, the SM fields are treated as massless, while the
heavy RHN can still be assumed to be massive.3 In such a
case, the Higgs field does not develop a vacuum expectation
value; consequently the charged Higgs (denoted by h±) and
neutral Higgs (h0) play a rôle in the physical spectrum. From
the form of the interaction Lagrangian in Eqs. (4), and (6), it is
straightforward to obtain the Feynman rules for the diagrams
giving the decay of the Majorana particle in the two distinct
channels:

Channel I : N → l−h+,

Channel II : N → l+h−. (9)

The neutral channel decay N → ν h0, where ν are the SM
neutrinos, would not lead to any lepton asymmetry, if the
active neutrinos ν were purely Majorana; this follows directly
from the Yukawa term (6), when expressed in terms of Majo-
rana fields for the neutrinos. However, in standard see-saw
scenarios [27–31], the Lagrangian contains Dirac mass terms
for the active neutrinos and schematically ν �= ν; so there

3 We do not specify here or in [43] the mechanism by which the heavy
right-handed neutrinos acquire their mass. Exotic scenarios may be at
play here [61], in which the quantum fluctuations of the Kalb–Ramond
Hμνρ field (equivalently the axion field b(x) in four space-time dimen-
sions) are allowed to mix with ordinary axions, via kinetic mixing, and
thus may be responsible for radiative generation of the right-handed
Majorana neutrino mass, as a result of Yukawa coupling interactions of
the ordinary axion with such right-handed neutrinos. In such a case, one
may arrange that such masses are non trivial in the high temperature
regime of the decoupling of the right-handed neutrinos, even if the rest
of the SM fields are massless at such temperatures.
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N

φ̄

l−

N

φ

l+ N

l+

φ

Fig. 1 Tree- (left) and one-loop (right) decay amplitudes for the decays
(9) that are relevant for leptogenesis. Continuous undirected lines rep-
resent right-handed neutrinos (RHN), lines with an arrow represent
SM leptons, whilst dashed lines correspond to the SM Higgs. In our
approach, only the tree diagrams are evaluated in the presence of an
axial background field (7). The remaining diagrams are required for the
standard result of [20], leading to leptogenesis in CPT invariant theo-

ries, with only CP violation in the lepton sector; it is necessary to have
more than one generation of right-handed neutrinos, given that the CP
violation appears in the neutrino mixing matrix. In this standard case
the RHN N in intermediate lines in the middle and right panel graphs
are understood to have a different flavour from the external RHN line.
The flavours of RHN are not indicated in the diagram for brevity

would be additional contributions to the lepton asymmetry
from the tree level decays in the channels

Channel I : N → ν h0,

Channel II : N → ν h0. (10)

In the absence of the background, the squared matrix ele-
ments obtained from tree level diagrams for the two decays
in Eq. (9) (cf. Fig. 1), and also in Eq. (10), would be the
same [20,21,24,62]. In such a case, a lepton asymmetry is
generated due to the CP violation present in the neutrino
mixing matrix in the pertinent one loop diagrams, and hence
require more than one species of right-handed neutrinos. In
the presence of the background B0 �= 0, however, there is a
difference in the decay rates of the tree level processes (9),
and this leads to CPTV-induced lepton asymmetry.4

In what follows, we shall first calculate the lepton asym-
metry based only on the decay channels (9), involving
charged leptons in the final stage. In Sect. 5 we shall include
the neutral decay channels (10), into active neutrino and
neutral Higgs. As we will demonstrate, the complete lep-
ton asymmetry is increased by a factor of 1.98 as compared
to the contribution from the charged channels (9) alone (the
case considered in the estimate of [43]). It will turn out that
the estimate of [43]) for the lepton asymmetry is of the same
order of magnitude as the one derived in our current accurate
treatment, thus providing an a posteriori justification of the
simplified analysis of [43].

In [43], by assuming the heavy Majorana neutrino at rest,
we estimated the lepton asymmetry induced by the (Lorentz-
and-CPT-violating) background B0. We assumed one single

4 Scattering processes l l → h̄h̄ or l h → l̄ h̄, are of higher order in the
Yukawa coupling y and hence are suppressed in our case, although such
processes are equally important in standard CPT invariant, CP violating
leptogenesis, with more than one species of right-handed neutrinos, as
they are of the same order as the CP violating one-loop graphs [24].

Majorana neutrino N with the corresponding Yukawa cou-
pling for the Higgs portal y. For N , the tree-level decays
(cf. Fig. 1) for the two channels (9), in the presence of the
background B0, yields in that case:

1(N → l−h+) = |y|2
32π2

m2
N

�

� + B0

� − B0
,

2(N → l+h−) = |y|2
32π2

m2
N

�

� − B0

� + B0
,

� =
√
B2

0 + m2
N . (11)

The decay process goes out of equilibrium when the total
decay rate drops below the expansion rate of the universe.
Assuming standard cosmology [43] during the decoupling
period,5 which is also hypothesised to coincide with the
radiation-dominated era of the Universe, this expansion rate
is given by the Hubble constant [63]

 � H = 1.66 T 2N 1/2M−1
pl , (12)

where N is the effective number of degrees of freedom of
all elementary particles and Mpl is the Planck mass. For a
minimal extension of the SM, with only right-handed neutri-
nos and the background B0, we may estimate N = O(100)

at temperatures higher then the electroweak transition [64].
From the last equation one can estimate the right-handed-
neutrino decoupling temperature TD , in terms of the phe-

5 Such an assumption is non trivial and depends on the microscopic
model considered. For instance, in terms of brane-world scenarios for
the background B0 [43], where the latter is derived from a cosmolog-
ical Kalb–Ramond axion field b(t), such an assumption is justified by
requiring a cancellation of the constant in time kinetic energy density
of the field b by the (negative) dark energy of the higher-dimensional
bulk. After the decoupling, where the string/brane Universe undergoes
a phase transition, the dark energy falls off with the temperature suf-
ficiently rapidly, so as today it reaches the value measured by cosmo-
logical observations. We shall not discuss such details in the current
article.
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nomenological parameters �, |y| and B0 [43]

TD � 6.2 · 10−2 |y|
N 1/4

√
Mpl(�2 + B2

0 )

�
. (13)

Imposing a delayed decay mechanism, as for the standard
leptogenesis [20,63,65], leads to the further requirement
that TD ≤ � leading to: ξ (�2 + B2

0 ) ≤ �3, where

ξ = 3.8 · 10−3 mP |y|2
N 1/2 . In [43] we demanded that saturation

of this inequality be satisfied for all values of the background
field B0, which implies

m2
N ≥ 1.09 ξ2. (14)

On assuming for the (phenomenological) coupling y the
value |y| ≈ 10−5, we then obtain an order of magnitude
estimate mN for the heavy neutrino mass

mN ≈ TD ≈ 100 TeV. (15)

In [43] we estimated the lepton number density by assuming
that all the right-handed neutrinos were at rest before the
decay; hence with branching ratios of the decays given by
r = 1


and 1 − r , the decay of a single neutrino produces

the lepton number

�L = r − (1 − r) = 2r − 1 = 2�B0

�2 + B2
0

. (16)

Multiplying this quantity by the initial abundance of right-
handed Majorana neutrinos ND at the temperature TD (aver-
aged over the respective helicities), one gets a crude estimate
of the lepton number density. Also, in [43] we assumed that
the right-handed neutrino density distribution follows closely
the equilibrium distribution for T ≥ TD and drops rapidly to
zero at lower temperatures T ≤ TD; furthermore the density
of the sterile neutrino (normalised to the entropy density) is
well approximated by a step-function. This implies that the
total lepton asymmetry (normalised over the entropy den-
sity) produced in the full decay of the right-handed neutrino
is given by [43]

�LT OT

s
(T � TD) = (2r − 1)

n̄N
s

= 2�B0

�2 + B2
0

n̄eqN
s

(17)

where

s ∼ 2π

45
N T 3 ∼ 14T 3, (18)

is the total entropy density (assuming, for temperatures
higher than the electroweak phase transition, SM-like val-
ues for the effective degrees of freedom N ∼ 100). For the
non-relativistic right-handed neutrino, the Fermi-Dirac equi-
librium density n̄eqN is well approximated by the Maxwell
distribution, yielding in the presence of the background B0:

n̄eqN = gN e−mN /T
(
mN T

2π

) 3
2 + O(B2

0/m2
N ), (19)

where gN = 2 is the effective number of degrees of freedom
of the right-handed neutrino, and we assume that B0/mN �
1, an assumption that proves to be self consistent. The lepton

asymmetry �LT OT

s has not been measured directly, hence it
can – depending on the theory – be different from the baryon
asymmetry. However in theories with sphaleron transitions
that preserve Baryon-minus-Lepton (B−L) number, such as
minimal extensions of the SM with right-handed neutrinos,
as the ones we are interested in [43] and here, �LT OT /s is
expected to be of the same order of magnitude as the baryon
asymmetry (20),

Y�B = nB − nB̄

s
= (8.4 − 8.9) × 10−11, T > 1 GeV,

(20)

wherenB (nB̄) is the number density of baryons (antibaryons)
in the universe, provided it is communicated to the baryon
sector by Baryon and Lepton number violating but Baryon-
minus-Lepton (B−L) conserving sphaleron processes in the
SM sector. An order of magnitude estimate of the ratio B0

m
can be found making use of the approximation TD � mN

and retaining only first order terms in B0
m � 1. Equating the

expression for the lepton asymmetry with the phenomenolog-
ical value (20), and expanding (17) to first order in B0/mN ,
we obtain (for gN = 2)

�LT OT

s
� gN

7 e (2π)3/2

B0

mN

� 0.007
B0

mN
� 8 × 10−11,

T � TD � mN , (21)

which implies [43]

B0

mN
= O(10−8). (22)

The small value of this ratio also allows us to justify a posteri-
ori the neglect of higher powers of B0 in the formulae above.
For the case where y = O(10−5) and from the lower bound
for mN of 100 TeV found in (14), we get an approxima-
tion for the smallest possible magnitude of the background
field required in order for this mechanism to be effective:
B0 � 1 MeV. If other mechanisms contributed to the lepton
asymmetry in the universe, or the Yukawa couplings assume
smaller values, the minimum value of B0 would be smaller
than the one given here. Baryogenesis is then assumed to
proceed via B-L conserving processes in the SM sector of
the model.

In order to get a physically correct and more accurate esti-
mate of the induced lepton asymmetry, the relevant Boltz-
mann equation needs to be studied in detail, since the heavy
right-handed neutrinos are not at rest, but characterised by
the Maxwell–Boltzmann momentum distribution in the early

123



Eur. Phys. J. C (2018) 78 :113 Page 7 of 33 113

universe. This requires a good approximation for the ther-
mally averaged decay rates (9) of all the relevant processes
and will be the subject of the current article. As the Boltz-
mann equations associated with the leptogenesis scenario
advocated here and in [43] involve appropriately averaged
thermal rates of the decays (9), we develop in Appendix 7.D
the relevant formalism (for B0/mN � 1); the formalism
will be used in the next Sect. 3 to set up the pertinent sys-
tem of Boltzmann equations. We shall often borrow methods
and techniques from the standard case of CPT conserving
RHN-induced leptogenesis, where the CPTV background
B0 is absent, but there is CP violation in the lepton sector
[20,21,24]. In the current article we shall closely follow the
formalism outlined in [24].

3 Setting up the Boltzmann equations for leptogenesis
in the presence of CPTV backgrounds

In the presence of the weak background B0 the following
Boltzmann equation for the number density nr of a fermion
species χ of mass mχ and helicity λr , has been derived in
the Appendix of [43]:

d

dt
nr + 3Hnr − g

2π2 2λr H
B0

T
T 3

∫ ∞

0
duu f (E(B0 = 0), u)

= g

8π3

∫
d3 p

E(B0 �= 0)
C[ f ] + O(B2

0/m2
N ) (23)

where g denotes the number of degrees of freedom, and f is
the Fermi Dirac distribution of a relativistic fermion assum-
ing zero chemical potential:

f (Er ; T ) = 1

eEr /T + 1
(24)

The B0 dependent energy–momentum dispersion relation
(cf. Appendix 7.B)

E2
r (| p̄|) = m2 + (B0 + λr | p̄|)2 (25)

should be used and an expansion up to and including first
order terms in the background B0/(mN , T ) is performed
for our weakly CPTV background. The term C[ f ] denotes
the appropriate thermally averaged decay or interaction rates
involving the speciesχ [64]. In practice, it is convenient when
calculating the lepton asymmetry, to consider the number
densities normalised over the entropy density of the universe
(18) [64]:

Yr ≡ nr
s

. (26)

In the problem at hand, we consider a system of Boltz-
mann equations, associated with the heavy neutrino N , as
well as the lepton l± abundances. The Boltzmann equation
(23) applies to both a relativistic (massless) neutrino as well

as a heavy right-handed neutrino, upon using the appropriate
dispersion relation (25). We shall follow the standard analysis
in constructing the relevant equations [24], with the impor-
tant difference being that the energy momentum dispersion
relation and the interaction rates C[ f ] term involve now the
LV and CPTV background B0.

In terms of the abundances (26), the Boltzmann equations
associated with the interactions (9) of a RHN with a given
helicity λ take the form:

zHs
dY (λ)

N

dz
− λI = −

{

γ eq,(λ)(N → l−h+)
Y (λ)
N

Y (λ),eq
N

− γ eq,(λ)(l−h+ → N )
Y (λ)

l−

Y (λ),eq
l−

Yh+

Y eq
h+

+ γ eq,(λ)(N → l+h−)
Y (λ)
N

Y (λ),eq
N

− γ eq,(λ)(l+h− → N )
Y (λ)

l+

Y (λ),eq
l+

Yh−

Y eq
h−

}

, (27)

where YN is the heavy neutrino abundance, and the super-
script eq denotes thermal equilibrium quantities. The equi-
librium abundances Y eq

N are discussed in detail in Appendix

7.C; the γ eq,(λ)(N
←→ �± h∓) denote the appropriate ther-

mally averaged decay rates, discussed in Appendices VIIB
and VII D. We shall use their explicit expressions later on, in
order to construct the final form of the Boltzmann equations.
The term λ I in (27) is a generic notation for an appropriate
integral stemming from the terms proportional to the CPTV
background B0 and the helicity λ on the left-hand-side of
(23). Such terms vanish when we average over helicities,
since

∑
r λr = 0. The reader should notice that apart from

the λ I term, the rest of the structures in (27) are the same
as in conventional CPT invariant but CP violating cases for
leptogenesis [24]; but, as already mentioned, the relevant dis-
persion relations (25) are modified by the CPTV background
B0 �= 0.

