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Abstract The experimental sensitivity to @ — e conver-
sion will improve by four or more orders of magnitude in
coming years, making it interesting to consider the “spin-
dependent” (SD) contribution to the rate. This process does
not benefit from the atomic-number-squared enhancement
of the spin-independent (SI) contribution, but probes dif-
ferent operators. We give details of our recent estimate of
the spin-dependent rate, expressed as a function of opera-
tor coefficients at the experimental scale. Then we explore
the prospects for distinguishing coefficients or models by
using different targets, both in an EFT perspective, where
a geometric representation of different targets as vectors in
coefficient space is introduced, and also in three leptoquark
models. It is found that comparing the rate on isotopes with
and without spin could allow one to detect spin-dependent
coefficients that are at least a factor of few larger than the
spin-independent ones. Distinguishing among the axial, ten-
sor and pseudoscalar operators that induce the SD rate would
require calculating the nuclear matrix elements for the second
two. Comparing the SD rate on nuclei with an odd proton vs.
odd neutron could allow one to distinguish operators involv-
ing u quarks from those involving d quarks; this is interesting
because the distinction is difficult to make for SI operators.

1 Introduction

Charged lepton flavour violation (CLFV) is new physics that
must exist; only the rates are unknown. In this paper, we
consider u < e flavour change, and assume that it can
be parametrised by contact interactions involving Standard
Model particles. Flavour change (« <> e can be probed in the
decays u — ey [1] and u — eee [2], in u — e conversion
[3-5] and in various meson decays such as K — e [6]. In
1 — e conversion, abeam of 1.~ impinges on a target, where
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the u is captured by a nucleus, and can convert to an electron
while in orbit. The COMET [7] and Mu2e [8] experiments,
currently under construction, plan to improve the sensitiv-
ity by four orders of magnitude, reaching a branching ratio
~ 1071, The PRISM/PRIME proposal [9] aims to probe
~ 10718 These exceptional improvements in experimental
sensitivity motivate our interest in subdominant contributions
to 4 — e conversion.

Initial analytic estimates of the © — e conversion rate
were performed by Feinberg and Weinberg [10], for promis-
ing operators and nuclei. A wider range of nuclei were stud-
ied numerically by Shanker [11], and estimates for many
operators and nuclei can be found in the review [12]. Rela-
tivistic effects relevant in heavier nuclei were included in
[13]. The matching of CLFV operators constructed with
quarks and gluons, onto operators constructed with nucle-
ons, was performed in [15]. The current state of the art is the
detailed numerical calculations of Kitano, Koike and Okada
(KKO) [14], who studied all the CLFV nucleon operators
that contribute coherently to ;t — e conversion, for nuclei
from helium to uranium. In such processes, the amplitude for
i — e conversion on each nucleon is coherently summed
over the whole nucleus. Like “spin-independent” (SI) dark
matter scattering, the final rate therefore is enhanced by a fac-
tor ~ A2, where A is the atomic number of the nucleus. How-
ever, other conversion processes are possible. For instance,
incoherent ;4 — e conversion, where the final-state nucleus
is in an excited state, has been discussed by various people
[11,16,17], and is expected to be subdominant with respect
to the coherent process.

In a previous letter [18], some of us noted that “spin-
dependent” (SD) u — e conversion can also occur, if the
target nuclei have spin (as is the case for aluminium, the target
of the upcoming COMET and MuZ2e experiments). Although
this process does not benefit from the ~ A? enhancement
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associated to Sl rates, it has the interest of being mediated by
different CLFV operators from the coherent process.

The aim of this manuscript is to give details of our cal-
culation, and explore whether the SD process could help
distinguish models or operators, should 4 — e conversion
be observed. The operators which could induce SD pu —
e conversion are listed in Sect. 2. The conversion rate in alu-
minium is estimated in Sect. 3, and the extrapolation to other
nuclei is discussed in Sect. 3.2. The theoretical uncertainties
in our estimates are briefly discussed in Sect. 4. Section 5
explores the consequences of including the SD contribution
to the 4 — e conversion rate, both in the perspective of
obtaining constraints on operator coefficients from an upper
bound on the branching ratio, and for discriminating models
when ; — e conversion is observed. This section comes in
three parts: we study three leptoquark models which induce
SD and SI conversion, then consider the same operators but
with arbitrary coefficients, and calculate a covariance matrix.
Finally, we allow all possible operators with arbitrary coef-
ficients. We summarise in Sect. 6.

In our previous letter [18], we showed that the SI and SD
operator coefficients mix under renormalisation group (RG)
evolution between the experimental and weak scales. The
effects of this mixing are significant: the largest contribution
to the . — e conversion rate from an “SD” coefficient at the
weak scale, would be via the RG mixing to an SI coefficient
(for example, a tensor coefficient at the weak scale induces a
SI contribution to the rate which is ~ A? larger than the SD
contribution). In this paper, we focus on operator coefficients
at the experimental scale, only including the RG evolution in
the leptoquark models of Sect. 5.1. The RG evolution of the
operator coefficients is summarised in Appendix C.

2 Operators

We are interested in contact interactions that can medi-
ate 4 — e conversion on nuclei, at a scale uy ~ 2
GeV. The focus of this manuscript is the subset of “spin-
dependent” interactions, but for completeness, all QED x
QCD invariant operators that mediate ;© — e conversion on
nuclei are included. The relevant operators in the quark-level
Lagrangian are [14,15]

1
SL=-2v2Gr ) |:CD,YOD,Y + - CeerOay
t

YeL,R
+ > chq/yyoqoq,,y] + h.c. (1
q=u,d,s O’

where the two-lepton operators are

Op.y = my (ec® Py 1) Fup
O6G.y = @Py1)GapG®P 2)

@ Springer

and O’ € {V, A, S, P, T} labels two-lepton two-quark oper-
ators in a basis where only the lepton currents are chiral:

Oy = @ Pri@req) Oy = @* Py)@raysa)
0ty = @Py@a), OFy = @Py)@rsq)
0%, = (@0 Py 11)(Goupq) ©)

with 0% = £[y% y#]and Py = (1 — ys)/2. This choice
of non-chiral quark currents is convenient for matching
onto nucleons. However, often an operator basis with chi-
ral quark currents is added to the Lagrangian as §L =
—2V2Gfr Y COJ’XO(gI,YX [12,19,20], where, for instance,
(’)‘{,‘fY x = (ey* Pyu)(qya Pxq). In this case, the coefficients
are related by (recall that O%, . vanishes—see Appendix C
of [19]) ’

1 1
qq _ qq qq qq _ qq aq
Cyy = E(CV,YR +Cylyr)  Cay= E(CV,YR —Cyyr)
1 1
qq9 _ qq qq a9 _ qq qq
Csy = E(CS,YR +Csyr) Cpy= E(CS,YR —Csyr)
99 _ ~qq
Cry =Cryy: 4

In Eq. (1), the coefficients and operators are evaluated
close to the experimental scale, at uy =~ 2 GeV. The scale
is relevant, because renormalisation group running mixes
the tensor and axial vector operators (which induce SD
. — e conversion) into the scalar and vector operators (who
mediate the SI process) [18].! This is reviewed in Appendix
C. Throughout the paper, coefficients without an explicit
scale are assumed to be at py.

To compute the rate for © — e conversion, the operators
containing quarks should be matched at the scale py onto
CLFV operators involving nucleons and mesons. The rele-
vant nucleon operators are the four-fermion operators of Eq.
(3) withg — N and N € {n, p}. As discussed below, rather
than include mesons in the Lagrangian, we approximate their
effects by form factors for some nucleon operators and two
additional operators given in Eq. (10). So the nucleon-level
Lagrangian will be

5L =—2vV2GF Y {CD,YOD,YJF > Z&’g,{v,yo’ov,{v,y}

YeL,R N=p,n 0"

+h.c. ©)

where 0" € {V, A, S, P, T, Der}.
At zero momentum transfer (Py — P; — 0), we match
onto operators with nucleon currents, by replacing

G(N)Tog(x) = G ' NN (x) 6)

! The analogous mixing of SD WIMP scattering operators into SI oper-
ators was discussed in [21,22].
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Fig. 1 Diagrams contributing to &t — e conversion in the presence of
axial and pseudoscalar CLFV operators (represented by the grey blob)

such that (N|g(x)Tog(x)|N) = Gg’q(NIN(x)FON(xMN)
= Gy aN(PAToun(P)e i Pr=PDx with T € {1, s,
v%, ¥Pys, o%P}. The constants Gg’q obtained at zero-recoil
are given in Appendix A, and we will assume that they are
an acceptable approximation at the momentum-transfer of
i — e conversion, which is |I3f - f’i 12 = mi

Various mesons are present in the low energy theory at .,
so in principle the quark operators of Eq. (1) should be also
matched onto meson operators. x PT [30] involving nucleons
(see e.g. the review [23]) would be the appropriate formalism
for this calculation, and it has been used to calculate WIMP
scattering on nuclei [24-27], neutrinoless double beta decay
[28], and ST & — e conversion [29]. However, to avoid more
notation, here we just give results for the simple diagrams
of interest. We only consider the CLFV decays of pions,
because the effects of heavier mesons would be suppressed
by their masses, and diagrams where a pion is exchanged
between two nucleons are suppressed by more propagators,
and would require two nucleons in the initial and final states.”
Pion decay can contribute to © — e conversion via the sec-
ond diagram of Fig. 1, in the presence of a pseudoscalar or
axial vector quark current. We follow the notation of [23,30]
in matching the axial vector and pseudoscalar quark currents

. 2 _ .2
onto the pion, at P~ = mZ, as

)ty ysq(x) — frid®m(x),
2mgq ()T ysq(x) — femia®(x) 7

in order to obtain the usual expectation values (0|u(x)y“ys
d(x)|m~(P)) = V2P* fre™ P, (0l (x)y*ysu(x) |7 °(P))
= PYfre”P¥ and Ola()ysu()|w(P)) = frm3
e~ "PX2m,,, where fr >~ 92.4 MeV.