From the expressions for the relevant amplitudes in
Appendix 7.B, we know that, on account of helicity con-
servation, for the processes N

←→ l−h+ we only have one
helicity λ = −1 and for the processes N

←→ l+h− we only
have λ = +1. Following standard treatments [24], we also
take the charged Higgs boson as well as the charged leptons
to be roughly in equilibrium; hence we set Yl,h � Y eq

i,h for
the corresponding abundances in (27), and find:

zHs
dY (−)

N

dz
+ I � −

{

γ eq,(−)(N → l−h+)
Y (−)
N

Y (−),eq
N

− γ eq,(−)(l−h+ → N )

}
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zHs
dY (+)

N

dz
− I � −

{

γ eq,(+)(N → l+h−)
Y (+)
N

Y (+),eq
N

− γ eq,(+)(l+h− → N )

}

. (28)

Next we will generate the lepton and anti-lepton Boltz-
mann equations, which are needed in the calculation of the
lepton asymmetry. As there is only one forward and reverse
process for a lepton l− with a definite helicity λ = −1, the
corresponding Boltzmann equation obtained from (23), reads

zHs
dY (λ)

l−
dz

− λI = −
{

γ eq,(λ)(l−h+ → N )
Y (λ)

l−

Y (λ),eq
l−

Yh+

Y eq
h+

− γ eq,(λ)(N → l−h+)
Y (λ)
N

Y (λ),eq
N

}

. (29)

Again we take the Higgs particle to be in equilibrium
Yh+ � Y eq

h+ [24]. Moreover, from the relevant discussion
in Appendix 7.B, we know that we only have one helic-
ity (λ = −1) for the processes concerning the leptons l−,
which implies that the Boltzmann equation for the lepton
becomes

zHs
dY (−)

l−
dz

+ I � −
{

γ eq,(−)(l−h+ → N )
Y (−)

l−

Y (−),eq
l−

− γ eq,(−)(N → l−h+)
Y (−)
N

Y (−),eq
N

}

(30)

Applying a similar analysis, but now concentrating on the
opposite helicity λ = + 1, we arrive at the Boltzmann equa-
tion for the anti-lepton l+:

zHs
dY (+)

l+
dz

− I � −
{

γ eq,(+)(l+h− → N )
Y (+)

l+

Y (+),eq
l+

− γ eq,(+)(N → l+h−)
Y (+)
N

Y (+),eq
N

}

. (31)

In the specific leptogenesis scenario of [43], the lead-
ing contributions to the lepton asymmetry (as far as the
small Yukawa coupling (5), y ∼ 10−5 � 1, is concerned)
come from the tree level decays (9) and their reverse pro-
cesses. As already mentioned in the previous section, the
additional interactions lh → l̄ h̄ and ll̄ → hh̄, involving a
tree-level heavy neutrino exchange, are both of higher order
in y and suppressed by the heavy mass mN , hence they will
be ignored in our case. (It should be remarked that these latter
interactions yield contributions comparable to the one loop

order graph of Fig. 1 and hence play an important rôle in
CPT invariant, conventional leptogenesis scenarios [24]).

From now on, we shall concentrate on constructing the
system of Boltzmann equations associated with:

(i) the heavy neutrino abundance in units of entropy density
(cf. (26)), and averaged over helicities λ = ± 1:

ȲN ≡ Y (−)
N + Y (+)

N

2
(32)

and
(ii) the lepton-asymmetry for the processes (9), defined in

terms of the lepton abundances:

L ≡ Y (−)

l− − Y (+)

l+ = 2
[
Ȳl− − Ȳl+

]
,

Ȳl ≡ Y (−)
l + Y (+)

l

2
= Y (−)

N + Y (+)
N

2
= ȲN , (33)

where we took into account that the asymmetry is gen-
erated between the leptons of helicity λ = −1 and the
anti-leptons of helicity λ = +1, since these are the only
decays for the heavy neutrino (9), for each of which helic-
ity is conserved. There will be no asymmetry between
leptons of helicity λ = +1 and anti-leptons of helicity
λ = −1 and so Y (+)

l− − Y (−)

l+ = 0. Moreover, all of the
negative helicity lepton abundance Yl− comes from the
decay of the negative helicity heavy neutrino. The same
argument for the anti-lepton positive helicity abundance
generated by the positive helicity heavy neutrinos. These
imply the second of the relations (33).

The total observable lepton asymmetry, which we want to
compute, and compare the result with the estimate (21), is
defined with respect to the corresponding abundances (aver-
aged over helicities) in units of the entropy s, as follows:

�LT OT

s
≡ Y (−)

l− − Y (+)

l+

Y (−)

l− + Y (+)

l+
= L

2ȲN
, (34)

on account of (33). In what follows we proceed with the
construction and solution of the Boltzmann equations that
correspond to the quantities ȲN and L.

To obtain a Boltzmann equation, summed up over helic-
ities, for the averaged RHN abundance ȲN (33) from the
system (28), we sum up these equations, to obtain:
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2zHs
dȲN

dz

= −
{
γ eq,(−)(N → l−h+)

Y (−)
N

Y (−),eq
N

− γ eq,(−)(l−h+ → N )

+ γ eq,(+)(N → l+h−)
Y (+)
N

Y (+),eq
N

− γ eq,(+)(l+h− → N )

}
.

(35)

The asymmetry (34) will be evaluated at decoupling tem-
peratures by solving explicitly the appropriate system of
Boltzmann equations forL and ȲN and the result will be com-
pared with the estimate (21) of [43]. In solving the equations
we shall approach decoupling by starting from high temper-
atures T and gradually approaching decoupling T → TD
by making use of appropriate approximations (Padé approx-
imants [54–60]), which will allow for analytic expressions
for the lepton asymmetry.

In this high-temperature (relativistic) regime, the entropy
density of the Universe scales with T as s ∼ 14T 3, whilst
the Hubble parameter behaves as [64], H ∼ 6T 2/Mpl , with
Mpl the Planck mass. Using these relations, we can write

zHs ∼ = 84
m5

N

Mpl z4 , HT 2 ∼ = 6
m4

N

Mpl z4 , z ≡ mN

T
.

(36)

The terms λI that appear on the left hand side of the Boltz-
mann Eqs. (28), (30), (31), in the high-temperature regime
T � mχ for a generic fermion of mass mχ , and degrees of
freedom gχ , can be written as:

Iχ = gχ HB0

π2

∫ ∞

T
d| p̄χ || p̄χ | f eqχ ,

f eqχ = 1

exp

[
Eχ

T

]
+ 1

= exp

[
− Eχ

T

] ∞∑

n=0

(−1)n exp

[
− n

Eχ

T

]
. (37)

We only have to consider the (massless) lepton case and
expand the series upto second order,

f eql � exp
[

− El(| p̄l |)
T

]
+ exp

[
− 2

El(| p̄l |)
T

]

− exp
[

− 3
El(| p̄l |)

T

]
, El(B0 = 0) = | p̄l |. (38)

The integral Il can therefore be expressed as,

Il = gl H B0T 2

π2

[
J1 − J2 + J3

]
,

Jn =
∫ ∞

1
dxxe−nx = n + 1

n2 e−n, (39)

where the integration variable was changed to | p̄l |/T = x .
The expression for Il up to second order is given by,

Il = 1.7842
gl H B0T 2

π2e
. (40)

El(| p̄l |) is the relativistic energy of the lepton and is taken to
be independent of B0, since in our analysis we are only con-
sidering terms of linear order in B0 � T,mN [43]. All series
expansions are taken to second order in the appropriate small
parameters, for reasons that will become clear below, when
we consider the Padé approximated analytic solution for the
Boltzmann equations extrapolated to the RHN decoupling
temperature TD � mN (13), (15).

The integral Iχ , in the lepton case, can be approximated
by

Il � 10.7052
gl m4

N B0

π2 e Mpl z4 . (41)

Hence, from (35), (30), (31), (36) and (41), we observe that
the Boltzmann equations for the heavy neutrino abundance
and lepton/anti-lepton asymmetry L, averaged over helici-
ties, in the high temperature regime, acquire the form (we
reminder the reader that the leptons l± are strictly massless,
ml± = 0, in the high temperature regime, above the elec-
troweak phase transition):
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168
m5

N

Mpl z4

dȲN

dz
= −

{

γ eq,(−)(N → l−h+)
Y (−)
N

Y (−),eq
N

− γ eq,(−)(l−h+ → N )

+ γ eq,(+)(N → l+h−)
Y (+)
N

Y (+),eq
N

− γ eq,(+)(l+h− → N )

}
, (42)

and

84
m5

N

Mpl z4

dL
dz

+ 2Il = γ eq,(−)(N → l−h+)
Y (−)
N

Y (−),eq
N

− γ eq,(+)(N → l+h−)
Y (+)
N

Y (+),eq
N

−
(

γ eq,(−)(l−h+ → N )
Y (−)

l−

Y (−),eq
l−

− γ eq,(+)(l+h− → N )
Y (+)

l+

Y (+),eq
l+

)
,

(43)

with the definitions

ȲN ≡ Y (−)
N + Y (+)

N

2
, L ≡ Y (−)

l− − Y (+)

l+ ,

Il ≡ 10.7052
glm4

N B0

π2eMpl z4 . (44)

We next proceed to solve the above equations which, since
they are linear and first-order, can be in principle exactly
solved. However, for the exact solutions to be amenable to
analysis, approximations will need to be made; the goal is to
find an analytic expression for the lepton asymmetry.

3.1 Heavy-right-handed-neutrino abundance Boltzmann
equation

We commence our analysis with the heavy-RHN-Boltzmann
equation (42). The equilibrium populations are calculated in
Appendix 7.C. The corresponding thermally averaged decay
rates read (see Appendices VIIB and VII D, and in particular
Eq. (188)):

γ eq,(−)(N → l−h+) = γ eq,(−)(l−h+ → N )

= � f1(z)[1 + ε1(z)]
γ eq,(+)(N → l+h−) = γ eq,(+)(l+h− → N )

= � f1(z)[1 − ε1(z)] (45)

where

� = 3|y|2m4
N

16(2π)3

f1(z) = z−2/3(0.2553 − 0.1447z2 + 0.0957z4),

ε1(z) = z
B0

mN

0.6062 − 0.3063z2

0.2553 − 0.1447z2 + 0.0957z4 , z < 1.

(46)

The reader should notice the “reciprocity” equalities

γ eq(l−h+ → N ) = γ eq(N → l−h+),

γ eq(l+h− → N ) = γ eq(N → l+h−) (47)

even in the presence of the CPTV background B0 �= 0.
These are consequences of the equality of the correspond-
ing amplitudes (140) and energy conservation, as explained
in Appendix 7.D. Also, it is immediately seen from (45) that
it is only in the presence of the CPTV background B0 �= 0
that a lepton asymmetry is generated at tree level between
the decay channels (9) (see Fig. 1), as a consequence of the
pertinent differences in (45) and (140). In this respect, the
similarity of the rôle of the CPTV ε1 parameter with the cor-
responding one, ε, of conventional leptogenesis [24] should
be noticed.The important difference is that, in contrast to our
CPTV case, conventional lepton asymmetry occurs at one
loop level for the decays of Fig. 1 and requires more than
one flavour of the RHN.

After substitution of the relevant expression for the
thermally-averaged quantities γ eq , we have the following
intermediate results (for details see Appendix 7.C),

γ eq,(−)(l−h+ → N ) + γ eq,(+)(l+h− → N ) = 2� f1(z),
(48)

Y (λ),eq
N = (0.1652)

gN
π2e

(
1 − 0.176z2 + 0.0301z4

− 0.9374λ
B0

mN
z + 0.2381λ

B0

mN
z3
)

, (49)
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from which it follows

[
Y (λ),eq
N

]−1 � 6.0533
π2e

gN

(
1 + 0.176z2 + 0.0009z4

+ 0.9374λ
B0

mN
z + 0.0919λ

B0

mN
z3
)

= A
[
g1(z) + λ

B0

mN
g2(z)

]
,

A = 6.0533
π2e

gN
,

g1(z) = 1 + 0.176z2 + 0.0009z4,

g2(z) = 0.9374z + 0.0919z3, z < 1, (50)

where to obtain the last expression of (50) we have expanded
the function in the round brackets in the definition of Y (λ),eq

N
up to second order in z < 1, neglecting terms of order
O(B0/mN )2. The remaining terms in the Boltzmann equa-
tion (42) become:

γ eq,(−)(N → l−h+)
Y (−)
N

Y (−),eq
N

+ γ eq,(+)(N → l+h−)
Y (+)
N

Y (+),eq
N

= � f1(z)

[
Y (−)
N

Y (−),eq
N

+ Y (+)
N

Y (+),eq
N

+ ε1(z)

(
Y (−)
N

Y (−),eq
N

− Y (+)
N

Y (+),eq
N

)]
. (51)

We now evaluate the sum and difference of the abundances
normalised to their respective equilibrium values,

Y (−)
N

Y (−),eq
N

+ Y (+)
N

Y (+),eq
N

� A{g1(z)[Y (−)
N + Y (+)

N ]

− B0

mN
g2(z)[Y (−)

N − Y (+)
N ]} � 2Ag1(z)ȲN

Y (−)
N

Y (−),eq
N

− Y (+)
N

Y (+),eq
N

= A[g1(z)(Y
(−)
N

− Y (+)
N ) − g2(z)

B0

mN
(Y (−)

N + Y (+)
N )]

� 2g1(z)z
B0

mN
(0.9374 − 0.2381z2)

− 2Ag2(z)
B0

mN
ȲN

Y (−)
N − Y (+)

N � Y (−)eq
N − Y (+)eq

N

= 2A−1z
B0

mN
(0.9374 − 0.2381z2),

Y (−)
N + Y (+)

N = 2ȲN . (52)

Substituting these expressions in (51), we obtain

γ eq,(−)(N → l−h+)
Y (−)
N

Y (−),eq
N

+ γ eq,(+)(N → l+h−)
Y (+)
N

Y (+),eq
N

� 2A� f1(z)g1(z)ȲN + O
( B0

mN

)2
, (53)

where again the term involving the differences of the abun-
dances will be of order B2

0 since ε1(z) is already linear in B0

and so is neglected. We may write the right-hand-side of the
heavy neutrino Boltzmann equation (42) as:

−
{
γ eq,(−)(N → l−h+)

Y (−)
N

Y (−),eq
N

− γ eq,(−)(l−h+ → N ) + γ eq,(+)(N → l+h−)
Y (+)
N

Y (+),eq
N

− γ eq,(+)(l+h− → N )
}

� −2A� f1(z)g1(z)ȲN + 2� f1(z). (54)

Upon substitution of the relevant expressions, the heavy neu-
trino Boltzmann equation at high temperatures becomes:

168
m5

N

Mpl z4

dȲN

dz
= −0.2837

|y|2em4
N

gNπ
z−2/3

×
(

0.2553−0.0998z2+0.0704z4
)
ȲN (z)

+ 3|y|2m4
N

8(2π)3 z−2/3

×
(

0.2553 − 0.1447z2 + 0.0957z4
)

(55)

which can be finally written as:

dȲN

dz
+ P(z)ȲN = Q(z), z < 1,

P(z) = a2z10/3
(

1 − 0.3909z2 + 0.2758z4
)
,

a2 ≡ 0.0724|y|2eMpl

168gNπmN
� 0.167

Q(z) = b2z10/3
(

1 − 0.5668z2 + 0.3749z4
)
,

b2 ≡ 0.0957|y|2Mpl

168(2π)3mN
� 0.0056 (56)
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We stress once more that this equation is derived in the
high temperature regime in which mN < T .