Later in the manuscript, the matrix element for u — e
conversion on a nucleon, M(u + N(P;) — e(k) + N(Py))
will be required. In the case of vector, scalar or tensor
interactions, it is straightforward because conversion pro-
ceeds via a two-nucleon—two-lepton contact interaction. In
the case of axial vector and pseudoscalar interactions, there
is a pion exchange contribution, as illustrated in Fig. 1, so

2 Such two-nucleon contributions, which arise at NLO, have been stud-
ied in WIMP scattering [24-26], and recently considered for coherent
i — e conversion in [29].

we give the matrix elements here. The pion—nucleon inter-
action term in the Lagrangian is taken as ig; ynyNysT - TN,

and the Goldberger-Treiman relation gives grpp >~ (Gp .
d
GZ )mp/fn~
In the following two equations, uy = (up, u,) repre-

sents a vector of spinors in isospin space. The matrix element
M(u 4+ N(P;) — ex(k) + N(Py)) mediated by the axial
up quark current, can be written [24,31]

_ [aol + ay13]
<MN(Pf)—
2
Cuu gT[NNfT[q

Ig2| + m2

Yy ysun (P;)

+ W(Pf)[m]J/suN(H’))u_eyapxuu

®)

where ¢ = (0, —q) = Py — P, the first term is written in
terms of iso-scalar and iso-vector contributions (ap+a;)/2 =
Ch'yGRY, (ag—a1)/2 = CYy G, whereas the pion con-
tribution is only isovector.

In the case of the pseudoscalar operator Op'y, the pion
exchange diagram is non-vanishing at |g|> = 0, so at
finite momentum transfer, only the additional contribution
o 1/(1g1> + m2) — 1/m2 should be included. This gives

Gh" 0
pr(”N(Pf)[ 0 Gnuj|7/5’4N(Pi)

_my(GR" = GY1GP
2my (131 +m2)

W(Pf)["-?]VS“N(Pi))ZPYMu-
©

In summary, the axial vector and pseudoscalar quark oper-
ators could equivalently have been matched at ¢ to an EFT
without pions, but with a g>-dependent “form factor” for the
pseudoscalar nucleon operator, and an additional dimension
seven derivative operator,

NN L —
Oper.y =i(@y*Pyu)(N 3y ysN), (10)
such that i (N(Py,s")IN(x) 8, ysNX)IN(P;,s)) = ity

(P)qaysuly(P)e " Fr=F)x Tn this extended basis, the
nucleon coefficients are

ciy =Gl ey, + G eqd, + Ghresy.
Chory = —(mmiufZ%) (G%M - GlX’d) (CZ?Y - Cfx‘,iy)v
CPY = GRpCply + GRiColy + G Cly
(G - ) et o
2m,  2my (m2, +m2) ’
CNY = Gyt ey, + Gylcdd, + Gy oy,
CYY =Gyreyy +Gyicyly (1)

@ Springer
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where ﬁg g y Wwas evaluated at q2 w and the scalar
nucleon coefficients, to which also gluon operator of Eq. (2)
contributes, are given in [15].

To obtain the 4 — e conversion rate, the expectation
values of the nucleon operators in the nucleus are required.
This is discussed in the next section. We were unable to find
nuclear expectation values of the tensor and pseudoscalar
operator, SO Og y Will be neglected, and the tensor included
in the scalar and axial operators, as described in Eq. (19).

3 Estimating the SD and SI rate in light nuclei

In Ref. [18] we gave analytic estimates of the SI and SD
conversion rates on aluminium. The aim of Sect. 3.1 is to
give details of the calculation in the notation of relativis-
tic, second-quantised field theory. The results can then be
matched onto the nuclear physics calculations of [14] (for ST
conversion), and SD WIMP scattering [24,31-33] (for SD
conversion). In Sect. 3.1.3, the estimates are mapped onto
the numerical results of KKO [14], and SD conversion in
heavier targets is discussed in Sect. 3.2.

3.1 Estimating the SD and SI rate in aluminium

We define the bound state of momentum P; composed of
an aluminium nucleus and a muon in the 1S orbital as
= |Alu(P;)). We are interested in the S-matrix element for
Alu(P;) — Al(Py) + ey (g) induced either by the dipole
operator (which we discuss later), or by a four-fermion oper-
ator (exT;)(NT,N). To be concrete, we consider the S-
matrix element where the nucleon N is a proton:

iZﬁGFgffp(Al(Pf),e(q,S)l/d4y[§(y)l“zﬂ(y)]

X [P T pIAIL(P)) (12)

where s is the spin of the electron selected by the chi-
ral projector Py, field operators wear hats, and I', €
{1 ys, v vPys, a®F), T1 € {1, v, 0P},

3.1.1 Four-fermion operators

1. Afirststepis to write the motionless bound state |Al (0))
as

2(Maj +my,) d*k
A= 0) =\, Z/ @)

)P (k) |AL(=K)) @ |k, w))  (13)

where w is the spin of the muon, the square-root
prefactor accounts for one- vs. two-body normalisa-
tion of states in Lorentz-covariant field theory conven-

@ Springer

tlons where states are normalised o V2E E [34], and
Iﬂu ) = [d3ze™ il 4, (Z) is the Fourier transform of the
Schrodinger wavefunction v, (Z) for a muon in a central
potential of charge Z.

For Za <« 1, the unit-normalised wavefunction, for
either spin state, can be approximated [35-37] as

[motZ]3/2

N

We approximate the outgoing electron as a free parti-
cle (plane wave), which should be acceptable for an alu-
minium target. For heavy nuclei, the Dirac equation for
the electrons outgoing in the field of the nucleus should be
solved [13], allowing to express the electron as a super-
position of free states. This approach was followed in
KKO [14].

Yu(r, 0, ¢) ~ e 2amr (14)

. In the same non-relativistic bound state formalism (see

e.g., Appendix B of [32] for more details), the aluminium
nucleus, of spin J4, can be written as a bound state com-
posed of a proton of spin 7, with another state M of mass
M and spin Jys containing Z — 1 protons and A — Z
neutrons:

2Ma & -
(Al(Py¢), J W t,Iu, J
(Py), Jal = /4M1mp2/(2ﬂ)3fp( s Ta)

X (M (=L + M), Ty| x (pA +m,v7), 1]
(15)

where f,, (f, t, Jy, Ja) is the Fourier transform of the
(unknown) wavefunction of the proton in the potential of
My, and Py = (Ma1, Mavy).

. The fermion operators can be expanded as [34]

= Z/(zn)s (apuye ™+ b7 vper) (16)

and act on states as ,&(y)ll_é, w) = ukwe_”“y|0), where

the spinors are normalised as u};uk = 2ko. The S-matrix

element of Eq. (12) can then be evaluated as

Ma
mp\/2m,
<33 /d3xwu<z>|f,,<z, Ja, Ju, D)2

pEAIl spins
xe ¥ @ Tul) @ Tu',) (17)

i2m)*s* (P — Py — q)2v2G pCPP

where the spinors subscripts are particle names rather
than momenta, and P; =~ (Maj + my, P, Pr ~
(M a4y, P ). To obtain this approximation, the states were
taken to be non-relativistic, the wavefunctions expressed
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in position space, the proton wavefunction was assumed
independent of the proton spin, and the dependence
of spinors on three-momenta was neglected in many
integrals. Notice the Maj/m, enhancement factor that
arises automatically for both spin-dependent and spin-
independent interactions, and that the usual Qr)*s*(P—
Py — @), which accounts for four-momentum conserva-
tion, appears despite that there is a spatial integral over
the nucleus. In the following, we drop the spin indices in
the nucleon distribution in the nucleus | fy |2.

. The leptonic spinor contraction is independent of X and
can be factored out of the spatial integral in Eq. (17). In
light nuclei such as aluminium, the muon wavefunction
can also be factored out [10], because the muon wave-
function decreases on the scale ~ 1/(Zam,,), which is
larger than the radius of the aluminium nucleus, given in
[38] as < 6 fm. On the other hand, the first zero of the
electron plane wave (the ¢4 of Eq. (17)) would occur
atr ~m/(my,) ~ 6fm.

. The nucleon spinor contractions, in the non-relativistic
limit, can be written (see Eq. (47) of [39]) thus:

@S (Ppyuly (Pr) — 2my3°,

uS (Pp)ysu'y (P) — 2G - Sy,

u (Pp)y*uly (Pr) — 2my 8”8,

S (Pr)yy? ysuly(Pr) — 4mNS]{,,
uly (Pp)oixuy (Pr) — 4mN€ikjSI{/,

S (Pr)ouly (P — igk, (18)

where the spin vector of the nucleon is defined as
23‘1\/ = uLf)uN/ZEN, and the rotation generator S =
i[yi yil = 1 €ksk The momentum transfer ¢ =
P;— Py has been neglected, except in the case of the pseu-
doscalar, where the leading term is O(q SN) and in the
case of the tensor, where the there is a “spin-independent”

contribution « ¢.