3.2 Lepton asymmetry Boltzmann equation

We proceed now to study the equation for the lepton asym-
metry (43) at high temperatures. Concentrating on the first
two terms on the right hand side, which involve the heavy
neutrino abundances, and substituting in the expressions for
the thermally-averaged γ eq integrals (cf. Appendix 7.D), we
obtain after some straightforward manipulations:

γ eq,(−)(N → l−h+)
Y (−)
N

Y (−),eq
N

− γ eq,(+)(N → l+h−)
Y (+)
N

Y (+),eq
N

= � f1(z)

[(
Y (−)
N

Y (−),eq
N

− Y (+)
N

Y (+),eq
N

)

+ ε1(z)

(
Y (−)
N

Y (−),eq
N

+ Y (+)
N

Y (+),eq
N

)]

� � f1(z)

[
2g1(z)z

B0

mN
(0.9374 − 0.2381z2)

− 2Ag2(z)
B0

mN
ȲN

+ 2Aε1(z)g1(z)ȲN + O
(

B0

mN

)3]
. (57)

where we have substituted in the expressions for the sum
and difference of the heavy neutrino abundances from the
previous section. The final two terms on the right hand side
of the lepton asymmetry Boltzmann equation (43) can be
expressed as:

γ eq,(−)(l−h+ → N )
Y (−)

l−

Y (−),eq
l−

− γ eq,(+)(l+h− → N )
Y (+)

l+

Y (+),eq
l+

= � f1(z)

[(
Y (−)

l−

Y (−),eq
l−

− Y (+)

l+

Y (+),eq
l+

)

+ ε1(z)

(
Y (−)

l−

Y (−),eq
l−

+ Y (+)

l+

Y (+),eq
l+

)]
. (58)

We next evaluate the sum and difference of the lepton and
anti-lepton abundances normalised to their respective equi-

librium values, that is, the quantities
Y (−)

l−

Y (−),eq
l−

± Y (+)

l+

Y (+),eq
l+

.

Using the explicit expressions for the equilibrium abun-
dances for leptons and anti-leptons (cf. Appendix 7.C),

Y (λ),eq
l � (0.1652)

gl
π2e

[
1 − 0.9374λ

B0

mN
z

]
⇒

[
Y (λ),eq
l

]−1

� C

(
1 + 0.9374λ

B0

mN
z

)
+ O

(
B0

mN

)2

,

C = (6.0533)
π2e

gl
(59)

we obtain

Y (−)

l−

Y (−),eq
l−

− Y (+)

l+

Y (+),eq
l+

= C
[(

Y (−)

l− − Y (+)

l−
)

− 0.9374z
B0

mN

(
Y (−)

l− + Y (+)

l−
)]

� CL − 1.8748
B0

mN
z + O

( B0

mN

)2

Y (−)

l−

Y (−),eq
l−

+ Y (+)

l+

Y (+),eq
l+

� C
[(

Y (−)

l− + Y (+)

l−
)

− 0.9374z
B0

mN

(
Y (−)

l− − Y (+)

l−
)]

� 2 − 0.9374C
B0

mN
zL,

Y (−)

l− + Y (+)

l+ � Y (−),eq
l− + Y (+),eq

l+ = 2C−1,

L = Y (−)

l− − Y (+)

l+ . (60)

Then (58) yields

γ eq,(−)(l−h+ → N )
Y (−)

l−

Y (−),eq
l−

− γ eq,(+)(l+h− → N )
Y (+)

l+

Y (+),eq
l+

� � f1(z)

[
CL − 1.8748

B0

mN
z + 2ε1(z) − O

(
B0

mN

)2]
,

(61)

where the reader should recall that ε1(z) is already linear in

B0/mN .
The final form for the lepton-asymmetry Boltzmann equa-

tion at high temperatures, then follows:

dL
dz

+ J (z)L = H(z), z < 1,
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J (z) = μ2z10/3
(

1 − 0.5668z2 + 0.3749z4
)

H(z) = ν2z13/3
(

1 − 0.2385z2 − 0.3538z4
)
ȲN (z)

− σ 2z13/3
(

1 − 0.1277z2 − 1.4067z4
)

− δ2

μ2 ≡ 0.0362|y|2eMpl

84glπmN
� 0.227,

ν2 ≡ 0.1041|y|2eMpl B0

84gNπm2
N

� 1.3055
B0

mN

σ 2 ≡ 0.0479|y|2Mpl B0

84(2π)3m2
N

� 0.0056
B0

mN
,

δ2 ≡ 21.4104

84

gl B0

π2emN

� 0.038
B0

mN
(62)

As with the equation for the RHN abundance, the reader
should bear in mind that the lepton asymmetry equation
above is derived in the high temperature regime mN < T .

4 Solutions to the system of Boltzmann equations

In this section we derive approximate analytic solutions of
the system of Boltzmann equations (56), (62), which will
allow us to compute the lepton asymmetry induced by the
CPTV background in our model. So far we have derived
equations for the RHN and lepton asymmetry (cf. (56) and
(62) respectively) for high temperatures, z < 1. However, we
are eventually interested in solutions of the corresponding
Boltzmann equations at the RHN decoupling temperatures
(13), (15), where z ∼ 1 [43]. We shall attempt to extrapolate
our results above to this case, by performing a Taylor expan-
sion of the series solutions to these differential equations.
The expansion takes place around an arbitrarily chosen point
in the interval 0 < z < 1, where the solution is valid, taking
proper account of the (thermodynamic equilibrium) bound-
ary conditions for the abundances as z → 0 (see Appendix
7.C), which fixes the integration constants characterising the
solutions. In our analysis below, we take, as a Taylor expan-
sion point, the mid-point of the interval (0, 1), z = 0.5 .

To extrapolate the solutions to the regime z � 1, we shall
use a Padé approximation [54]. As well known, a Padé expan-
sion can accelerate the convergence of an asymptotic expan-

sion or, for a series, turn a divergence into a convergence. It
is widely used for producing in solving approximately com-
plicated problems in several fields of physics, ranging from
statistical mechanics to particle physics and quantum field
theory [55–60]. Here we present another useful application
of the method in cosmology. We outline the general concepts
of the Padé approximants method and the specific algorithm
used in our computation in this work in Appendix 8.

4.1 Solution to the heavy-neutrino Boltzmann equation

The heavy neutrino Boltzmann equation (56) decouples ȲN

fromL so the former can be obtained by solving this equation
with an appropriate integrating factor [66,67]. We therefore
commence our discussion with a sketch of the solution of Eq.
(56). Calling

a2 ≡ 0.0724|y|2eMpl

168gNπmN
� 0.167 and

b2 ≡ 0.0957|y|2Mpl

168(2π)3mN
� 0.0056, (63)

the equation reads

dȲN

dz
+ P(z)ȲN = Q(z), z < 1,

P(z) = a2z10/3
(

1 − 0.3909z2 + 0.2758z4
)

Q(z) = b2z10/3
(

1 − 0.5668z2 + 0.3749z4
)

(64)

The integrating factor for this differential equation is given
by,

IN (z) = exp
[ ∫ z

dx P(x)
]

= exp

[
a2
(

3

13
z13/3 − 0.0617z19/3 + 0.0331z25/3

)]
.

(65)

Multiplying through the differential equation by the integrat-
ing factor gives

d

dz

[
IN (z)ȲN (z)

]
= IN (z)Q(z) ⇒

ȲN (z) = I−1
N (z)

[
c1 +

∫ z

dx IN (x)Q(x)

]
(66)

where c1 is the constant of integration and will be determined
using the boundary condition (cf. (159) in Appendix 7.C),

lim
z→0

ȲN (z) → Ȳ eq
N

z→0→ (0.1652)
gN
π2e

= b2

a2 = 5.988b2 = 0.0335, (67)
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where for heavy right-handed neutrinos gN = 2, and we used
(63). In our case 0 < z < 1, as we are interested in non-trivial
populations in the phase where T > TD (for T < TD the
populations drop sharply, this is our basic assumption [43]).
From the qualitative analysis of [43], reviewed in Sect. 2, the
freezeout temperature TD is expected to be of order (cf. (13),
(15)): TD � mN so zD � 1. This is why it is important to
give formal solutions first, before any expansion. Notice that
in arriving at the system of Boltzmann equations for ȲN and
L, we did not make more assumptions on the magnitude of
z other than it belongs to the interval 0 < z < 1.

ȲN (z) = I−1
N (z)

[
c1 + b2

∫ z

dx IN (x)

(
x10/3

− 0.5668x16/3 + 0.3749x22/3
)]

, 0 < z < 1

IN (x) = exp

[
a2
(

3

13
x13/3

− 0.0617x19/3 + 0.0331x25/3
)]

(68)

We now make some approximations in order to obtain a
solution for the heavy neutrino abundance. We can write the
integrating factor IN (x) as

IN (x) = exp

[
3

13
a2x13/3

]
Sn,

Sn =
∞∑

n=0

(−1)na2n

n!
(

0.0617 − 0.0331x2
)n

x19n/3

F(z) = b2
∫ z

dx exp

[
3

13
a2x13/3

]

× Sn
(
x10/3 − 0.5668x16/3 + 0.3749x22/3

)
, (69)

in order to simplify this expression we only take the first two
terms in the series Sn � S0 + S1.

F(z) = b2
∫ z

dx exp
[
0.0385x13/3

]

×
(

1 − 0.0103x19/3 + 0.0055x25/3
)

×
(
x10/3 − 0.5668x16/3 + 0.3749x22/3

)

= b2
{

exp
[
0.0385z13/3

]

×
(

5.994 − 1.0537z2 − 1.136z4

+ 2.5988z6 − 0.9305z8 − 93.4633z5/3

+ 44.6212z11/3 − 0.0617z19/3

+ 0.0677z25/3 − 0.042z31/3

+ 0.0126z37/3
)

− 399.1316 + 1.0537z2

+ 1.1365z4 + 0.9939z6 − 0.7724z8 + 93.4657z5/3

− 44.6219z11/3 + 0.0129z19/3 + 0.0212z25/3
}
,

(70)

where we have expanded again to first order the (upper)
incomplete Gamma functions [68] that arise in this integra-
tion,

(s, y) = (s) − ys
∞∑

k=0

(−1)k

k!
yk

s + k

� (s) − s−1ys + [s + 1]−1ys+1,


( 5

13
,−0.0385z13/3

)
� 2.3094 + 0.7429z5/3 + 0.0079z6,


( 6

13
,−0.0385z13/3

)
� 1.9188 − 0.4819z2 − 0.0059z19/3


(11

13
,−0.0385z13/3

)
� 1.1162 + 0.0751z11/3+0.0013z8,


(12

13
,−0.0385z13/3

)
� 1.0507 − 0.0536z4 − 0.001z25/3.

(71)

The boundary condition (67) determines the value of the con-
stant of integration: c1 = 399.1256b2 = 2.2351. After tak-
ing the inverse of the integrating factor (keeping first order
terms),

I−1
N (z) � exp

[
− 0.0385z13/3

]

×
(

1 + 0.0103z19/3 − 0.0055z25/3
)
,

we obtain the expression for the abundance of the heavy
neutrino in the interval 0 < z < 1,

ȲN (z < 1) � 0.0335 + 0.0001z8 − 0.0002z19/3

+ 0.0001z25/3 − 0.0004z31/3, (72)

where any exponential factors that remain after multiplying
by the inverse of the integrating factor have been expanded
to first order. Also any terms of higher order than z32/3 have
been neglected from the expression due to the restriction
0 < z < 1 and any terms with factors of order 10−5 or
smaller have also been neglected.
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4.2 Solution to the lepton asymmetry Boltzmann equation

In this subsection, we proceed with the substitution of the
previous result onto the Boltzman equation (62) and proceed
with its solution, which will allow for a determination of the
lepton asymmetry.

Similarly to the previous case, the integrating factor IL
for the lepton asymmetry Boltzmann equation is given by

IL(z) = exp

[ ∫ z

dx J (x)

]

= exp

[
μ2
(

3

13
z13/3 − 0.0895z19/3 + 0.045z25/3

)]

(73)

with the lepton asymmetry itself, being expressed as

L = I−1
L (z)

[
c2 +

∫ z

dx IL(x)H(x)
]
, (74)

where c2 is the constant of integration, determined by using
the thermal equilibrium boundary condition (c.f. Appendix
7.C, Eq. (159)),

lim
z→0

L(z) → Leq(z) → 0. (75)

After substituting in the solution for the ȲN (z) in the interval
0 < z < 1 the formal lepton asymmetry solution is given
by,

L(z) = I−1
L (z)

[
c2 +

∫ z

dx IL(x)

(
ν2x13/3

(
1 − 0.2385x2 − 0.3538x4

)
ȲN (x)

− σ 2x13/3
(

1−0.1277x2−1.4067x4
)

−δ2
)]

,

IL(x) = exp

[
μ2
(

3

13
x13/3

− 0.0895x19/3 + 0.045x25/3
)]

. (76)

As in the previous case we make some simplifying approx-
imations to obtain a solution for the lepton asymmetry. The
integrating factor is approximated by the expansion of the
series up to first order,

IL(x) = exp
[ 3

13
μ2x13/3

]

×
∞∑

n=0

(−1)nμ2n

n!
(

0.0895 − 0.045x2
)n

x19n/3

� exp
[
0.0524x13/3

]

×
(

1 − 0.0047x19/3 + 0.0024x25/3
)
. (77)

Now that an approximate solution for ȲN (z) is known we
may express the coefficient H(x) as,

H(x) � B0

mN

(
0.0382x13/3 − 0.0097x19/3 − 0.0076x25/3

− 0.0002x32/3 − 0.038
)
, (78)

where we have neglected terms of higher powers then x32/3.
We then have to solve the integral below,

K (z) =
∫ z

dx IL(x)H(x) = B0

mN

{
exp

[
0.0524z13/3

]

×
(

0.7467z2/3 + 0.1682z − 0.0134z3

− 0.0339z5 − 0.0009z22/3
)

+ 0.8177 − 0.7466z2/3 − 0.2063z + 0.0134z3

− 0.0052z5 − 0.002z16/3 + 0.0003z22/3
}
, (79)

the (upper) incomplete Gamma functions that appear in the
above integration have been evaluated to first order,


( 2

13
,− 0.0524z13/3

)
� 6.0566 − 4.1294z2/3 − 0.0289z5,


( 3

13
,− 0.0524z13/3

)
� 3.9458 + 2.1942z + 0.0216z16/3


( 9

13
,− 0.0524z13/3

)
� 1.3104 + 0.1875z3 + 0.004z22/3.

(80)

To determine the constant of integration c2 we use the bound-
ary condition L(z → 0) → Leq(z → 0) = 0 which yields

c2 = −0.8177
B0

mN
. Now multiplying by the inverse of the

integrating factor (to first order) we obtain an expression for
the lepton asymmetry in the interval 0 < z < 1.

I−1
L (x) � exp

[
− 0.0524x13/3

]

×
(

1 + 0.0047x19/3 − 0.0024x25/3
)

L(z < 1) = B0

mN

{
0.0001z2/3 − 0.0381z

+ 0.0088z16/3 − 0.0015z22/3
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+ 0.0004z28/3 + 0.0001z29/3
}
, (81)

similarly we have neglected terms of higher order powers
than z32/3 and any terms with factors of order 10−5 or smaller.
Now we want to estimate the lepton asymmetry at freeze out
where TD ≤ mN corresponding to z ≥ 1.

To this end we Pade expand [54] (cf. Appendix 8) the
expressions for L(z < 1) and ȲN (z < 1) around the point
z = 0.5 in order to make the expressions for the abundances
valid beyond the interval 0 < z < 1. We require a positive
asymmetry L, as this is the only physically relevant solution
for dominance of matter over antimatter, for our fixed sign
of the background B0 > 0. From (81) we observe that

L(z < 1.44) < 0,

hence we must have z = z� = 1.44 as a critical value in our
approximate treatment below which the lepton asymmetry
switches sign. We interpret this as determining the freezeout
point,

zPade
D = mN/TD ∼ 1.44, (82)

after which (T < TD) the asymmetry freezes out to a positive
value. For this value we have

L(zPade
D = 1.44) = 0.0009

B0

mN
,

ȲN (zPade
D = 1.44) = 0.0332, (83)

and thus the observable lepton asymmetry (34) is given by,

�LT OT

s
= L(zD = 1.44)

2ȲN (zD = 1.44)
� 0.0136

B0

mN
. (84)

The reader should compare this result with that obtained
in [43], see Eq. (21) above. Our result (84) yields a lepton
asymmetry proportional to B0/mN as in (21), but with a
proportionality coefficient which is 1.94 times larger. The
fact that it is larger may be attributed physically to the fact
that here we considered the non zero momentum modes of
the heavy neutrino in estimating the asymmetry, which were
neglected in [43]. Nevertheless, we consider this a good
agreement between the two results. We have shown above
that this lepton asymmetry can be generated at the freeze out
point z = 1.44 (in order for a positive asymmetry) using first
order approximations to the formal solutions of the abun-
dances, this still satisfies the condition that freeze out should
occur at TD ≤ mN . It is important to notice that the order
of magnitude estimate for the Yukawa coupling |y| ∼ 10−5

in earlier work [43], which was used throughout our previ-
ous calculations, providing numerical input (eg. (63)) into the

approximate solutions, remains unchanged, and this provides
a posteriori a self-consistency check of our approximation.
The decoupling (82) now occurs at 1.44 TD = mN instead of
the assumed one in [43] at TD � mN , but this does not alter
the order of magnitude of the Yukawa coupling. However,
we believe that the fact that the asymmetry turns negative
for z < 1.44 is an artefact of the approximations used. Full
numerical analysis may lead to a freezeout point zD � 1 as
in [43]. To check on the stability of the freezeout value, we
present next an alternative approximate derivation.

4.3 Series solutions of the Boltzmann equations

Here we present another method of obtaining the (approx-
imate) solutions to the differential equations, in an attempt
to get an idea on the stability of the freezeout point. Starting
with the heavy neutrino Boltzmann equation we can Taylor
expand the variable coefficients P(z), Q(z) around the point
z = 0.5 and the solution ȲN (z),

Ȳ ′
N (z) + P(z)ȲN (z) = Q(z),

P(z) =
∞∑

n=0

pn(z − 0.5)n,

Q(z) =
∞∑

n=0

qn(z − 0.5)n

ȲN (z) =
∞∑

n=0

cn(z − 0.5)n,

Ȳ ′
N (z) =

∞∑

n=0

(n + 1)cn+1(z − 0.5)n . (85)

On substituting these series into the differential equation we
obtain

∞∑

n=0

(n + 1)cn+1(z − 0.5)n +
( ∞∑

n=0

pn(z − 0.5)n
)

∞∑

m=0

cm(z − 0.5)m =
∞∑

n=0

qn(z − 0.5)n

⇒
∞∑

n=0

(n + 1)cn+1(z − 0.5)n

+
∞∑

n=0

( n∑

k=0

ck pn−k

)
(z − 0.5)n

−
∞∑

n=0

qn(z − 0.5)n = 0 ⇒
∞∑

n=0

{
(n + 1)cn+1 +

n∑

k=0

ck pn−k − qn
}
(z − 0.5)n = 0. (86)
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We can then see a recurrence relation for the coefficients of
the solution for ȲN (z) in terms of the coefficients of the P(z)
and Q(z) series,

cn+1 = 1

n + 1

{
qn −

n∑

k=0

ck pn−k

}
. (87)

Using this recurrence relation, the first few coefficients are:

p0 = P(z)|z=0.5 = 0.0152,

p1 = P ′(z)|z=0.5 = 0.0974,

p2 = 1

2
P ′′(z)|z=0.5 = 0.2094,

p3 = 1

6
P ′′′(z)|z=0.5 = 0.1571

q0 = Q(z)|z=0.5 = 0.0005,

q1 = Q′(z)|z=0.5 = 0.0031,

q2 = 1

2
Q′′(z)|z=0.5 = 0.0062,

q3 = 1

6
Q′′′(z)|z=0.5 = 0.0039

c1 = 0.0005 − 0.0152c0,

c2 = 0.0015 − 0.0972c0,

c3 = 0.002 − 0.0688c0,

c4 = 0.0009 − 0.0359c0. (88)

The Taylor expansion around the point z = 0.5 of the heavy
neutrino abundance is then,

ȲN (z ∼ 0.5) = c0 + c1(z − 0.5)

+ c2(z − 0.5)2 + c3(z − 0.5)3

+ c4(z − 0.5)4. (89)

We now take the limit z → 0 in such a way that the boundary
condition (67) is satisfied, that is, ȲN (z → 0) → Ȳ eq

N (z →
0) = 0.0335. This places the final constraint in order to obtain
the value for the last remaining coefficient c0 = 0.0339. The
final expression for the heavy neutrino abundance around
z = 0.5 is given by,

ȲN (z ∼ 0.5) = 0.0335 + 0.0017z − 0.0018z2

+ 0.0003z3 − 0.0003z4. (90)

We proceed with the analogous calculation for the lepton
asymmetry Boltzmann equation,

L′(z) + J (z)L(z) = H(z). (91)

The recurrence relation is similar to (87) under the change
pn → jn, qn → hn, cn → ln where ln are the coefficients

in the lepton asymmetry Taylor expansion,

L(z) =
∞∑

n=0

ln(z − 0.5)n,

ln+1 = 1

n + 1

{
hn −

n∑

k=0

lk jn−k

}
. (92)

The coefficients for J (z) and H(z) are:

j0 = J (z)|z=0.5 = 0.0199,

j1 = J ′(z)|z=0.5 = 0.1239,

j2 = 1

2
J ′′(z)|z=0.5 = 0.2518,

j3 = 1

6
J ′′′(z)|z=0.5 = 0.1579

h0 = H(z)|z=0.5 = −0.0362
B0

mN
,

h1 = H ′(z)|z=0.5 = 0.0147
B0

mN

h2 = 1

2
H ′′(z)|z=0.5 = 0.0441

B0

mN
,

h3 = 1

6
H ′′′(z)|z=0.5 = 0.0491

B0

mN
.

The coefficients ln are given below using the recurrence rela-
tion,

l1 = −0.0362
B0

mN
− 0.0199l0,

l2 = 0.0077
B0

mN
− 0.0618l0,

l3 = 0.0161
B0

mN
− 0.0827l0,

l4 = 0.0142
B0

mN
− 0.0359l0,

which implies

L(z ∼ 0.5) = l0 + l1(z − 0.5) + l2(z − 0.5)2

+ l3(z − 0.5)3 + l4(z − 0.5)4. (93)

We use the boundary condition (cf. (159) in Appendix 7.C)
L(z → 0) → Leq(z → 0) = 0 to find the last coefficient

l0 = −0.0189
B0

mN
and the final expression for the lepton

asymmetry is given by,

L(z ∼ 0.5) = B0

mN

(
− 0.0389z + 0.0047z2

− 0.0121z3 + 0.0149z4
)
. (94)
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We now perform a Padé expansion [54] (cf. Appendix 8)
around the point z = 0.5 to be able to use the solutions
outside the interval 0 < z < 1. In order to obtain a positive
asymmetry, we observe from (94) that we must have z ≥
1.62, thus in this approximation the critical point appears to
be at z∗ = 1.62. This is identified with the freezeout,

zseries
D = 1.62, (95)

which, upon substitution into the Padé approximant for the

lepton asymmetry, yields L(z = 1.62) = 0.0005
B0

mN
, with

the corresponding heavy neutrino abundance at this point is
ȲN (z = 1.62) = 0.0307. The observable lepton asymmetry
(34) in that case is found to be

�LT OT

s
= L(zD = 1.62)

2ȲN (zD = 1.62)

� 0.0081
B0

mN
. (96)

We see that the series solutions yield a similar answer to
the method using an integrating factor. The point of decou-
pling zD = 1.62 still satisfies TD ≤ mN ⇒ z ≥ 1 and
the order of magnitude estimate for the Yukawa coupling
|y| ∼ 10−5 is unchanged. Comparing with (21), we see that
the result (96) is in excellent agreement with the lepton asym-
metry estimated in [43].

From either (82) or (96), we obtain that phenomenolog-
ically relevant leptogenesis in our system, in the sense of
(21), is achieved for B0/mN = O(10−9 −10−8), which is in
the same approximate range as the estimate of [43], but here
the result includes all the non-zero momentum modes of the
heavy neutrino. This implies that for mN = O(100) TeV,
we must have a B0 in the range B0 ∼ 0.1 − 1 MeV for lep-
togenesis to lead to the observed baryogenesis via the B-L
conserving sphaleron processes.

Comparing the freezeout points between the two approx-
imate methods (82) and (95), we observe agreement with
only 12.5 % uncertainty, indicating stability of the freezeout
point in the region around one. This completes our analysis.
Perhaps as we mentioned earlier, a full numerical solution
will yield a freezeout point closer to the qualitative value of
[43], although we should emphasize that the above approx-
imate analyses have yielded results in this respect that are
of the same order of magnitude. This adds confidence to the
efficient application of Padé approximant method to our cos-
mological problem.

5 Inclusion of the neutral Higgs portal

In the system of Boltzmann equations we will now include
the contributions from the decays of the RHN into a neutral
Higgs field h0 and an (active) neutrino ν of the SM sector
(see Eq. (10)). As we shall demonstrate below, the computed
(complete) lepton asymmetry has an approximate factor of
two compared with the one based only on the charged lepton
decay channels (9) .

5.1 The complete heavy neutrino Boltzmann equation

Upon considering the additional contributions of the decay
channels N → νh0 and N → ν̄h0 to the Boltzmann equation
for the abundance of a RHN with helicity λ,Y (λ)

N , we obtain,

zHs
dY (λ)

N

dz
− λI

= −
{[

γ eq,(λ)(N → l−h+)
Y (λ)
N

Y (λ),eq
N

− γ eq,(λ)(l−h+ → N )
Y (λ)

l−

Y (λ),eq
l−

Yh+

Y eq
h+

]

+
[
γ eq,(λ)(N → l+h−)

Y (λ)
N

Y (λ),eq
N

− γ eq,(λ)(l+h− → N )
Y (λ)

l+

Y (λ),eq
l+

Yh−

Y eq
h−

]

+
[
γ eq,(λ)(N → νh0)

Y (λ)
N

Y (λ),eq
N

− γ eq,(λ)(νh0 → N )
Y (λ)

ν

Y (λ),eq
ν

Yh0

Y eq
h0

]

+
[
γ eq,(λ)(N → ν̄h0)

Y (λ)
N

Y (λ),eq
N

− γ eq,(λ)(ν̄h0 → N )
Y (λ)

ν̄

Y (λ),eq
ν̄

Yh0

Y eq
h0

]}
. (97)

We start by considering only the negative helicity λ = −1.
The reader should recall, from our analysis in the previous
sections, that only the decay channel N → l−h+ and its
inverse process yield non trivial contributions to the Boltz-
mann equation. Adding the decay channel N → νh0 (10)
and its inverse, for helicity λ = −1, to the Boltzmann equa-
tion, yields,

zHs
dY (−)

N

dz
+ I

= −
{[

γ eq,(−)(N → l−h+)
Y (−)
N

Y (−),eq
N
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− γ eq,(−)(l−h+ → N )
Y (−)

l−

Y (−),eq
l−

Yh+

Y eq
h+

]

+
[
γ eq,(−)(N → νh0)

Y (−)
N

Y (−),eq
N

− γ eq,(−)(νh0 → N )
Y (−)

ν

Y (−),eq
ν

Yh0

Y eq
h0

]}
.