These spinor identities allow the tensor interaction
involving nucleons to be absorbed into the scalar and
axial vector coefficients. Following [18], we define

CSY = +2_ﬂCTY’

5/AN{/V = CA,Y + 2CT,X (19)

where in both cases the factor 2 arises from the two anti-
symmetric contributions of the tensor, the unprimed Cs
are defined in Eq. (11), X,Y € {L,R}, and X # Y
because only operators with electrons of the same chi-
rality can interfere. Notice that there is an error in [18],
where is written 5114\”1;/ = 52”; + 251}”}’

6. Itremains to evaluate the expectation value of the nucleon

currents in the nucleus.

(a) Inthe case of the scalar or vector operators, the matrix
element of Eq. (17) becomes

M =2V2G(C, FW(O)

<3 [ s )|2s‘“(‘”)

peA

=S5 T lar,
<Xty vt 20)

uvyouz) vector,

where the sum over protons in the nucleus will give
a factor Z, we drop the spin indices because the sum
and average give 1, and assume a spherically sym-
metric nucleon distribution | f,, (r)|? in the nucleus,
which allows one to replace’ el Sinq(—fr). The
“form factors”

Fx(m,0) =/d3x|fN< )

o sin(myr) 21

myr
are defined in Egs. (29) and (30) of [14]: Fj,(m,,) ~
0.53 for Al, and ~ 0.35 for Ti.

(b) The expectation value of the axial current in alu-
minium (A = 27, Z = 13, fAl = 5/2) was calcu-
lated by Engel et al. [33] and Klos et al. [24] using
the shell model. In the zero momentum transfer limit,
where the spin-expectation values S ,‘é, are defined by

k
IJ I
(22)
they obtain S = 0.0296, S;“ = 0.3430. (J% is a
quantum mechanical operator, to be evaluated in the
ground state of the nucleus A).

At finite momentum transfer, references [24,33]
include the nucleon axial vector operators (’)ﬁ’ ]}’( and

> / & x| fy @ Gny ysun) = 4my Sy

NeA

the pion exchange operator O Der x» in the combi-
nation induced by axial vector quark operators. The
various terms in the matrix-element-squared have dif-
ferent spin sums, so the ﬁnite momentum transfer cor-
rection depends on C A.x and cnn A x» and is quoted as
a multiplicative factor S a(m;)/S4(0) in the rate (see
Eq. (26)). Neglecting S;f‘l < S?l, the results of Engel
et al. for aluminium give [33]

Sa1(k) o (0.31500480 — 1.857857y
+4.86816y% — 5.422770y%) (23)

3 Recall that a plane wave can be expanded on spherical harmonics as

=300 i@+ D) je(gr)YP(0), and Y (6) = 1/V/4x.

@ Springer
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where y = (me/Z)2 and b =1.73 fm. This gives
Sar(my)/Sa1(0) = 0.29.

(c) At zero momentum transfer, the nuclear expectation

value of tensor operators O]TV ];]( is proportional to that
of axial vector operators, as accounted for in Eq. (19).
Howeyver, at finite momentum transfer, there is no
pion exchange contribution for the tensor operator
(while pion exchange induces O Y Der.x N the presence
of the axial vector quark operators), so the redefini-
tion of Eq. (19) is not valid. Indeed, the tensor and
axial vector operators are distinct at finite momentum
transfer.
However, we did not find nuclear calculations of SD
scattering on aluminium mediated by the tensor oper-
ator. We can try to estimate the error from using the
axial results for the tensor: at q2 = — mi, the pion
exchange contribution to the matrix element in Eq. (8)
is comparable to the four-fermion contact interaction.
Also, the finite momentum transfer suppressions of
the axial and scalar rates on aluminium are compara-
ble (Sa1(my)/Sa1(0) >~ |Fy(m,) ), despite that one
might expect the oscillations of the electron wave-
function to suppress the SD rate more than the SI
rate, because spin-carrying nucleons are likely to be
at large radii. So we interpret this as follows: the
axial matrix element is amplified by a factor ~ 2 at
g = —mi (due to the pion), and suppressed by an
extra factor ~ 1/2 (as compared to the scalar matrix
element) due to the oscillations of the electron wave-
function, and we estimate that the identification of Eq.
(19) could overestimate the tensor contribution to the
branching ratio by a factor ~ 2 — 4 (depending on
whether the pseudoscalar and axial matrix elements
interfere).

(d) The pseudoscalar operator (’)g x 1s proportional to
the nucleon spin, is only present at finite momen-
tum transfer, and at q2 = —mi, is enhanced by

a pion exchange contribution of comparable magni-

tude. Since the magnitude of the pseudoscalar spinor

contraction in Eq. (18) is suppressed with respect to
the axial vector by ~ m, /2my, its contribution to
the SD branching ratio could be ~ mi /4’"%/ x the
axial vector contribution. However, the identification

EL;N;V = C N N + 5 m" ~Cp cy N does not work, because

the’spin sums suppress the ax1al—pseudoscalar inter-

ference term. A dedicated nuclear calculation would
seem required for both the pseudoscalar and the ten-
sor operators.

7. To obtain the matrix-element-squared, the lepton spinor
part can be evaluated by Dirac traces. Then to perform
the nuclear spin sums in the SD case, the identity

@ Springer

QJ, + 1)1(21 + 1) 2 2 Wl F LTI
s A spins k,i
o . 1
XAAIANIATAIIL) = 3 0uU+ DIaCa + 1)
(24)
can be used.
8. Finally, the conversion rate is obtained:
1 —
2M 8MA171

—2 . .
where | M| is averaged over the incident spins, and dI1
gives the integration over the final-state phase space of
the nucleus and electron.

These steps give an analytic estimate for the four-fermion
contributions to the SI conversion rate on a nucleus of atomic
number A and charge Z:

= ZBO|Z(C + ClPe +2eCp 1) Fp(my)

capt
HA = Z)(C + CY'p) Fa(mp) > +{L < R}
(25)

where the Fy are defined in Eq. (21) and related to the over-
lap integrals of KKO in (34), the contribution of the dipole
operator (estimated in Sect. 3.1.2) was also included, and

Gim 0.310 Al (Z = 13
BO /L ( ) { ( )’

rmptn2 0.438 Ti (Z = 22),

where I'cape is the rate for the standard model process of
muon capture [14,40]. Similarly, the SD conversion rate on
a nucleus of atomic number A, charge Z and spin J4 is

I'sp JA +1

= 88 ‘SA cr
Ceapt ’
2 854 (mu)
+8ACM +{L < R}, (26)
AELS4(0)

where the spin-expectation values S ,‘:‘, and the finite momen-
tum transfer correction S4 (k) are given for aluminium at Eq.
(23).

3.1.2 The dipole

In the case of the dipole operator of Eq. (2), the S-matrix
element can be written

2V2GF
l
,/ZmM

xEi(y) Py i(y)|n(q)) 27)

Coymle(@. s)| / a4 y2(@x ()0 -
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2V2Gr
\ /Zmﬂ
x / Bye Ty, (3200 - Ei(y) Pyuu(y))  (28)
232G F
V2my,

w [ aQr2dr STy oy @oY Pru ) Er) (29)
mur w UeOo YUy i\r

=1

Cp,ym;2né(E, —my)

= i278(E, —m)M, M=

ZCD,ymM

where the 2 under the integral is to account for E; = Fy; =
Fjo, and the magnitude of the radial electric field induced by
the nucleus is [14]

V4 r,
E(r)zr—f /0 21 £, () 2dr. (30)

To estimate the dipole matrix element analytically, we sup-
pose that the electric field only contributes at radii within the
first zero of the electron wavefunction r,, because outside
the rapid oscillation of the electron wavefunction gives an
approximate cancellation in M. The muon wavefunction is
approximately constant at such radii. The radius of the alu-
minium nucleus is comparable to r., but if we nonetheless
approximate the nucleon distribution | f}, (r)|* as a constant
for r < r,, we obtain

~  2J2G
M~ 200 ym i, (0)

V2my
r3dr asinmyr R
X dQT|fp(r)| p (ueo™ Pyuy)Zer;

ut
(31)

VA
E(r) ~ §|fp<r)|2,

where 7 is a radial unit vector.

The “matrix element” /\7 neglects recoil of the nucleus, so
the final-state phase space in the rate is only one-body, and
we reproduce the analytic estimate of [14] for light nuclei
(D ~ 8eSP given above Eq. (29) of [14]):

2 .5

Gym

13 3 2
— = aZ)’|ZeCp yF,(m .
) zrcapt ( )7 D)Y p( ;.L)'

sz
BRg| = M| £ =

(32)

This estimate uses [ 73dr/3 ~ [ r?dr, and it applies in the
absence of other contributions; the dipole coefficient sums
with the scalar and vector coefficients in the amplitude, as
given in Eq. (295).

3.1.3 Comparing to KKO

This section compares our estimates to the more exact for-
mulae of [14] (KKO). Our estimates use a solution of the
Schrodinger equation for the muon, a plane wave for the
electron, and chiral y-matrices. KKO solve the Dirac equa-
tion in the potential of the nucleus, both for the electron and

muon, use Bjorken and Drell y -matrix conventions, and give
the branching ratio as

32Gimd r ~ ~

_ F'u PP v (p) PP o(p)

BR(A — Ae) = — L1 [|C7, v 4 EP7 50

cap
+CV )+ s
+CpDf +{L < R} (33)

where I'cyp is the rate for the muon to transform to a neutrino
by capture on the nucleus (see [14,40]), and the nucleus-
and nucleon-dependent “overlap integrals” V)((N), S;N), DM
correspond to the integral over the nucleus of the lepton
wavefunctions and the appropriate nucleon density (vector,
scalar, electric field for the dipole operator; the definitions
and numerical values are given in KKO [14]). The numerical
coefﬁcientNin Eq. (33) differs from the result given in KKO,
because 4Chere = FlkKO-

Our unit-normalised nuclear density | f (r) |2 can be iden-
tified with the similarly normalised density py (r) of KKO
[14]. Our Schrodinger approximation for the muon wave-
function can be identified to the upper component (in Bjorken
and Drell y conventions) of the Dirac wavefunction obtained
by [14]. Then the normalisation conventions of Egs. (5) and
(7) of [14] identify

gu(r)
Vi

In the limit of massless electron, the upper (g.) and lower
components (i f,) of the electron wavefunction of [14] are
comparable. The electron normalisation condition given in
Eq. (8) of [14] then implies that we can identify our electron
plane wave as

Wu(”, 97 ¢) <~

sinm r T
ifo=ge(r) < V2 LN ﬁmue_lk'r.
r
In the approximation where the muon wavefunction is
constant in the nucleus, the overlap integrals of [14] can be
identified to our approximations as

s,y O, [ i
4w
5/277\3/2 .
7 -
NOREONN %(A - z)/d3xe"’”|fn|2,

(34
as given in Egs. (29)-(31) of KKO.
3.2 Spin-dependent conversion in other light nuclei
In this section we consider how the estimates of the previous

section could be applied to other nuclei. Recall that light
nuclei are interesting for SD detection, because the SD rate

@ Springer
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is relatively suppressed by 1/A% compared to the S rate: the
ratio I'sp/ sy is largest for light nuclei.

The matrix element given in Eq. (17) for SD u© —
e conversion contains the integral of the axial current over
the nucleus, weighted by the lepton wavefunctions. In the
case of light nuclei (Z < 20), as discussed in the previ-
ous section, the muon wavefunction can be taken constant
in the nucleus, and the electron can be treated as a plane
wave. This allows one to use the results of nuclear calcu-
lations [31] of matrix elements for spin-dependent WIMP
scattering at finite momentum transfer. The zero momentum
transfer matrix elements (spin-expectation values; see Eq.
(22)), have been calculated for a wide variety of nuclei [41],
and finite momentum transfer results also been obtained for
some nuclei [42]. For 4 — e conversion in heavier nuclei,
a dedicated nuclear calculation would be required to obtain
the expectation values of the SD operators weighted by the
lepton wavefunctions.

An interesting light nucleus for SD © — e conversion
could be titanium (Z = 22),* because it has isotopes with
and without spin, so targets of different isotopic abundances
could allow one to distinguish SD from SI operators. Tita-
nium has a spin-zero isotope with A = 48 and 74% natural
abundance [43], an isotope with A = 47,J = 5/2, 7.5%
abundance, and another isotope with A = 49, J = 7/2,
5.4 % abundance. These natural abundances of more than
5 % are large enough to make sufficiently enriched sample

targets.
In the odd group model, Engel and Vogel [44] obtained
spin-expectation values 531’47 = 0.21, S;LM = 0, and

531’49 = 0.29, S;Mg = 0. Unfortunately, we were unable
to find finite momentum transfer corrections to the spin-
expectation values in titanium. However, we observe that
in aluminium, the SI and SD form factors are compara-
ble: 0.28 = |Fp(mu)|2 ~ Sai(m,)/Sa(0) = 0.29. A
similar relation appears to hold [14,42] for fluorine, where
|F,,(m,l)|2 ~ Spi(m;)/Sm(0) ~ 0.36. This suggests that,
for light nuclei, the spin-expectation-squared at |7|> # 0
(that is, So(my)), is similar to the square of the spin-
expectation value at zero momentum transfer, multiplied by
the square of the SI |§|? # 0 form factor. Or taking the square
root:

> / &x| £ (D) P @y ysuy)

pEA

~ 3 [P @ )

peA

x fd3z|f,,(2)|2e—"‘?f. (35)

4 titanium was used as a target by SINDRUMII [3-5], who set an upper
bound BR(uTi — eTi) < 4.3 x 10712,

@ Springer

So we apply this approximation to titanium and estimate
Sti(my)/Sti(0) ~ 0.12.

4 Parametric expansions and uncertainties

Once u — e conversion is observed, the aim will be to deter-
mine (or constrain) as many operator coefficients as possible.
This would require at least as many “independent” observa-
tions as operators, where observations are independent if, in
spite of uncertainties, they depend on a different combination
of coefficients. So the purpose of this section, is to estimate
the uncertainties in relating the conversion rate to operator
coefficients.

The inputs for this calculation (equivalently, the theoreti-
cal parameters to be extracted from data) are the coefficients
of either the quark operators (see Eq. (1)), or of the nucleon
operators [see Egs. (11) and (19)], in both cases at the exper-
imental scale . So uncertainties associated to the renor-
malisation group evolution from the new physics scale to
the experimental scale are not considered. In the remain-
der of this paper, we will sometimes use the quark opera-
tor basis, and sometimes the nucleon basis. As discussed in
point 1 below, there are significant uncertainties in some of
the {G 1(\)/,q }, which are required to extract the coefficients of
the quark operators, but can be avoided by using the nucleon
operators.

1. There are uncertainties in some of the matching coeffi-
cients that relate quark to hadron operators (see Eq. (6)
and Appendix A). The G]‘\,]’q are from charge conserva-
tion, so should be exact. For the axial and scalar coeffi-
cients, the determinations from data (see Eq. (62)) and
from the lattice (63, 65) are quoted with smaller uncer-
tainties than their differences (this is especially flagrant
for the va’q, whose lattice and data values differ by 30—
50%, and which are both quoted with < 10% uncer-
tainties). First, it can be hoped that these discrepancies
will be reduced in the future. Secondly, in some mod-
els (or equivalently, for some choices of coefficients),
these factors can be cancelled by taking ratios. Finally,
if we are only interested in discriminating SD from SI
contributions to the rate, this distinction exists at the
nucleon level, so the matching to quark operators is not
required.

2. The lepton interactions with nucleons are calculated at
leading order (LO) in xPT. At NLO, pion loops arise as
well as processes with two nucleons in the initial and
final states which exchange a pion that interacts with
the leptons. For the case of WIMP scattering, such NLO
contributions for the scalar quark operator have been dis-
cussed [25,26,45] and reference [25] estimates them to be
a higher order effect (< 10%), provided there are no can-
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cellations among the LO contributions. The two-nucleon
contributions were also calculated to be unexpectedly
small for WIMP scattering on few-nucleon nuclei [46].
However, after this manuscript was completed, appeared
a study of the u — e conversion rate mediated by the
scalar and vector interactions [29], where the authors esti-
mate that the NLO effects associated to pion exchange
between two nucleons can reduce the scalar matrix ele-
ment by 20 — 30% (NLO corrections vanish for the vec-
tor). We will account for these nucleon/y PT uncertain-
ties by including them in the uncertainties in the overlap
integrals.

3. The u — e conversion matrix element, expressed as a
function of nucleon operator coefficients, relies on many
perturbative expansions, among which an expansion in
the finite momentum transfer ||*> = mi Naively such
corrections are O(mi / m?\,) (so negligible); however, in
practise there are various effects which are not so sup-
pressed. First, the finite momentum transfer gives a sig-
nificant suppression of the matrix element. In our analytic
approximations, where the muon is at rest and the elec-
tron momentum k = g, this is encoded in the form factors
Fy (see Eq. (21)), which are ~ 0.2 — 0.7. KKO include
this effect more accurately, by solving the Dirac equa-
tion for the leptons. Secondly, finite momentum transfer
effects can change the nucleon and lepton spinor alge-
bra. This is discussed for dark matter in [32,39] and
gives the O(m,/my) contribution of the tensor to the
scalar coefficient given in Eq. (19). We include this cor-
rection, because the tensor operator at zero momentum
transfer contributes to the SD matrix element (suppressed
by 1/A), whereas this (m, /m y)-suppressed contribution
gains a relative factor A because it contributes to the SI
matrix element. The ratio of these contributions to the
conversion rate is estimated in Appendix B. Finally, pion
exchange becomes relevant at |g|> = mi for the axial
vector and pseudoscalar operators (see Eqgs. (8) and (9)),
and it is included in the nuclear matrix elements of [33],
which we use for the axial vector in aluminium. Pion con-
tributions at |G| # O to the SI rate are discussed above.
We hope that these are the dominant finite momentum
transfer corrections, such that any other effects are neg-
ligible (< 10%) corrections.