We now make the approximation that the Higgs and lep-
ton fields are in equilibrium Y � Y eq . We also have the
reciprocity of the thermal decay rates into charged lep-
tons γ eq,(−)(N → l−h+) = γ eq,(−)(l−h+ → N ) and
the same will be true for the light neutrino decay channels
γ eq,(−)(N → νh0) = γ eq,(−)(νh0 → N ). Thus, the Boltz-
mann equation for the abundance of the negative helicity
RHN becomes,

zHs
dY (−)

N

dz
+ I = −

{
γ eq,(−)(N ↔ l−h+)

+ γ eq,(−)(N ↔ νh0)

}

×
[

Y (−)
N

Y (−),eq
N

− 1

]
. (98)

Similarly for the decay into anti-particles we only have the
positive helicity λ = +1 and the resulting Boltzmann equa-
tion reads,

zHs
dY (+)

N

dz
− I = −

{
γ eq,(+)(N ↔ l+h−)

+ γ eq,(+)(N ↔ ν̄h0)

}

×
[

Y (+)
N

Y (+),eq
N

− 1

]
. (99)

The thermal equilibrium decay rates of RHN into charged
leptons and neutral leptons will be identical, since the mag-
nitude of the electric charge was not specified, when con-
sidering the charged leptons. Only the relativistic nature of
the corresponding dispersion relations was important. There-
fore we have γ eq,(−)(N ↔ l−h+) = γ eq,(−)(N ↔ νh0)

and γ eq,(+)(N ↔ l+h−) = γ eq,(+)(N ↔ ν̄h0). Tak-
ing this into account, and combining the two Boltzmann
equations, expressed in terms of the averaged-over-helicities
abundances ȲN , we obtain,

zHs
dȲN

dz
= −

{
γ eq,(−)(N ↔ l−h+)

[
Y (−)
N

Y (−),eq
N

− 1
]

+ γ eq,(+)(N ↔ l+h−)

[
Y (+)
N

Y (+),eq
N

− 1

]}
. (100)

The heavy neutrino Boltzmann equation can then be expressed
as,

dȲN

dz
+ P(z)ȲN = Q(z), z < 1,

P(z) = a2z10/3
(

1 − 0.3909z2 + 0.2758z4
)
,

a2 = 0.334

Q(z) = b2z10/3
(

1 − 0.5668z2 + 0.3749z4
)
,

b2 = 0.0112. (101)

This is the complete Boltzmann equation for the abundance
of the heavy right-handed Majorana neutrino, averaged over
helicities, obtained by considering the complete set of decay
channels of the heavy neutrino into charged and neutral lep-
tons and anti-leptons (9), (10). The reader should notice that
the constant factors a2 and b2 appearing in (101) are twice
as large as compared with those in the case where only the
RHN decays into charged leptons and anti-leptons were con-
sidered, cf. Eqs. (63) and (64).

5.2 The complete lepton asymmetry Boltzmann equation

The inclusion of the extra decay channels (10), leads to two
additional Boltzmann equations when calculating the lepton
asymmetry,

zHs
dY (λ)

l−
dz

− λI = −
{
γ eq,(λ)(l−h+ → N )

Y (λ)

l−

Y (λ),eq
l−

Yh+

Y eq
h+

− γ eq,(λ)(N → l−h+)
Y (λ)
N

Y (λ),eq
N

}

zHs
dY (λ)

l+
dz

− λI = −
{
γ eq,(λ)(l+h− → N )

Y (λ)

l+

Y (λ),eq
l+

Yh−

Y eq
h−

− γ eq,(λ)(N → l+h−)
Y (λ)
N

Y (λ),eq
N

}

zHs
dY (λ)

ν

dz
− λI = −

{
γ eq,(λ)(νh0 → N )

Y (λ)
ν

Y (λ),eq
ν

Yh0

Y eq
h0

− γ eq,(λ)(N → νh0)
Y (λ)
N

Y (λ),eq
N

}

zHs
dY (λ)

ν̄

dz
− λI = −

{
γ eq,(λ)(ν̄h0 → N )

Y (λ)
ν̄

Y (λ),eq
ν̄

Yh0

Y eq
h0

− γ eq,(λ)(N → ν̄h0)
Y (λ)
N

Y (λ),eq
N

}
. (102)
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Upon using the approximation that the Higgs is in equilib-
rium and the fact that for decays into particles we only have
helicity λ = −1, whereas for decays into anti-particles we
have λ = +1, as well as the reciprocity of the thermal decay
rates γ eq,(λ)(N → A, B) = γ eq,(λ)(A, B → N ), the above
equations become,

zHs
dY (−)

l−
dz

+ I = −γ eq,(−)(N ↔ l−h+)

×
{

Y (−)

l−

Y (−),eq
l−

− Y (−)
N

Y (−),eq
N

}

zHs
dY (+)

l+
dz

− I = −γ eq,(+)(N ↔ l+h−)

×
{

Y (+)

l+

Y (+),eq
l+

− Y (+)
N

Y (+),eq
N

}

zHs
dY (−)

ν

dz
+ I = −γ eq,(−)(N ↔ νh0)

×
{

Y (−)
ν

Y (−),eq
ν

− Y (−)
N

Y (−),eq
N

}

zHs
dY (+)

ν̄

dz
− I = −γ eq,(+)(N ↔ ν̄h0)

×
{

Y (+)
ν̄

Y (+),eq
ν̄

− Y (+)
N

Y (+),eq
N

}
. (103)

The complete lepton asymmetry is given by the difference
between the lepton abundances and the anti-lepton abun-
dances, Y (−)

l− + Y (−)
ν − Y (+)

l+ − Y (+)
ν̄ . By combining the last

four equations we arrive at the following result,

Left−hand side = zHs
d

dz

(
Y (−)

l−

+ Y (−)
ν − Y (+)

l+ − Y (+)
ν̄

)
+ 4I

Right−hand side = −γ eq,(−)(N ↔ l−h+)

{
Y (−)

l−

Y (−),eq
l−

− Y (−)
N

Y (−),eq
N

}

− γ eq,(−)(N ↔ νh0)

{
Y (−)

ν

Y (−),eq
ν

− Y (−)
N

Y (−),eq
N

}

+ γ eq,(+)(N ↔ l+h−)

{
Y (+)

l+

Y (+),eq
l+

− Y (+)
N

Y (+),eq
N

}

+ γ eq,(+)(N ↔ ν̄h0)

{
Y (+)

ν̄

Y (+),eq
ν̄

− Y (+)
N

Y (+),eq
N

}
. (104)

Using the same arguments as in the case of the heavy neutrino
Boltzmann equation above, we realise that the abundances of
the SM (active) neutrinos are identical to that of the charged
leptons Yl− = Yν,Yl+ = Yν̄ . The thermally averaged decay
rates will also be equal γ eq,(−)(N ↔ νh0) = γ eq,(−)(N ↔
l−h+), γ eq,(+)(N ↔ ν̄h0) = γ eq,(+)(N ↔ l+h−). The
Boltzmann equation for the complete lepton asymmetry (L =
Y (−)

l− − Y (+)

l+ ) then becomes,

2zHs
dL
dz

+ 4I = −2
[
γ eq,(−)(N ↔ l−h+)

{ Y (−)

l−

Y (−),eq
l−

− Y (−)
N

Y (−),eq
N

}

− γ eq,(+)(N ↔ l+h−)

{ Y (+)

l+

Y (+),eq
l+

− Y (+)
N

Y (+),eq
N

}]
(105)

This is identical in form to the previous asymmetry Boltz-
mann equation (62) (for the case where only the decays of
the heavy neutrino into charged leptons and anti-leptons were
considered). However, in view of the difference of the corre-
sponding Boltzmann equation for ȲN , we expect some dif-
ferences in the solutions for L, which we now proceed to
evaluate.

5.3 Integrating factor solutions of the complete Boltzmann
equations

We consider here the solutions to the complete Boltzmann
equations on including the additional decay channels into
SM neutrinos and neutral Higgs. As seen in (101), the only
difference is an increase of the constants a2 and b2 by a
factor of two when considering the additional decay channels.
The solution obtained using the integrating-factor method is
completely analogous to that shown is Sect. 4.1; the complete
RHN solution is found to be

ȲN (z < 1) = 0.0335 − 0.0001z11/3 − 0.0004z19/3

+ 0.0001z25/3 − 0.0009z31/3. (106)

Similar to the previous solution, terms of higher order than
O(z32/3) have been neglected as well as terms with coeffi-
cients O(10−5). The complete RHN solution is then substi-
tuted into the right hand side of the complete lepton asym-
metry equation (105) (which has the same form as the lep-
ton asymmetry Eq. (62)). Following the calculation given in
(4.2), the solution for the complete lepton asymmetry is given
by,
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L(z < 1) = B0

mN

[
− 0.0002z1/3

+ 0.0001z2/3 − 0.038z + 0.0001z14/3

− 0.0015z22/3 + 0.0088z16/3

+ 0.0004z28/3 + 0.0001z29/3
]
. (107)

Once again terms of higher order than O(z32/3) have been
neglected as well as terms with coefficientsO(10−5). A Padé
expansion of the two solutions is performed. In order to gen-
erate a positive asymmetry we have decoupling at zD = 1.44
(the same value as before). The complete solutions evaluated
at decoupling yield Lpade(zD) = 0.0013B0/mN (44.4%
increase from the previous solution) and Ȳ pade

N (zD) =
0.0343 (3.3% increase from the previous solution). The com-
plete observable lepton asymmetry is given below:

�LT OT

s
= L(zD)

2ȲN (zD)
= 0.019

B0

mN
. (108)

On using the integrating factor method, we note that the
observable lepton asymmetry has increased by a factor of 1.4
from the previous calculation (where RHN was considered
to decay into charged leptons only); so the addition of the
neutral decay channels increases the complete observable
lepton asymmetry.

5.4 Series solutions of the complete Boltzmann equations

For concreteness we consider the series solution of the heavy
neutrino abundance around the point z = 0.5. As we have
seen above, (101), when the RHN decay mode into SM neu-
trinos is taken into account, the only difference from the pre-
vious case, where only RHN decays to charged leptons have
been considered, is that the factors a2 and b2 in (101) are
twice as large as compared with their counterparts in (64).
This has the effect that the coefficients pı and qj in the series
solutions also increase by a factor of two, the rest of the cal-
culation being identical. The Taylor expansion of the RHN
abundance around z = 0.5 is,

ȲN (z ∼ 0.5) = 0.0335 + 0.00004z + 0.0001z2

+ 0.0006z3 − 0.0006z4 (109)

This solution must be inserted into the lepton asymmetry
Boltzmann equation; ȲN only appears in the H(z) coefficient
of (62) and so the coefficients hı are the only quantities to

change; these are given below:

h0 = −0.0362
B0

mN
,

h1 = 0.0145
B0

mN
,

h2 = 0.044
B0

mN
,

h3 = 0.0502
B0

mN
. (110)

The coefficients lı are calculated in the same way as before
and the Taylor expansion for the complete lepton asymmetry
around the point z = 0.5 is

L(z ∼ 0.5) = B0

mN

[
− 0.0427z − 0.0007z2

− 0.0127z3 + 0.0152z4
]
. (111)

We now perform a Padé expansion of this expression around
z = 0.5, we find that to generate a positive asymmetry
we must have a later decoupling of zD = 1.77 where
Lpade(zD) = 0.001B0/mN . (100% increase from the
previous solution.) The RHN abundance at decoupling is
Ȳ pade
N (zD) = 0.0313 (less than a 2% increase from the pre-

vious solution). The complete observable lepton asymmetry
is given by

�LT OT

s
= L(zD)

2ȲN (zD)
= 0.016

B0

mN
. (112)

We thus note that the observable lepton asymmetry has
increased by a factor of 1.98 from the previous calculation
when only considering the RHN decay into charged leptons
only, and so the addition of the neutral decay channels effec-
tively doubles the lepton asymmetry. The fact that decoupling
now occurs at zD = 1.77 does not affect the order of magni-
tude estimate for the Yukawa coupling y.

6 Conclusions and outlook

In this work we have completed the analysis presented in an
earlier work [43] by computing the lepton asymmetry gen-
erated due to the decays of heavy right-handed neutrinos in
the presence of a CPTV axial vector background with only
temporal components B0 �= 0 in the early universe through
an analytic (but approximate) solution of the corresponding
algebraic system of Boltzmann equations. In [43] we only
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presented a heuristic estimate of the generated asymmetry.
In order to facilitate the comparison of our detailed analy-
sis with the heuristic order of magnitude estimates of [43]
we have first assumed the active neutrino to be purely Majo-
rana as in [43] and concentrated only on the decays of RHN
into charged leptons. The inclusion of the decays to neutral
Higgs and light neutrinos has also been done here, with the
(expected) result that the total asymmetry is increased by a
factor of about 2 as compared to the charged-lepton-case.