4. In our calculation of the SD matrix element, the veloc-
ity of the initial muon was neglected. This may seem
doubtful, by analogy with the extended basis of WIMP
scattering operators constructed in [32], because these
authors expand in both the momentum transfer between
the WIMP and nucleon, and the incoming velocity dif-
ference. However, in our case, the muon velocity is para-
metrically smaller: writing the binding energy of the 1s

state as 7w Zam,, ~ mv2, gives |0 ~ ~/Za. We neglect
any effects related to this velocity.

5. There could be nuclear uncertainties in the SI overlap
integrals S N yN , D, in addition to the effects discussed
in point 2 above. These were estimated by [14] to be ~ a
few % in most cases, < 10% in the case of some heavier
nuclei.

Consider first the uncertainty on the SIrate, because, when
[ — e conversion is observed in a nucleus with spin, the
SD conversion rate can only be observed, if it is larger than
the uncertainty in the ubiquitous A%-enhanced SI rate. The
uncertainty in ['gy, written as a function of the quark opera-
tor coefficients C {g{ x> would arise from the Gg’q, from the
overlap integrals SV, VN, D of [14], and from NLO contri-
butions in xPT:

8Ts1 | Fx| 49 oNg~Ng
—(c ):2( —(c SNsG o
FSI 0,X X:XL:R |FL|2 + |FR|2 S, X S
SNNpsoN 81p
+CYN 185V N0 + o (36)

where F; = 55}{\/% + G/SIYIQVS(N) + GD,RD, sums on
N € {n, p} and g € {u,d, s} are implicit, the gluon con-
tribution to the scalar [15] was neglected, for simplicity a
common uncertainty % was assigned to the overlap inte-
grals in nucleus A, except for the effect of neglecting pion
exchange between two nucleons [25,29] (discussed in point
2 above), which is parametrised as an uncertainty [§ SN nLo
in the scalar overlap integrals. Expressed in this way, the
uncertainty depends on the quark coefficients present: for
C Z?X > C ?,?X, Cp x, the current discrepancies in the deter-

mination of the Gg’q and [8SN InLo give an O(1) uncer-
tainty on the conversion rate, whereas if only the C;I,qX and
Cp. x were present, the rate uncertainty would come from
the overlap integrals. The va’q uncertainties can be avoided
by expressing the rate in terms of the coefficients of the
nucleon Lagrangian; if in addition, [sSN InLo/Sn < 10%,
then the uncertainty in the SI rate comes from the overlap
integrals. From the KKO discussion, 2% < 10% in most
cases, < 20% in all cases. In order to be concrete, we assume
in the remainder of this paper that the uncertainty on the SI
rate, expressed in terms of the coefficients on nucleons, is
< 10%. This suggests that the SD rate would need to be
X 10—20% of the SI rate in order to be observed.

A better sensitivity to the SD rate could be obtained by
using isotopes with and without spin as targets: consider
for instance, *3titanium (without spin), and 4Ttitanium (with
spin), whose SI matrix elements differ by one neutron. Using
the analytic approximation of Eq. (25), the ratio of the SI
conversion rates, for real coefficients and left-handed elec-
trons, is

@ Springer
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Tsi(YTi)

(€ + ) Fy(my,)

Csi(¥8Ti) —

1Z(CLY + ClPp +2eCp L) Fp(my) + (A — Z)(CI 4 Cp) Fu(my))|

(37)

where the second term® is ((1/A). The theoretical uncer-
tainty in this ratio will arise from the overlap integrals
(equivalently, form factors Fy), so it should be of order
%%Tii < 0.002. This greatly improves the sensitivity to the
SD rate, although it is unlikely to allow for as good a sensi-
tivity to SD as SI coefficients, because the SD rate is para-
metrically suppressed as 1/A2, which is < %‘SILTTII

Some prospects for distinguishing among SI operators by
using different targets will be discussed in Sect. 5.3. For
this, the various targets need to probe different combina-
tions of operator coefficients, and this difference needs to be
larger than the theoretical uncertainty. In Sect. 5.3, targets are
parametrised as vectors in coefficient space, whose compo-
nents are the overlap integrals (see Eq. (54)), and targets are
assumed to probe different combinations of operator coef-
ficients if the angle between the vectors is & 10% < %.
This estimate can be obtained in the 2-dimensional plane of
the vectors, where the uncertainty on the angle 6 of a point
(Iy 280, I £81) is

81; LI

00 ~ — x
L +13

(38)

5 Implications of including the SD rate

The aim of this section is to explore the implications of
including the SD contribution to © — e conversion. At first
sight, it appears to be of limited interest: the ratio of SD to
Sl rates is

Isp _ ICspl?

Fs1 A2|Csif?

so for a SI operator coefficient Cs; comparable to Csp, the
SD contribution to the branching ratio is much smaller than
the ~ 10% theory uncertainty of the SI contribution, esti-
mated in the previous section. Furthermore, as discussed in
[18], renormalisation group running between the new physics
scale and low energy mixes the tensor and axial vector (“SD”)
operators to the scalars and vectors, so even in a new physics
model that only induces SD operators, their dominant con-
tribution to 4 — e conversion is via the SI operators that
arise due to RG running. This perspective that SD conversion
can be ignored is illustrated in Sect. 5.1, where we consider
three leptoquark models. They give negligible SD branching

> Since 4'Ti and *3Ti only differ by one neutron, there would be no
O(1/A) termif the CLFV operators only involved protons or the dipole.

@ Springer

ratios, but we explore the prospects of distinguishing them
by comparing the SI rates in various nuclei.

The SD conversion rate is nonetheless interesting, because
itis an independent observable that can be observed by com-
paring targets with and without spin. As in the case of dark
matter, it is sensitive to different operator coefficients (eval-
uated at the experimental scale) from the SI process, so it
provides complementary information. In Sect. 5.2 we allow
for Csp > Cgj such that the SD rate can be observable, and
discuss the constraints that could be obtained from upper
bounds on u — e conversion. Finally, in Sect. 5.3, we allow
for arbitrary coefficients to all the operators of the nucleon-
level Lagrangian, and we explore the prospects for identify-
ing coefficients should i — e conversion be observed.

5.1 Leptoquarks

We consider three possible leptoquark scenarios, each con-
taining an SU(2) singlet leptoquark, whose mass M X few
TeV respects direct search constraints [47—49], and which
has only one coupling to electrons and one to muons. The
scenarios are represented by adding to the standard model
the following Lagrangians:

L1 =D"S"D,S + M*SS + [ ]eueu’s

+ Wbl TTusS + hec., (39)
Ly = D"S'DyS + M*S'S + (A} 1ualuitagf S

+ [ARleueuS + h.c., (40)
L3 = D*§'D, 8 + M255 4 [3*],qed”§

+[A* 1 a2dS + h.c., (41)

where D* is the appropriate covariant derivative of QCD and
QED. At the leptoquark mass scale, we match these scenar-
ios onto the SM extended by QED*QCD invariant operators,
which mediate 1 — e conversion. The coefficients and oper-
ators are given in Table 1.

In each scenario, we translate the coefficients down to the
experimental scale ;y =2 GeV via an approximate analytic
solution to the one-loop RGEs of QED and QCD [19,20]:

. @, M
Cr(un) = Cy(MAY {641 — log — (42)
4z UN

where A = % ~ 1/3 for M =TeV, and I, J represent
the super- and subscripts which label operator coefficients.
The a; describe the QCD running and are only non-zero for

scalars and tensors. We suppose five quark flavours for the
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Table 1 Lepton flavour-changing operators induced in the leptoquark scenarios of Egs. (39)—(41). The coefficients are given at the leptoquark mass

scale M, in the basis of Sect. 2

Operators Coefficients at M
A AR lpu ARDS AR j— — ARz ARy
L — Bl uc) @) = PR @Ry ug) (i Pru) Clty = Oyt = bl
A A ARV AL I LIA
£ Bl wlai i (eque) (upur,) = PHUE (@R Py @PLu) + | @Ro P @o PLu) c, =20y, = Balluln
Ly Md —— ey e ALy My —— (A1
£3 — e @Rd) @ p) = =4t @RY " 1r) dye Prd) CYe = Cile = 3"

Bgsifor 1 =5.7.
I'¢ is the one-loop QED anomalous dimension matrix, "¢ is
this matrix with an additional factor multiplying the 7S and

ST entries [50,51] in order to account for the QCD running:

running, which gives a; = % = {-

~ 1 A4 ar — )
e — 1'1(3 , —
L L L A
23 A")I/Z*A—x JI = ST,
— 23 A 16/23 _ A
S JI =TS, (43)
1 otherwise.

We neglect the RG mixing out of our operator basis, because
it is small: tensor mixing to the dipole is suppressed by light
quark masses, and the mixing via the penguin diagram to vec-
tor operators O‘J;f x isafew % and does not generate operators
interesting to us here. The RG evolution is described in more
detail in Appendix C.

This formalism allows one to predict the ratio of SD to SI
contributions to the branching ratio for 4 — e conversion.
In aluminium, we find for the three scenarios, taking M = 1
TeV:

BR
for £ : D L 1.5x%x 1074,
BRg;p
BR
for Lo SD 4.4 %1079,
BRg1
BR
for L3 : —5D 3.2, x107 (44)
BRg;

so we see that the SD rate is smaller than the current ~
10% uncertainties on the SI rate, so cannot be observed in
these models. This is as expected, because the leptoquark
model imposes the requirement that the tensor/axial coeffi-
cients are comparable to the scalar/vector coefficients, so the
SD rate is relatively suppressed with respect to the SI rate
by 1/ (AGISV"I)2 for tensor coefficients, and 1/A? for axial
vector coefficients.