Let us now recapitulate the main result for the case where
the neutral decay channel is ignored. The current solution
of the Boltzmann equations that describe the leptogenesis
in the model has been obtained through an appropriate Padé
approximation around the point z = mN/T = 0.5. This pro-
cedure allowed the power series representation of the lepton
asymmetry to be extrapolated outside the interval 0 < z < 1
and to be evaluated at the point z = 1.44 to show the positive
lepton asymmetry. The obtained result for the asymmetry is
in qualitative agreement with the estimate of [43], in that
it is proportional to the small quantity B0/mN � 1. How-
ever the proportionality coefficient in the case the solutions
are evaluated using an integrating factor is found to be 1.94
times larger than in the case of [43]. On the other hand, in
case one uses a series solution to the Boltzmann equations,
the proportionality coefficient is in excellent agreement with
the case of [43]. This implies that in our numerical treatment
the lepton asymmetry can be estimated to be

�LT OT

s
� (0.008 − 0.014)

B0

mN
, at freezeout temperature

T = TD : mN /TD � (1.44 − 1.62). (113)

This implies that phenomenologically acceptable values
of the lepton asymmetry of O(8 × 10−11) occur for values
of

B0

mN
∼ 1.0 × 10−8 − 5.7 × 10−9, at freezeout temperature

T = TD : mN /TD � (1.44 − 1.62), (114)

in agreement with the estimate (22) of [43]. In our analysis
we assumed Yukawa couplings of order |y| ∼ 10−5 in the
Higgs portal term (6), that couple the right-handed neutrino
to the SM sector of the model. This prompted us to ignore
higher order terms of order |y|4 ∼ 10−20 � B0/mN , which
a posteriori was proved to be a self-consistent result, due to
the smallness of the B0/mN (114), required for the observed
baryon asymmetry today (through leptogenesis).

The inclusion of the neutral channel in the RHN decay
yields an estimate of the lepton asymmetry which is (2.3 −
2.7) times as large as the one in [43] and between (1.4 − 2)
times as large as the asymmetry calculated in (113),

�LT OT,complete

s
� (0.016 − 0.019)

B0

mN
, at freezeout temperature

T = TD : mN /TD � (1.44 − 1.77). (115)

This implies that phenomenologically acceptable values of
the lepton asymmetry of O(8 × 10−11) occur for values of

B0

mN
∼ 5.0 × 10−9 − 4.2 × 10−9, at freezeout temperature

T = TD : mN /TD � (1.44 − 1.77), (116)

implying a ratio B0/mN which is (less than) an order of mag-
nitude smaller than (22). The slight increase of the freezeout
point does not affect the order of magnitude of the asymmetry
nor that of the Yukawa coupling of the Higgs portal; hence
in order of magnitude there is qualitative agreement with the
estimates of [43].

Although our analysis has been generic in not specifying
the microscopic origin of theCPTV background, nonetheless
some microscopic scenarios originating from string theory
have been presented in [43]. According to these scenarios the
background is identified with the dual of the Kalb–Ramond
antisymmetric tensor field strength, εμνρσ H νρσ , which in a
four-dimensional space-time is equivalent to the derivative of
a pseudoscalar field b(x) (Kalb–Ramond axion), ∂μb. Never-
theless such an identification is not binding. However, if it is
made, then within the context of realistic brane/string mod-
els the pressing question concerns the microscopic mecha-
nism, for the transition from a relatively large value (in the
Robertson–Walker frame) of the constant B0 �= 0 CPTV
background in early eras of the (string) universe, required
for leptogenesis, to a very weak background today, compati-
ble with the very stringent limits of CPTV in the current era
[38–41]. Some speculations have been presented in [43] but
detailed microscopic mechanisms, compatible with the rest
of astroparticle phenomenology, including the open issue of
the smallness of the (observed) cosmological constant (or
dark energy) today, are still lacking and will be the subject
of future investigations.

Nevertheless, we believe that the scenario for baryoge-
nesis through leptogenesis presented initially in [43] and
completed here, is an attractive, relatively simple one, which
deserves further investigations, within the context of appro-
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priate microscopic models (not necessarily within the frame-
work of string/brane theory). We hope to come back to such
studies in the near future. Another important aspect of our
current work is the demonstration of the efficiency of the Padé
approximant method [54] in solving Boltzmann equations,
thus adding yet another successful example of this method,
this time of relevance to cosmology.

Before closing, for the case that the background B0 orig-
inates from microscopic string-inspired models [43,69], we
will make some comments on the coupling of the torsion-like
antisymmetric tensor Kalb–Ramond field strength to fermion
species ψi in our model. Due to its gravitational origin, this
coupling concerns the axial fermion currents of all fermions,
including quarks in the SM sector

L �
∫

d4x
√−g γ 5

∑

i

εμνρσ Hνρσ ψ i γμ γ 5 ψi

∝
∫

d4x
√−g

∑

i

∂μbψ i γμ γ 5 ψi , (117)

where b(x) is the Kalb–Ramond axion field, dual to Hμνρ

in four space-time dimensions, as discussed briefly in Sect.
2. In such a case, direct CPT induced baryogenesis occurs,
given that the CPTV background B0 = ḃ = const would
imply effective chemical potentials that are different (by a
sign) between particles and antiparticles (and left- and right-
handed chiral fields). This, for the case of quarks of the SM
sector, can lead to direct baryogenesis. However, for the sce-
nario discussed in the present paper, the magnitude of the
background B0 = ḃ (where the overdot denotes time deriva-
tive) for temperatures at or below the electroweak phase tran-
sition T ≤ 102 GeV -pertinent for such a case, assuming
more or less standard decoupling temperatures of quarks-
would imply a contribution to the baryon asymmetry that
would be much smaller compared to that induced by the lep-
ton asymmetry for B0 ∼ 1 MeV, at TD = 105 GeV. This
is due to the scaling of B0 with the cubic power of temper-
ature T , as discussed in [43], and reviewed above (cf. (8)).
In general, though, several other contributions to the baryon
asymmetry are expected, which depend on the microscopic
model considered. Indeed, as discussed in [69], where various
microscopic scenarios for CPTV induced matter-antimatter
asymmetry in the universe have been studied, the induced
asymmetry is of order B0(TD)/TD , where TD is a decou-
pling temperature depending on the model. For TD less than
the electroweak phase transition, as mentioned above, such
contributions are much smaller than the lepton asymmetry
calculated here, due to the cooling law (8), and hence our
mechanism of baryogenesis through leptogenesis advocated
here would be the dominant one. However, this analysis holds
only for the particular model of the CPTV background origi-
nating from Kalb–Ramond fields. In general for models with
CPTV originating from gravitational space-time defects [69],

the situation could be different and the study of such models
constitute interesting avenues for future research.
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Appendices

In the following Appendices we discuss in detail several tech-
nical aspects of our work, which have been used in various
parts of the main text.

7.1: Notation and conventions

Throughout this work we use the following conventions. Our
metric signature convention is:

gμν =

⎛

⎜⎜
⎝

+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟
⎠

which implies

xμ =
(
x0

x̄

)
, xμ = gμνx

ν =
(
x0

−x̄

)

px = pμx
μ = gμν p

νxμ = Et − p̄ · x̄
The Dirac γ matrices have the properties (we use the symbol
ı to denote the imaginary unit)

{γ μ, γ ν} = γ μγ ν + γ νγ μ = 2gμν
�, (γ 0)2 = �,

(γ j )2 = −�

γ 5 = ıγ 0γ 1γ 2γ 3, {γ μ, γ 5} = 0,

(γ 5)2 = �, γ 5† = γ 5 (118)

The chiral representation for the Dirac matrices will be used
throughout:

γ μ =
(

0 σμ

σ̄μ 0

)

with the 2 × 2 Pauli matrices

σμ ≡
(

�

σ j

)
, σ̄ μ ≡

(
�

−σ j

)
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σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −ı
ı 0

)
, σ 3 =

(
1 0
0 −1

)

and

γ 5 =
(−� 0

0 �

)

7.2: Decay amplitudes

In this Appendix we work out the amplitudes for the decay
channels (9) in an arbitrary frame, where the decaying right
handed neutrino N has a four-momentum pμ,μ = 0, . . . 3.
This generalises the approximate treatment of [43], where
the field N was assumed at rest.

Our starting point is the Lagrangian for (Dirac) spinors in
an axial Background Bμ, which is taken to be purely along
the temporal axis (Bμ → B0), with B0 a small, positive (by
convention), non zero constant, 0 < B0 � 1:

L = ψ̄(ıγ μ∂μ − m�)ψ − ψ̄Bμγ μγ 5ψ. (119)

The corresponding (Dirac) equation of motion reads

(ıγ μ∂μ − m� − B0γ
0γ 5)ψ(x) = 0. (120)

On assuming plane-wave solutions for the spinor ψ , cor-
responding to positive (ψ(x) = u(p)e−ı px ) or negative
(ψ(x) = v(p)e+ı px ) frequencies, separately, and substitut-
ing in (120) we easily obtain [43] the pertinent polarization
spinors u(p) (v(p)) for the positive- (negative) frequency
solutions, of helicity λr = ±, r = 1, 2, in the presence of
the background B0 are given by [43]

ur (p) =
(√

Er (| p̄|) − B0 − λr | p̄|ξr√
Er (| p̄|) + B0 + λr | p̄|ξr

)
,

vs(q) =
( √

Es(| p̄|) + B0 + λs | p̄|ξs
−√

Es(| p̄|) − B0 − λs | p̄|ξs
)

(121)

with u (v) pertaining to the (anti) particle, respectively; ξr
are helicity eigenspinors, satisfying

σ i pi

| �p| ξr = λr ξr (122)

with the helicites λ1 = −1, λ2 = +1, and σ i , i = 1, 2, 3
the 2 × 2 Pauli matrices. In the expressions (121) we used
the normalisationN± = √

Er (| p̄|) ∓ (B0 + λr | p̄)|, with the
(−) ((+)) sign referring to u (v) spinors, respectively. The
eigenspinors ξr satisfy the orthogonality condition

ξ†
s ξr = δsr , s = 1, 2. (123)

The energy–momentum dispersion relation for a fermion
of mass m in the presence of B0 �= 0 reads [43]:

E2
r (| p̄|) = m2 + (B0 + λr | p̄|)2 (124)

For the Majorana neutrino we have m = mN �= 0; on the
other hand, the leptons l± in the early Universe, at tempera-
tures much higher than the electroweak symmetry breaking,
of interest here, are massless (m = ml = 0). Thus, the lepton
and neutrino energies are explicitly written as:

Eλ=−1
l± (| p̄l±|) = |B0 − | p̄l±||,

Eλ=+1
l± (| p̄l±|) = |B0 + | p̄l±||

= | p̄l±| + B0E
λ=−1
N (| p̄N |)

=
√
m2

N + (B0 − | p̄N |)2,

Eλ=+1
N (| p̄N |) =

√
m2

N + (B0 + | p̄N |)2 (125)

Working out the amplitude for the decay process N → l−h+
we obtain

ıM(N → l−h+) = −ı yūs(pl−)PRur (pN )

= −ı yu†
s (pl−)γ 0PRur (pN )

⇒ M(N → l−h+)=−yξ†
s ξr

√
El−,s(| p̄l−|)−B0−λs | p̄l−|

×√
EN ,r (| p̄N |) + B0 + λr | p̄N |,

(126)

where the outgoing lepton spinor is ūl−,s(pl−), and the
incoming heavy neutrino spinor uN ,r (pN ); the notation
Eχ,r (= Eλr

χ ) indicates the energy of a spinor χ with helic-
ity λr . PR = 1

2 (1 + γ 5), y is the Yukawa coupling (5) and
the orthogonality condition (123) forces the helicities of the
incoming and outgoing particles to be the same (helicity con-
servation). After squaring the amplitude (126) and averaging
over initial spins (S = 1/2) we obtain for a given helicity λ,

|M|2(N → l−h+, λ) = |y|2
2

(Eλ
l− − B0 − λ| p̄l−|)

× (Eλ
N + B0 + λ| p̄N |) (127)

We are now going to consider (127) for the two different
helicities λ = ±1. The terms within the first bracket of the
above expression take the form

Eλ
l− − B0 − λ| p̄l−| = |B0 + λ| p̄l−|| − B0 − λ| p̄l−|, (128)

where we have substituted in the lepton energy Eλ
l− = |B0 +

λ| p̄l−||. If we take λ = +1, then the above expression is zero
(provided B0 > 0 which is our initial assumption)

Eλ=+1
l− − B0 − | p̄l−| = |B0 + | p̄l−|| − B0 − | p̄l−| = 0

(129)

and so the heavy neutrino of helicity λ = +1 can not decay
into leptons.
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We now consider the case of λ = −1 for the decay process
N → l−h+. The terms in the first bracket of the right-hand-
side of (127) become,

Eλ=−1
l− − B0 + | p̄l−| = |B0 − | p̄l−|| − B0 + | p̄l−|. (130)

We must examine separately the following two cases: (i)
when | p̄l−| ≤ B0, the term (130) vanishes, whilst (ii) when
| p̄l−| > B0, this term becomes 2(| p̄l−| − B0). So for the
decay process N → l−h+, the only way for the amplitude to
be non-zero is when λ = −1 and | p̄l−| > B0. The expression
for the amplitude squared for this process is then given by:

|M|2(N → l−h+, λ = −1, | p̄l−| > B0)

= |y|2
2

m2
N

| p̄N |
(
| p̄l−| − B0

)(
1 + B0

| p̄N | − m2
N

4| p̄N |2
)

(131)

where we have substituted in the expression for the relativis-
tic heavy neutrino energy for λ = −1, expanded up to sec-
ond order in small quantities, and neglecting terms of order
O(B2

0 ) (for our purposes, we assume relativistic regime of
temperatures, such that 0 < B0 � mN � pN ∼ T ):

Eλ
N =

√
m2

N + (B0 + λ| p̄N |)2

� | p̄N | + m2
N

2| p̄N | − m4
N

8| p̄N |3

+ λ

(
1 − m2

N

2| p̄N |2
)
B0. (132)

For the reverse process l−h+ → N we have,

ıM(l−h+ → N ) = −ı yPRuN ,r (pN )ul−,s(pl−) (133)

where the outgoing heavy neutrino corresponds to PRuN ,r

(pN ), whilst the incoming lepton to ul−,s(pl−). This process
yields the same amplitude as for the decay process N →
l− h+, along with the same constraints on the helicity and
momentum,

|M|2(l−h+ → N , λ = −1, | p̄l−| > B0)

= |y|2
2

m2
N

| p̄N |
(
| p̄l−| − B0

)

×
(

1 + B0

| p̄N | − m2
N

4| p̄N |2
)

(134)

For our purposes in this work, we shall extend the range of
the lepton momentum to cover all momenta | p̄l−| ∈ [0,∞].

For the decay of the heavy neutrino into anti-leptons N →
l+h− we have the outgoing anti-lepton spinor vl+,s(pl+) and
the incoming heavy neutrino spinor v̄N ,r (pN ) with N being

its own anti-particle. The amplitude for this decay is

ıM(N → l+h−) = −ı yPRvN ,r (pN )vl+,s(pl+). (135)

Again we square the amplitude and average over the initial
spins of the heavy neutrino, to obtain

|M|2(N → l+h−) = |y|2
2

(
Eλ
l+ + B0 + λ| p̄l+|)

× (
Eλ
N − B0 − λ| p̄N |) (136)

Consider the energy of the anti-lepton for the possible helici-
ties Eλ

l+ = |B0 +λ| p̄l+||. We find that the only two non-zero
amplitudes are

|M|2(N → l+h−, λ = +1) = |y|2(| p̄l+| + B0)

×
(
Eλ=+1
N − B0 − | p̄N |

)
,

|M|2(N → l+h−, λ = −1, | p̄l+| < B0)

= |y|2
2

(| p̄l+| − B0)

×
(
Eλ=−1
N − B0 + | p̄N |

)
.

(137)

We will neglect the contribution from the decay amplitude
for negative helicity, as it requires | p̄l+| < B0. Then, for the
decay process N → l+h− we have

|M|2(N → l+h−, λ = +1) = |y|2
2

m2
N

| p̄N |
(
| p̄l−| + B0

)

×
(

1 − B0

| p̄N | − m2
N

4| p̄N |2
)

(138)

where we have substituted in the expansion of Eλ=+1
N up

to second order. We see that this decay amplitude differs
from the previous process under a change of sign of B0. The
amplitude for reverse process l+h− → N is

ıM(l+h− → N ) = −ı yv̄l+,s(pl+)PRvN ,r (pN )vl+,s(pl+),

(139)

and we can readily see that it is the same as that of the forward
process.

The squared amplitudes averaged over initial spins of all
the processes are given below:

|M|2(N ←→ l−h+, λ=−1) = |y|2
2

m2
N

| p̄N |
(
| p̄l−|−B0

)
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×
(

1 + B0

| p̄N | − m2
N

4| p̄N |2
)

|M|2(N ←→ l+h−, λ=+1) = |y|2
2

m2
N

| p̄N |
(
| p̄l−|+B0

)

×
(

1 − B0

| p̄N | − m2
N

4| p̄N |2
)

(140)

where we see that the forward and reverse processes of each
decay yield the same result and the difference between the
two decay channels into leptons and anti-leptons is a differ-
ence in sign of B0.

7.3: Thermal equilibrium populations

The (thermal) equilibrium population of a particle species is
given by [64]

neq = g
∫

d3 p̄

(2π)3 f eq (141)

where f eq is the equilibrium distribution function given by
Fermi–Dirac or Boson–Einstein statistics.

f eql = 1

eEl/T ± 1
, (142)

with the +(−) corresponding to fermions (bosons), respec-
tively.

We proceed now to determine the equilibrium abundances
of the heavy right-handed neutrino (RHN) and the leptons.
In the high-temperature era of the universe that we are con-
sidering we have T > mN ∼ TD, | p̄N | > mN and so the
particles behave relativistically. The dispersion relation for
the heavy neutrino is given by (125)

E (λ)
N (| p̄N |) =

√
m2

N + (B0 + λ| p̄N |)2

= | p̄N | + m2
N

2| p̄N | − m4
N

8| p̄N |3

− λm2
N B0

2| p̄N |2 + λB0 (143)

which has been expanded up to second order in small quanti-
ties, neglecting terms of O(B2

0 ). From (141), then, the equi-
librium population is given by

n(λ),eq
N = gN

∫
d3 p̄

(2π)3 f eqN

= gN
2π2

∫ ∞

T
d| p̄N || p̄N |2 f (λ),eq

N ,

f (λ),eq
N = 1

exp
[ E (λ)

N

T

]
+ 1

= exp

[

− E (λ)
N

T

] ∞∑

n=0

(−1)n exp

[

−n
E (λ)
N

T

]

. (144)

Where we expand the series to second order, therefore the
equilibrium distribution is approximated by.

f (λ),eq
N � exp

[
− E (λ)

N

T

]
− exp

[
− 2

E (λ)
N

T

]

+ exp
[

− 3
E (λ)
N

T

]
(145)

the equilibrium population then becomes.

n(λ),eq
N = gN

2π2

∫ ∞

T
d| p̄N || p̄N |2

×
(

exp
[

− E (λ)
N

T

]

− exp
[

− 2
E (λ)
N

T

]
+ exp

[
− 3

E (λ)
N

T

])
(146)

each of the above integrals is of the form,

In =
∫ ∞

T
d| p̄N || p̄N |2 exp

[
− n

E (λ)
N

T

]

× exp
[

− n
E (λ)
N

T

]
�
[

1 − n

(
m2

N

2| p̄N |T

− m4
N

8| p̄N |3T − λm2
N B0

2| p̄N |2T
)

+ n2m4
N

8| p̄N |2T 2

]

× exp
[

− n
λB0

T

]
exp

[
− n

| p̄N |
T

]
(147)

where n = 1, 2, 3 and we have expanded out the exponential
to second order to record all necessary terms,

In � T 3 exp

[
−n

λB0

T

] ∫ ∞

1
dxx2

×
[
1 − n

(
m2

N

2T 2 x
−1 − m4

N

8T 4 x
−3 − λm2

N B0

2T 3 x−2
)

+ n2

8

m4
N

T 4 x−2
]

exp[−nx]

= T 3

en
exp

[
− n

λB0

T

]{n2 + 2n + 2

n3 − n + 1

n

m2
N

2T 2

+ n

8

m4
N

T 4

[
1 + en(0, n)

]
+ λm2

N B0

2T 3

}
(148)

123



Eur. Phys. J. C (2018) 78 :113 Page 27 of 33 113

above we have changed the integration variable to | p̄N |/T =
x in (117). The result is

In = T 3e−n exp
[

− n
λB0

T

]
Pn,

Pn = n2 + 2n + 2

n3 − n + 1

2n

m2
N

T 2 + n

8

m4
N

T 4

×
[
1 + en(0, n)

]
+ λm2

N B0

2T 3 (149)

where [s, x] = ∫∞
x t s−1 e−t dt is the upper incomplete

Gamma function [68], with the values

(0, 1) � 0.22,

(0, 2) � 0.049,

(0, 1) � 0.013 (150)

the equilibrium abundance of the RHN (to linear order in B0

after expanding the final exponential) is then given

n(λ),eq
N = gN

2π2

(
I1 − I2 + I3

)

� gN T 3

2π2e

[
P1 − e−1P2 + e−2P3

− λB0

T

(
P1 − 2e−1P2 + 3e−2P3

)]

= 5gN T 3

2π2e

[
0.9251 − 0.1628

m2
N

T 2 + 0.0278
m4

N

T 4

− 0.8672λ
B0

T
+ 0.2203λ

m2
N B0

T 3

]
(151)

Next we consider the lepton/antilepton relativistic abun-
dances. The corresponding dispersion relations (125) are
(here we do not make a distinction between physical (i.e.
with positive energies) lepton and anti-lepton excitations as
yet, this will be done later)

E (λ)
l (| p̄l |) = |B0 + λ| p̄l || = | p̄l | + λB0. (152)

Since we are in the relativistic era and | p̄l | ≥ T >> B0, the
energy (152) is positive, irrespective of the value of λ. The
corresponding equilibrium populations read:

n(λ),eq
l = gl

2π2

∫ ∞

T
d| p̄l || p̄l |2 f (λ),eq

l ,

f (λ),eq
l = 1

exp
[ E (λ)

l

T

]
+ 1

= exp
[

− E (λ)
l

T

] ∞∑

n=0

(−1)n exp
[

− n
E (λ)
l

T

]
. (153)

Again we expand the series up to second order. The distribu-
tion function is given by,

f (λ),eq
l � exp

[
− E (λ)

l

T

]
− exp

[
− 2

E (λ)
l

T

]

+ exp
[

− 3
E (λ)
l

T

]
(154)

with the lepton equilibrium abundance (up to second order)
being given by

n(λ),eq
l = gl

2π2

(
J1 − J2 + J3

)
,

Jn =
∫ ∞

T
d| p̄l || p̄l |2 exp

×
[

− n
E (λ)
l

T

]
(155)

Substituting in the expression for the lepton energy and
changing the integration variable | p̄l |/T = x we obtain,

Jn = T 3 exp
[

− n
λB0

T

] ∫ ∞

1
dxx2e−nx

= (n2 + 2n + 2)

n3en
T 3 exp

[
− n

λB0

T

]
(156)

the final expression for the equilibrium lepton abundance is
given by,

n(λ),eq
l = gl

2π2

(
J1 − J2 + J3

)

� 5glT 3

2π2e

[
0.9251 − 0.8672λ

B0

T

]
. (157)

The difference between the massless lepton and anti-lepton
equilibrium abundances will be due to the helicity.

Of interest to us are the corresponding equilibrium
abundances for RHN (N ) and leptons (l), Y (λ),eq

x =
n(λ),eq
x /s, x = N , l (where s is the entropy density of the

Universe that scales with the temperature like s ∼ 14 T 3), in
terms of the quantity z = mN/T < 1 (at high T > mN ) ,
which are:

Y (λ),eq
N � (0.1652)

gN
π2e

[
1 − 0.176z2 + 0.0301z4
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− 0.9374λ
B0

mN
z + 0.2381λ

B0

mN
z3
]
,

Y (λ),eq
l � (0.1652)

gl
π2e

[
1 − 0.9374λ

B0

mN
z

]
,

z ≡ mN

T
< 1, (158)

For our analysis in this work we shall need the averaged
over helicities heavy neutrino equilibrium abundance Ȳ eq

N ,
and the lepton asymmetry equilibrium abundanceLeq , which
are given by:

ȲN = 1

2

[
Y (−)
N + Y (+)

N

]
,

L = Y (−)

l− − Y (+)

l+

Ȳ eq
N = 1

2

[
Y (−),eq
N + Y (+),eq

N

]

� (0.1652)
gN
π2e

(
1 − 0.176z2 + 0.0301z4

)

Leq = Y (−),eq
l− − Y (+),eq

l+

= (0.3097)
gl

π2e

B0

mN
z

with the property

lim
z→0

Ȳ eq
N = (0.1652)

gN
π2e

, lim
z→0

Leq = 0 (159)

For heavy right-handed neutrinos, we have gN = 2.

7.4: Thermally averaged interaction rates

To calculate the thermal equilibrium density integral for each
decay process, which enters the pertinent Boltzmann equa-
tion, we must sum over the different helicities:

γ eq(N → l∓h±) = γ eq,(λ=−1)(N → l∓h±)

+ γ eq,(λ=+1)(N → l∓h±) (160)

where, as discussed previously in Appendix VII B, we will
only have the λ = −1 case for the process N → l−h+ and
the λ = +1 case for the process N → l+h−. The interaction
integral for the process N → l−h+ is given by:

γ eq,(λ=−1)(N → l−h+) =
∫

d3 p̄N
(2π)32EN

∫
d3 p̄l−

(2π)32El−

×
∫

d3 p̄h+

(2π)32Eh+
f eqN (2π)4δ(EN − El− − Eh+)

× δ3( p̄N − p̄l− − p̄h+)|M|2(N → l−h+, λ = −1)

= 1

8(2π)5

∫
d3 p̄N

∫
d| p̄l−|

∫
d�l

f eqN | p̄l−|2
EN El−Eh+

× δ( f (| p̄l−|))|M|2

with the equilibrium distribution f eqN = 1/(eEN /T + 1).
Above, we have integrated over the momentum delta func-
tion, to perform explicitly the integration over d3 p̄h+ , which
enforces momentum conservation p̄h+ = p̄N − p̄l− . The
quantity f (| p̄l−|) is given below

f (| p̄l−|) = EN (| p̄N |) − El−(| p̄l−|) − Eh+(| p̄N − p̄l−|)
= EN + B0 − | p̄l−| −

[
| p̄N |2

+ | p̄l−|2 − 2| p̄N || p̄l−| cos(θ)
]1/2

f ′(| p̄l−|) = −
[
1+ | p̄l−| − | p̄N | cos(θ)

√| p̄l−|2 + | p̄N |2 − 2| p̄N || p̄l−| cos(θ)

]
,

(161)

the root of f (| p̄l−|) = 0, | p̄l−|0, is:

| p̄l−|0 = (EN + B0)
2 − | p̄N |2

2(EN + B0) − 2| p̄N | cos(θ)

� m2
N

2| p̄N |[1 − cos(θ)] , (162)

where we have only considered the leading term in the expan-
sion of the denominator in the appropriate small quantities.
We want to perform the d| p̄l−| integration in the integral
above,

∫
d| p̄l−|δ( f (| p̄l−|)) =

∫
d| p̄l−|δ(| p̄l−| − | p̄l−|0)

| f ′(| p̄l−|0)| (163)

which will force | p̄l−| → | p̄l−|0. The density integral
(γ eq,(λ=−1)(N → l−h+)) then becomes

γ eq,(λ=−1)(N → l−h+) = |y|2m2
N

16(2π)5

∫
d3 p̄N

× f eqN
EN | p̄N |

(
1 + B0

| p̄N | − m2
N

4| p̄N |2
)

×
∫

d�l
| p̄l−|20√

| p̄N |2 + | p̄l−|20 − 2| p̄N || p̄l−|0 cos(θ)

× 1

| f ′(| p̄l−|0)| . (164)

We now wish to do the angular integration and change the
variable sin(θ)dθ = −d cos(θ).
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I =
∫

d�l
| p̄l−|20√

| p̄N |2 + | p̄l−|20 − 2| p̄N || p̄l−|0 cos(θ)

1

| f ′(| p̄l−|0)|

= −2π

∫ −1

+1
d cos(θ)

| p̄l−|20
|
√

| p̄N |2 + | p̄l−|20 − 2| p̄N || p̄l−|0 cos(θ) + | p̄l−|0 − | p̄N | cos(θ)|

� − m4
Nπ

2| p̄N |3
∫ −1

+1

du

[1 − u]3 + m2
N

2| p̄N |2 [1 − u]2 + m4
N

8| p̄N |4
(165)

where we have expanded the square root for | p̄N | > | p̄l−|0
which is true for most angles and called cos(θ) = u. Note
that the denominator remains always positive. Relabelling
v = 1 − u, the integral above becomes

∫ −1

+1

du

[1 − u]3 + m2
N

2| p̄N |2 [1 − u]2 + m4
N

8| p̄N |4

= −
∫ 2

0

dv

v3 + ε2

2
v2 + ε4

8

(166)

with ε = mN/| p̄N |. To simplify this integral we will split it
up into two regimes where different terms in the denominator
are dominant,

−
∫ 2

0

dv

v3 + ε2

2
v2 + ε4

8

� −

⎡

⎢
⎢
⎣

2

ε2

∫ α

0

dv

v2 + ε2

4

+
∫ 2

α

dv

v3

⎤

⎥
⎥
⎦ (167)

where α � ε4/3/2 denotes the point where v3 starts to dom-
inate over the other terms in the denominator. We then have

−

⎡

⎢⎢
⎣

2

ε2

∫ α

0

dv

v2 + ε2

4

+
∫ 2

α

dv

v3

⎤

⎥⎥
⎦

= 1

8
− 2ε−8/3 − 4ε−3 tan−1(ε1/3) � 1

8
− 6ε−8/3,

(168)

since tan−1(ε1/3) ∼ ε1/3 for |ε1/3| << 1. This implies for
the integral in (165)

I � −mNπ

16
[ε3 − 48ε1/3] � 3mNπε1/3, ε = mN

| p̄N | .
(169)

Substituting this into the expression for the γ eq integral we
obtain

γ eq,(λ=−1)(N → l−h+) = β

∫ ∞

T
d| p̄N | f eqN

E (−)
N

| p̄N |2/3

×
(

1 + B0

| p̄N | − m2
N

4| p̄N |2
)

,

β = 3|y|2m10/3
N

16(2π)3 . (170)

the expression for the inverse of the heavy neutrino energy
is approximated below up to second order, keeping all nec-
essary terms.