It is interesting to explore whether the three leptoquark
scenarios could be distinguished by comparing the SI rates
in various nuclei. We imagine that 4 — e conversion has
been observed in aluminium (Za1 = 13, Aa; = 27), the target
of the upcoming COMET and MuZ2e experiments. We wish
to identify alternative target materials, which could allow one
to distinguish our leptoquark scenarios.

A simple distinction between the leptoquarks S and S, is
that the former couples to u quarks, and the latter to d quarks.
To identify an appropriate target (A, Z), where the © —
e conversion rates induced by S and S would be significantly
different (subject to the constraint that both reproduced the
aluminium observations), we consider the double ratio:

I'(Alpu— Ale)

28a1— Za\? [ A+ Z\?
_ TAlu—Ale) (AA]+ZAI) (2A—Z>
T((A, 2)u—~(A,2)0) |§
2P 4 y® AR ONIP R ONS
( (p) g (n)> ( . (17)+ /(‘n)> “3)
Vil +2V v,y + Vv,
where the operator coefficients cancel because we compare
two models that each induce a single SI operator. This ratio
should differ from 1 by = 20%, in order to unambiguously
distinguish the S from S, given the ~ 10% uncertainties on
the theory calculation. The first approximate equality in Eq.
(45) applies for light nuclei, where the conversion rate can
be written as Eq. (25). The second equality uses the KKO
conversion rate given in Eq. (33) in terms of the overlap
integrals VY)_ and it applies for all nuclei.

The continuous green line (with stars) of Fig. 2 is the ratio
of u — e conversion rates mediated by S and S, assuming
equal operator coefficients. It corresponds to the second frac-
tion in the products appearing in Eq. (45), so the double ratio
of Eq. (45) is simply obtained by dividing by the ratio for alu-
minium. The stars are the light nucleus approximation, the
green continuous line is the ratio of overlap integrals. This
shows that the approximation is very similar to the numerical
results of KKO, and that a target with Z < 40 could allow
one to distinguish the first and third leptoquark scenarios. In
the following, we take niobium (Nb, Z = 41, A =93) as a
Z R 40 target.

Itis also interesting to explore the prospects of distinguish-
ing scalar operators involving u vs. d quarks. So we also plot

in Fig. 2, as a dashed red line, the ratio of & — e conversion
rates mediated upstairs by O¢", and downstairs by Ong:

['(Alu— Ale)
T'((A,2)u—(A, Z)e)

I (4, 2o = (4, 2)e)| pid o) -
O’éf’x _(GS SA +GS S ) (46)

T((A, Z)p — (A,Z)e)‘odd Gh s 4 st
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Fig. 2 This plotillustrates the prospects for distinguishing ST operators
involving up quarks, from those involving down quarks, and vector
operators from scalars. The continuous green [dashed red] line is the
ratio, given in Eq. (45) [Eq. (46)], of © — e conversion rates induced
by O’y and O‘(J/‘,]X [ 0§y and Oﬁf’x], assuming equal coefficients. The
stars on the green line are an analytic approximation. The dotted blue
line is the ratio, given in Eq. (47), of & — e conversion rates induced
by O}y and Of"y, with coefficients selected to give the same rate on
niobium (Z = 41)

For the Gg’q values given in Appendix A, the scalar ratio is
close to 1 (because G[S”q ~ Gz’q), suggesting that changing
the target in © — e conversion does not help distinguish
O}y from O, .

The first and second leptoquark scenarios, respectively,
induce scalar and vector operators. As discussed in [14,15],
these can be distinguished by comparing the conversion rates
in light and heavy targets. This is illustrated in Fig. 2, by the
blue dotted line, which gives the double ratio normalised to
niobium,

I'(Nbu— Nbe)
(A, Z)p—(A,Z)e) scalar __ G?MS](\;,b) + GZ"MS[(\?I;
[(Nbu—> Nbe) o

G?MSX)) + G?’MS‘E‘")

T(A. D= (A.200) | yecror

— (47)

We see that measuring the 4 — e conversion rate on alu-
minium, some intermediate target around Z ~ 40 and on a
heavy nucleus like lead or gold (Z="79), could distinguish the
three leptoquark scenarios, that is, a vector operator involv-
ing ds vs. vector operator involving us vs. a scalar operator
involving us.

5.2 Bounds on arbitrary coefficients of four operators
This section considers the operators induced by the second
and third leptoquark models (see Eqgs. (40) and (41)) which

are added simultaneously to the Lagrangian with arbitrary
coefficients:
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Lerr = Cg' 08" + CF 07 + C{\%RO?/?R
1ROV R + hc. (48)

This is clearly an incomplete basis (the complete basis of
dimension six operators at uy is given in Egs. (1) and (3));
however, it is sufficient for our purpose,® which is to explore
which constraints can be obtained on quark-level operators
from the non-observation of 1 — e conversion in targets
with and without spin.

We suppose that 1 — e conversion has not been observed
on aluminium, titanium (enriched in isotopes with spin) and
lead targets. These targets are chosen because heavy and light
targets have different sensitivities to vector and scalar coef-
ficients, and because the spin of titanium and aluminium is,
respectively, associated to an odd neutron and an odd proton.
In order to check that upper bounds on these branching ratios
can constrain all the operator coefficients which we consider,
we set the branching ratios to 0, and we check that this forces
the coefficients to vanish.

Setting the SD conversion rates in titanium and aluminium
to zero gives two equations:

~ dd A a, S n,d
P
uu p.u 51/1“ n,u
+2Cr |Gy + SAIGT , (49)
0~ C4% G + 20, G, (50)
Al
where gAl ~ 0.1 is the ratio of spin-expectation values in

alumlmum These equations have solutions

~ (UU

2CAR— T,L> CARZZCTL’

so even allowing for a 10% theory uncertainty on the coeffi-
cients, it is clear that the only solution is for both coefficients
to vanish. This is because the spin of titanium isotopes arises
from the odd number of neutrons, whereas in aluminium the
spin is from the odd proton, so these two conversion rates
probe the SD coefficients c XV )]}/ for both neutrons and pro-

tons. Then, since the matching coefficients GN “ and GN d

(equivalently G]}’ “ and GT X) are of opposne sign and d1f—
ferent magnitude, C ¥ +2C %"X and C x +2C % v can be
distinguished.

It is straightforward to check that setting the SI rates on
Al, Ti and Pb to zero, forces C {’ﬂdR, C;“L — 0.

A more informative way to présent the constraints on coef-
ficients arising from the experimental bounds is to give the
covariance matrix. We suppose an upper bound of BR (for
instance, 10_14) on the SI branching ratios on Pb and Al, and

6 Inalater publication, we may try to constrain operator coefficients and
count “flat directions”, for which a complete basis would be required.
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on the SD branching ratios on Al and Ti. The tensor operator
gives comparable contributions to both SI and SD processes
(see Appendix B), so the 4 x 4 covariance matrix does not
split into 2 x 2 subblocks. Nonetheless, it is interesting to
give the covariance matrices for different cases, in order to
see the variation of the bounds, when different theoretical
information is included.

First, the tensor contribution to the SI rates is neglected,

in which case the covariance matrices for (C%?R, CL’éde) and
(Cy, . C4%%) are

0.012 —0.0028 9.1 20
BR |:—0.0028 0.0007 } » BR |: 20 73.6} ' S

So, for instance, |C§"L| is excluded above +/0.0007 x BR,
and [C4p| < v/73.6 x BR.
If now the SD rates are neglected, but the tensor con-

tribution to SI is included, then the covariance matrix for
dd uu uu N
(CVig: Csip- Cr/p) s

0.47 —0.24 23
BR | -0.24 0.13 —14 |, (52)
23 —14 1400

which shows that the exclusions become weaker due to poten-
tial cancellations between a large C7", and the vector or
scalar coefficients. Finally, the full covariance matrix arising
from imposing BRs;(uPb — ¢Pb) < 10714 BRg(uTi —
eTi) < 107" BRgp(n ¥'Ti — e ¥Ti) < 10714,
BRsi(uAl — eAl) < 10714, and BRgp(nAl — eAl) <
10~ 14, for the coefficients (C‘d,fiR, Cgf‘L, C%’fL, Cj'_{’fR), is

0.010 -0.0029 0.12 0.26
—0.0029 0.0011 —0.078 —0.17
BR 0.12  —-0.078 9.0 19.6 |- (53)
026 —-0.17 196 73

Comparing with the bounds of Eq. (51), we see that the tensor
contribution to the SI rate is of little importance, provided
the SD bounds are included. However, if the SD bounds are
neglected, including the tensor in the SI rate significantly
weakens the constraints, as can be seen in Eq. (52). We also
checked that including BRsp(#Au — eAu) < 10~'* only
changes a few entries by about 25%, as expected, because
Al, Ti and Pb were chosen as targets for their discriminating
power.

5.3 Reconstructing nucleon coefficients

We now suppose that . — e conversion is observed in alu-
minium, where there can be SI and SD contributions to the
rate, and that the new physics is described by the nucleon-
level Lagrangian of Eq. (5) with arbitrary operator coeffi-
cients. It is interesting to consider which subsequent targets,

in what order, would be required to distinguish the SD and SI
contributions, and then to discriminate among the SI opera-
tors?