1

E (−)
N

= 1

| p̄N |
[
1 + m2

N

2| p̄N |2 − m4
N

8| p̄N |4 − B0

| p̄N | + m2
N B0

2| p̄N |3
]

� 1

| p̄N |
[
1 − m2

N

2| p̄N |2 + 3m4
N

8| p̄N |4 + B0

| p̄N | − 3m2
N B0

2| p̄N |3
]

(171)

substituting this into the integral and multiplying out with
the expression in the round brackets we obtain.

γ eq,(λ=−1)(N → l−h+) = β

∫ ∞

T
d| p̄N || p̄N |−1/3

×
[

1 − 3m2
N

4| p̄N |2 + m4
N

2| p̄N |4 + 2B0

| p̄N | − 9m2
N B0

4| p̄N |3
]

f eqN

(172)

The equilibrium distribution can be expressed as

f eqN = exp
[

− E (−)
N

T

]

×
∞∑

n=0

(−1)n exp
[

− nE (−)
N

T

]
� exp

[
− E (−)

N

T

]

− exp
[

− 2
E (−)
N

T

]
+ exp

[
− 3

E (−)
N

T

]
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E (−)
N = | p̄N | + m2

N

2| p̄N | − m4
N

8| p̄N |3 − B0 + m2
N

2| p̄N |2 B0 (173)

we consider terms upto second order in the exponential series.
The gamma integral becomes.

γ eq,(λ=−1)(N → l−h+) = β

∫ ∞

T
d| p̄N || p̄N |−1/3

×
[

1 − 3m2
N

4| p̄N |2 + m4
N

2| p̄N |4 + 2B0

| p̄N | − 9m2
N B0

4| p̄N |3
]

×
(

exp
[

− E (−)
N

T

]
− exp

[
− 2

E (−)
N

T

]

+ exp
[

− 3
E (−)
N

T

])
(174)

in order to simplify these integrals we notice that there is a
general expression,

γ eq,(λ=−1)(N → l−h+) = β
[
I1 − I2 + I3

]

In =
∫ ∞

T
d| p̄N || p̄N |−1/3

×
[
1 − 3m2

N

4| p̄N |2 + m4
N

2| p̄N |4 + 2B0

| p̄N | − 9m2
N B0

4| p̄N |3
]

× exp
[

− n
E (−)
N

T

]
exp

[
− n

E (−)
N

T

]

�
[
1 − n

( m2
N

2| p̄N |T − m4
N

8| p̄N |3T + m2
N B0

2| p̄N |2T
)

+ n2m4
N

8| p̄N |2T 2

][
n
B0

T

]
exp

[
− n

| p̄N |
T

]
(175)

where n = 1, 2, 3 and again expanding the exponential to
second order. We thus obtain an expression for the integral
In :

In = T 2/3 exp
[
n
B0

T

]
Jn (176)

Jn =
∫ ∞

1
dxx−1/3

[
1 +

(2B0

T
− nm2

N

2T 2

)
x−1

+
(
n2m4

N

8T 4 − 3m2
N

4T 2 − 3nm2
N B0

2T 3

)
x−2

+
(
nm4

N

2T 4 − 9m2
N B0

4T 3

)
x−3 + m4

N

2T 4 x
−4
]
e−nx (177)

where we have employed a change of variable | p̄N |/T = x .
Substituting in the different values for n, we obtain the solu-
tions for Jn , after performing the appropriate integrations:

J1 = 1

1120eT 4

{
− 63m4

N

[
− 6 + e

(2

3
, 1
)]

+ 1120T 3
[
6B0 + e(−6B0 + T )

(2

3
, 1
)]

− 30m2
N T

[
6B0 + 14T + e(45B0 + 7T )

(2

3
, 1
)]}

(178)

J2 = 1

560e2T 4

{
m4

N

[
462 − 504e2E1/3(2)

]

+ 560T 3
[
6B0 + e2(−12B0 + T )E1/3(2) − 15m2

N T

×
[

− 114B0 + 7T + 4e2(90B0 + 7T )E1/3(2)
]}

J3 = 1

8T 4

{
1

e3

[
78

5
m4

N + 486

7
m2

N B0T + 48B0T
3
]

− 1

140

[
5103m4

N + 1120(18B0 − T )T 3

+ 270m2
N T (135B0 + 7T )

]
E1/3(3)

}
(179)

with En(x) = ∫∞
1 dy y−n e−x y is the exponential integral

function [68], and we have the values


(2

3
, 1
)

= E1(1) � 0.304429, E1/3(2) � 0.0602489,

E1/3(3) � 0.015246. (180)

On substituting mN/T = z, we obtain

J1 = 0.3044 − 0.1959z2 + 0.107z4

+ z
B0

mN

(
0.3807 − 0.4281z2

)

J2 = 0.0603 − 0.0701z2 + 0.0574z4

+ z
B0

mN

(
0.089 − 0.1666z2

)

J3 = 0.0112 − 0.0189z2 + 0.0461z4

+ z
B0

mN

(
0.0971 + 0.0676z2

)
. (181)

Therefore to obtain the expression for the γ eq integral we
recall that,

In = m2/3
N z−2/3 exp

[
n
B0

mN
z
]
Jn

γ eq,(λ=−1)(N → l−h+) = β
[
I1 − I2 + I3

]

� βm2/3
N z−2/3

[
J1− J2 + J3+z

B0

mN

(
J1 − 2J2 + 3J3

)]
.

(182)
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This implies that the γ eq integral (to linear order in B0)
becomes

γ eq,(λ=−1)(N → l−h+) � 3|y|2m4
N

16(2π)3 z
−2/3

×
[
0.2553−0.1447z2+0.0957z4

+ z
B0

mN

(
0.6062 − 0.3063z2

)]

(183)

We next proceed to obtain the expression of the pertinent γ eq -
integral for the reverse process l−h+ → N . The steps will
parallel those of the previous calculation, the only difference
is that now one should make the substitution f eqN → f eql− f eqh+
in (164). We thus have

γ eq,(λ=−1)(l−h+ → N )

= |y|2m2
N

16(2π)5

∫
d3 p̄N

1

EN | p̄N |
(

1 + B0

| p̄N | − m2
N

4| p̄N |2
)

×
∫

d�l
| p̄l−|20 f eql− f eqh+

√
| p̄N |2 + | p̄l−|20 − 2| p̄N || p̄l−|0 cos(θ)

× 1

| f ′(| p̄l−|0)|
f eql− = 1

exp
[ E (−)

l−
T

]
+ 1

= exp
[

− E (−)

l−
T

] ∞∑

n=0

(−1)n exp

[
− n

E (−)

l−
T

]
,

f eqh+ = 1

exp
[ Eh+

T

]
− 1

= exp
[

− Eh+

T

] ∞∑

n=0

exp
[

− n
Eh+

T

]
, (184)

where, as in the previous case, in the equilibrium distributions
we keep only the first term in the series, which implies

f eql− f eqh+ � exp
[

− E (−)

l− + Eh+

T

]
. (185)

On using energy and helicity (λ = −1) conservation in the
reaction l−h+ → N , we observe that the numerator of the
fraction in the exponent in (185) can be replaced by the energy
of the RHN E (λ=−1)

N . Then, upon approximating (in the high

temperature regime) exp
[
− E (λ=−1

N )

T

]
� f eqN , we may write

f eql− f eqh+ = f eqN , (186)

which, upon substitution in (184) and comparison with (164),
implies the reciprocity (chemical equilibrium) relation for the

thermally averaged decay rates,

γ eq,(λ=−1)(l−h+ → N ) = γ eq,(λ=−1)(N → l−h+), (187)

in the presence of CPTV background B0 �= 0.
The results for the decay and reverse processes N

←→
l+h− will be analogous to those of the previous calculations
but with a change in the sign of B0, due to the opposite
helicity λ = +1 involved in those processes. The results for
all thermally averaged decay rates are summarized below:

γ eq,(λ=−1)(N → l−h+) = γ eq,(λ=−1)(l−h+ → N )

= 3|y|2m4
N

16(2π)3 z
−2/3

(
0.2553 − 0.1447z2 + 0.0957z4

)

×
[

1 + z
B0

mN

0.6062 − 0.3063z2

0.2553 − 0.1447z2 + 0.0957z4

]

γ eq,(λ=+1)(N → l+h−) = γ eq,(λ=+1)(l+h− → N )

= 3|y|2m4
N

16(2π)3 z
−2/3

(
0.2553 − 0.1447z2 + 0.0957z4

)

×
[

1 − z
B0

mN

0.6062 − 0.3063z2

0.2553 − 0.1447z2 + 0.0957z4

]
.

(188)

Equation (188) implies the generation of a lepton asym-
metry between the decay channels (9) of Fig. 1 at tree level
only when B0 �= 0, due to the difference in the respective
decay rates.

8. Padé approximants method

It is often possible to increase our knowledge of a function
f (z) beyond the region of convergence of its Taylor series
using the method of Padé approximants. The Padé approxi-
mation [54] can be considered as follows: given a function
f (z) (with a Taylor expansion around z = 0), and two non-
negative integers m, n ≥ 0, the Padé approximant [m/n] f (z)
is provided by the function

Pn
m(z) =

∑m
i=o ai z

i

1 +∑n
j=1 bk z

k
. (189)

If the Taylor expansion of f (z) is truncated at power zn+m ,
the resulting polynomial Tm+n (z) can be written as

Tm+n (z) =
m+n∑

j=0

c j z
j . (190)
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We can Taylor expand Pn
m(z) to order zn+m and equate the

expression to Tm+n (z). (As n,m → ∞ oftenPn
m(z) → f (z)

even when the Taylor series for f (z) is divergent.) Let us
consider a m × m matrix A defined by Ai j = cn+i− j (1 �
i, j � m). From the matching of the series the bi satisfy the
matrix equation

A

⎡

⎢⎢
⎢⎢⎢⎢
⎣

b1

b1

.

.

.

bm

⎤

⎥⎥
⎥⎥⎥⎥
⎦

= −

⎡

⎢⎢
⎢⎢⎢⎢
⎣

cn+1

cn+2

.

.

.

cn+m

⎤

⎥⎥
⎥⎥⎥⎥
⎦

(191)

The coefficients a j , b j in (189) are uniquely determined,
provided we normalise the zeroth order term in the denomi-
nator to one. The coefficients ai are determined by the set of
equations

Ai =
i∑

j=0

ci− j b j . (192)

A common procedure is to examine the convergence of the
sequence P J

0 ,P1+J
1 ,P2+J

2 ,P3+J
3 , . . . with n = m + J .

We shall use the J = 0 sequence known as the diagonal
sequence.

This method will be applied to our system of Boltzmann
equations to extrapolate their solution from z � 1, where
the equations are derived analytically, to the z � 1 case. It
is understood that although above we considered a Taylor
expansion about z = 0 (which was assumed to be in the
region of analyticity of f (z)), the discussion can be straight-
forwardly extended for Taylor expansions about any other
point inside the region of analyticity of f (z). The application
of Padé approximants and justification of Padé approximants
are well described in [70].

We will conclude with an example which is related to the
calculation of lepton asymmetry. Consider

f (z) =
(

0.0001z29/3 + 0.0004z28/3 − 0.0015z22/3

+ 0.0088z16/3 + 0.0001z2/3 − 0.0381z

)
(193)

and Taylor expand f (z) about z = .7. The corresponding
P7

7 (z) is

P7
7 (z) = u7(z)

d7(z)
(194)

where

u7(z) = −0.0253701 + 0.00655229(z − 0.7)7

+ 0.00566604(z − 0.7)6 + 0.00709687(z − 0.7)5

+ 0.020408(z − 0.7)4 + 0.0213818(z − 0.7)3

+ 0.0358012(z − 0.7)2 − 0.0161927(z − 0.7)

and

d7(z) = 0.0242858(z − 0.7)7 − 0.0453282(z − 0.7)6

+ 0.0524747(z − 0.7)5

− 0.0733029(z − 0.7)4 − 0.0319164(z − 0.7)3

+ 0.232236(z − 0.7)2

− 0.502196(z − 0.7)

+ 1.0000000000000000.

The convergence of the diagonal sequence can be seen from
P8

8 (1.44) = 0.000465789, P7
7 (1.44) = 0.000463733 and

P6
6 (1.44) = 0.000449957.
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