We first introduce a geometric representation of models
and targets, which allows one to visualise the ability of vari-
ous targets to discriminate among models. A new physics sce-
nario can be represented as a two 5-dimensional vectors, each
composed of SI coefficients which interfere C x = (Cp.x,

~/ ~ ~r ~
CPE, ClP,, C™., CiMy), and two two-component vectors

of SD coefficients (C /", af ). For simplicity, we focus on
X = L, and we drop this electron chirality subscript. Then
we focus on discriminating among SI operators, because the
spin of target nuclei is usually associated to either an unpaired
n or p, giving an order of magnitude better sensitivity to the
coefficient corresponding to the unpaired nucleon (see, e.g.
the spin-expectation values given after Eq. (22)). This means
that discriminating GX’”X vs. 5}7’ P should be a straightfor-
ward matter of using targets with an unpaired p and n.

For the spin-independent process, a target nucleus (Z, A)
can be envisaged as a vector

> _ (p) (p) (n) (p)
V(Z,A) = (D(Z,A)7 S(Z,A)’ V(Z,A)’ S(Z,A)’ V(Z,A)) (54)

in the 5-dimensional coefficient space, whose components
are the appropriate overlap integrals. (In the following, the
vectors and components are indiscriminately labelled by A
or Z because we use the overlap integrals of KKO, obtained
for a single abundant isotope.) The matrix element for u© —
e conversion on target A, mediated by a combination of coef-
ficients C , 18 proportional to C-v 4, and target nucleus A
allows one to probe coefficients in the direction v4. If we
define the unit-normalised é4 = v4/|val, then target A
probes the same combination of coefficients as aluminium
if €4 is parallel to ¢4, and the difference
92
l—éx-en~— (55)
2

gives an invariant measure of whether the target A has sensi-
tivity to an orthogonal direction in coefficient space. In Eq.
(55), 6 is the angle between ¢4 and éa1. Figure 3 gives €4 - €]
as a function of Z. From Eq. (38), the uncertainty in the direc-
tion of é4 is £ 10%, so target A is indistinguishable from
aluminium for é4 - éa; < 0.995, or Z < 25-30.

Perhaps a more transparent measure of the change of direc-
tion of ¢4 in coefficient space, is given in Fig. 4 by the ratio

eQ /e, (56)
where O = 55& (continuous black), O = 6an (dotted
green), C1y (dashed red) and O = C"y, (dot-dashed blue).
Recall that eg parametrises the fraction of the sensitivity of
target A to operator O. So Fig. 4 shows that heavier tar-

gets have greater sensitivity to O} and less to O%". (Unfor-
tunately, this figure also suggests that O} and Of" with
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0.99
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0.98

0.975

0.97

0.965

o

20 40 60 80 100

Fig. 3 A representation of the discriminating power of a target
(labelled by Z), with respect to aluminium. On the vertical axis is the
invariant measure, given in Eq. (55), of the misalignment in coefficient
space of the target with respect to aluminium

1.6

T ‘ 1T ‘ 1T
~
-

Fig. 4 An operator-dependent measure of the discriminating power of
atargets (labelled by Z). On the vertical axis is the measure given in Eq.

(56), of the relative sensitivity (normalised to alumlnium) of a target to

the operators O = C fp x (continuous black), O = C g”x (dotted green),

CIP, (dashed red) and O = G, (dot-dashed blue)

comparable coefficients could be difficult to distinguish from
O¥P.) This normalised ratio of overlap integrals is interest-
ing, because the normalisation “factors out” the growth with
Z shared by all the overlap integrals, so this ratio parametrises
the difference in direction in coefficient space, which allows
different targets to discriminate among coefficients. This
ratio also indicates that targets of Z < 25 cannot distin-
guish operators, if one admits a theory uncertainty of ~10%
in the calculation of the components eg.

Assisted by the measures of discriminating power given
in Egs. (55) and (56), we now speculate on a possible series
of targets. A light nucleus without spin could be an interest-
ing second target, because it would allow one to distinguish
whether the rate in aluminium was dominantly SD or SI. In

@ Springer

particular, the SI rate in aluminium could be approximately
predicted from the rate observed in another spinless light
nucleus. This is because the SI rate in all targets with Z < 20
is sensitive to a similar linear combination of operator coef-
ficients, as illustrated in Figs. 3 and 4.

An interesting choice for the second target could be tita-
nium (Z = 22, A = 48). As illustrated in Figs. 3 and 4, it
of sufficiently low Z that the SI rate probes the same com-
bination of operator coefficients as the SI rate in aluminium.
So measuring the SI rate in titanium-48 would allow one to
determine whether there was a significant SD contribution to
the 4 — e conversion rate observed on aluminium.

If there is indication for an SD contribution in aluminium,
then it could be interesting to measure the rate on a titanium
target enriched with the spin-carrying isotopes 47 and 49.
This would give complementary information on the quark
flavour of the tensor and/or axial vector operators, because the
spin of aluminium is largely due to the odd proton, whereas
for titanium there is an odd neutron. So the SD rate in alu-
minium is mostly sensitive to C Ap’ " whereas the SD rate in
titanium depends on c X’"X.

Finally, if there is no evidence of an SD rate in aluminium,
a heavy target such as lead could be interesting to discrimi-
nate the scalar vs. vector coefficients in the SI rate.

6 Summary

This paper gives some details of the calculation of the spin-
dependent (SD) u — e conversion rate in light nuclei, previ-
ously outlined in [18]. Section 2 reviews the operators involv-
ing quarks and gluons that contribute [14,15] at the exper-
imental scale (uy = 2 GeV), and matches them onto the
nucleon operators which enter the nuclear physics calcula-
tion. Some attempt is made to include pion exchange in this
matching (it is relevant because the momentum-transfer is
mﬁ). Section 3 calculates as much as possible of the con-
version rate in the notation of relativistic, second-quantised,
QFT [34]; in the last steps, the results of nuclear calculations
are included. The final rate is given in Eq. (26). This section
is not original; its purpose is to make the result accessible in
the terminology of QFT. We recall the SD i — e conversion
is incoherent, like SD WIMP scattering, so it is best searched
for in light nuclei, where the 1/A? suppression with respect
to the coherent spin-independent (SI) rate (given in Egs. (25)
and (33)) is less significant.

Our SD rate estimate relies on nuclear physics calcula-
tions of the expectation value of nucleon axial currents in
the nucleus. The results we use were obtained for SD WIMP
scattering, which are often at zero momentum transfer. As
discussed in point 6 of Sect. 3.1, additional nuclear calcula-
tions seem required to include tensor and pseudoscalar oper-
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ators at finite momentum transfer, in light targets such as alu-
minium and titanium. In this paper, we did not discuss SD
conversion on heavy nuclei; however, one can speculate that
the nuclear expectation values could be of interest, because
heavy nuclei could be sensitive to a different combination of
tensor and axial operators from light nuclei. This is because
the anti-lepton wavefunction contributes with opposite sign
to the tensor vs. axial operators, and is more relevant in heavy
nuclei (this sign difference allows one to discriminate scalar
and vector operators in SI conversion on light and heavy
nuclei [14]). Of course, the SD rate might be unobservably
small (due to the 1/A? suppression), but heavy nuclei could
nonetheless give an independent constraint on the many oper-
ator coefficients.

Both the SD and the SI conversion rates depend on
the modulus-squared of a sum of coefficients, weighted by
nucleus-dependent numbers—see Eqgs. (25), (26), and (33).
This allows for cancellations, making it difficult to constrain
individual coefficients, or identify the operators responsible
for u — e conversion when it is observed. In the SI case,
Kitano Koike and Okada (KKO) [14] pointed out that scalar
vs. dipole vs. vector operators could be distinguished by
changing the nuclear target. Section 5 explores, from various
approaches, the prospects of distinguishing a wider variety of
operators, including SD vs. SI, and u- vs. d-quark operators.

The prospects for discriminating vector or scalar operators
involving either u or d quarks are illustrated in Fig. 2: vector
operators involving u or d quarks could be distinguished by
comparing the © — e conversion rate in light (Z < 20)
and intermediate (Z ~ 40) targets, but distinguishing scalar
u versus d operators seems difficult. Curiously, the u vs. d
distinction is more transparent in the SD rates, as discussed
after Eq. (50). So if both SD and SI conversion are observed,
possibly the quark flavour could be extracted from the SD
rates.’

The SD and SI contributions to the conversion rate could
be distinguished (if the SD rate is large enough) by com-
paring the conversion rate in nuclei with and without spin.
Section 4 reviews the theoretical uncertainties in the calcu-
lation of the @ — e conversion rate, in order to estimate
the sensitivity to the subdominant SD process. Comparing
[ — e conversion on isotopes with and without spin would
cancel the leading theory uncertainties, giving a sensitivity
(see the discussion after Eq. (37)) to I'sp/ 'st * %, assum-
ing a 10% uncertainty on I's;. Among the SD operators, it
is not currently possible to distinguish pseudoscalar, axial
and tensor coefficients, because only the nuclear expectation
value of the axial operator has been calculated. However, as

7 Recall that SD and SI operators mix in the RG evolution, but without
changing the quark flavour, as shown in Appendix C. The only flavour
change is via the first two “penguin” diagrams of Fig. 5, which could
change the flavour of vector operators.

mentioned in the previous paragraph, it could be possible to
discriminate SD operators involving u vs. d quarks, because
they contribute differently in nuclei where the odd nucleon
is a proton or neutron.

The upcoming COMET and Mu2e experiments will ini-
tially search for 4 — e conversion on aluminium, a tar-
get which has spin—so if they observe a signal, it could be
mediated by the SD or SI operators. Therefore, in Sect. 5.3
we considered what series of subsequent targets could give
information as regards the dominant coefficients. To this pur-
pose, we represent a target material as a vector in the space
of nucleon-level operators, whose components are numbers
which multiply the operator coefficient in the rate (overlap
integrals, in the SI case). Different targets can discriminate
between operators, if they point in different directions of
operator space. We plot in Figs. 3 and 4 two different mea-
sures of the misalignment between target vectors.

If 4 — e conversion is observed on aluminium, the fol-
lowing sequence of targets could be interesting: as second tar-
get, a light nucleus without spin, such as titanium-48, would
discriminate whether the dominant contribution was from the
SD rate, because the SI rate in titanium is comparable to alu-
minium (see Figs. 3, 4). If there is an SD contribution to the
rate in aluminium, then titanium isotopes with spin, could be
an interesting target: the spin of titanium is related to the odd
neutron (whereas in aluminium there is an odd proton), so
this could discriminate whether the SD operators involved
u or d quarks. Finally, a heavy target such as gold or lead
could allow one to discriminate scalar vs. vector operators,
as pointed out in [14].
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A GyI

When the quark Lagrangian of Eq. (1) is matched onto the
nucleon Lagrangian, the coefficients of the nucleon oper-
ators can be computed as 5%1\)’, = Zq Gg’quO'{y, for
O € T,A,V, P; for the scalar operator there is an addi-
tional 1§luon contribution as described in [15]. We take
the G O’q, defined at zero momentum transfer such that

(N(P)IG(x)T0q()IN(P)) = Gy liN(P)Touy (P),tobe
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Gh'=aGyl=2 Gh'=cGy"=1, G =Gy =0, (57)
Gh' =G =084(1), GhY=GY" =—-043(1),
GL' =G = —0.085(18), (58)
Gh ="20.0212) =9.0, G5! ="20.0413) =822,

ny mq

Gh = ";TNO.043(11) =042, (59)
s

my

Gg’“ = ﬂ0.019(2) = 8.1, Gg‘d = —0.045(3) = 9.0,
my my

my

G¢*—=0.043(11) = 0.42, (60)

)

) ,d ,d u
Gh'=144=G¢, GhY=-150=G",

Gh' =-49=G}’, (61)
G =G =071(7), GhY=Gi" = -02303),
Gy = G* =0.008(9), (62)

where the parentheses give the uncertainty in the last fig-
ure(s). The axial G4 are the results inferred in Ref. [52]
by using the HERMES measurements [53]. The scalar G
induced by light quarks are from a dispersive determina-
tion [54], and an average of lattice results [55] is used for
the strange quark; in all cases, the MS quark masses at
u = 2 GeV are taken asm, = 2.2 MeV, my = 4.7 MeV, and
mg = 96 MeV [56]. The nucleon masses are m , = 938 MeV
and m, = 939.6 MeV. The pseudoscalar results were calcu-
lated from data in the large- N, approximation at g> &~ 0 [57],
and here extrapolated to neutrons using isospin. The tensor
results for the neutron are the lattice results of Cirigliano et
al. [58], which are here extrapolated to protons using isospin.
For comparison, the G 4 have been obtained on the lattice;

a recent determination [59] is

Gh* = 6" = 086314, GL =G = —0.345(6)(9),

Gh* = G = —0.024021)(11). (63)

The scalars G];/’q have also recently been obtained on the
lattice [60]:

Gh = 220.0139(13)(12) = 5.9,
nmy
pd _ Mp
G§ =~ 20.0253(28)(24) = 5.0, (64)

G = 210.0116(13)(11) = 5.0,
m

u

G4 = 20.0302(3) = 6.0. (65)
mq

We observe that there is a 50% discrepancy with respect to
the results of [54], obtained from pionic atoms and 7 — N
scattering [61]. Results similar to [54] were earlier obtained
in [62], also using an effective theory.
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B The tensor contribution to the SD and SI rates

We consider tensor operators,
CY O, + C§4, 09, +{L < R}, (66)

at the experimental scale py, which contribute at finite
momentum transfer to the SI conversion process (see Eq.
(19)), and also to the SD processes:

2
m
= 8By— | Z(C, G + 3 GL Y Fp(my) + (A — Z)
1—‘capt my

X (C4, G+ C44 GR ) Fy(my) P+ (L <> R), (67)

L1

I Ja+1
CS;; = 32By AJA Sﬁ (C%’fLG’T"“ + C‘#LG’T"'{)
2 Sa(m
+Sr¢(C;l'?LGr7[:u C?,dLGI%’d)‘ g:(ol;) +{L < R}.

(68)

The ratio of these contributions, for a single operator, is

2
AGPd | gAGMd
FSDN4JA+1m,2V ‘SPGT +SnGT‘

Tst — Ja m2 |ZGh9 4+ (A - 2)GhiP
07 g=u A=A,
006g=d A=Al
003¢g=u A=Ti, (69)
00lg=d A=Ti,

where we assumed that the form factors are comparable
SA(mu)
S4(0)

that G7" ~ —%G’T”", so there is a partial cancellation in
the ST amplitude, whereas the SD process arises mostly from
an odd proton S;‘ > S,’,“, or mostly from an odd neutron
SH < S

The estimates of Eq. (69) assume that only one tensor
coefficient is non-zero, so they neglect interferences, which
can easily enhance the SI rate. For instance, RG running of
the tensor operator from the new physics scale to the exper-
imental scale generically generates a scalar operator with
comparable coefficient. The scalar—tensor interference con-
tribution to the SI rate would be relatively enhanced, with
respect to the tensor-squared, by stv,q / GITv’q ~ 10, which
would suppress the ratio in Eq. (69) by another factor 1/10.

~ |Fp(mM)|2 as is the case in aluminium. Recall

C RG evolution

In this appendix, we review the renormalisation group evolu-
tion of operator coefficients from the leptoquark mass scale
M (~ TeV) down to the experimental scale uy (2 GeV), via
the one-loop RGEs of QCD and QED [19,20]. We consider
the QED x QCD invariant operator basis discussed in Sect.
2. We neglect matching onto the SMEFT basis [63,64] and
running with the full SM RGEs [65,66], on the assumption
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H € H €

f2 f2 f2 f2

f2 f2 f2 f2

Fig. 5 Examples of one-loop gauge vertex corrections to four-fermion
operators. The first two diagrams are the penguins. The last six dia-
grams contribute to operator mixing and running, but can only change

that QED is a reasonable approximation if M is not much
larger than myy.

After including one-loop corrections in the MS scheme,
the operator coefficients will run with scale u according to
[19]

9
= (Cy, ..Cy, ) = 2 Cre 4 L Cps (70)
ou 4r 4

where I, J represent the super- and subscripts which label
operator coefficients, I'* and '’ are the QED and QCD
anomalous dimension matrices and E‘> is a row vector that
contains the QCD x QED invariant operators coefficients
listed in Sect. 2.

In this work, we use the approximate analytic solution [18]
given in Eq. (42):

oI M
Cr(un) = Cr(M)RY (811 - 1 L 1og —)
T

where the factors are given after Eq. (42) and log % ~6.21.

Only QED loops contribute to operators mixing, while
QCD loops only rescale scalar and tensor operators. In Fig.
5, we present the QED diagrams required to compute the
anomalous dimension y of the four-fermion operators, where
fiefe,nutand fr € {u,d,s,c,b,e, u, t}.

The operators coefficients below the scale M are organised
in the vector E') as follows:

C =(Cl,C¢ C4 C4, Ch Ce Ch Chy, (71)

U e 1L e

f2 f2 f() f2

fo J2 fo I

the Lorentz or gauge structure of the operators, not the flavour struc-
ture. Missing are the wavefunction renormalisation diagrams; for V + A
Lorentz structure in the grey blob, this cancels diagrams 3 and 4

C) = (CJL. Pl Ch=(Chi.Chp), (72)
s =g cily €1 =cf.cflp. (73)

In the basis of C, the QED anomalous dimension matrix can
be written

e __
r _[ 0 FSTi|

where
ys“g’ 3 d VSM; dOd
0 ygs 0 yg
I'st = , S.§ ) S.T and
y;fz gd y;f? gd
L 0 vy O vryp
C 00 A 0
d.d
0 0 0 vy
Tya= VoA 74
VA V,Z:L\{/ 0 0 0 ( )
| 0 yiy 0 0

Vector and axial operators

The first penguin diagram and the last four give the following
matrices:

i ff I o ff
if | CAL CAR it |CVL CVR
vwwh=cll|-120, 0 Loyt =cll 120, 0
ciel 0 —120/ cirl 0 120
(75)
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Using these anomalous dimension matrices and the RGEs
gives
o M
CVlg(un) = =304 — log M—NCZf’L(M) + CY (M),
(76)

v M
Cilpn) =30, log M—NC%(M) + Cilr(. (D)

where g € {u, d}. We see that axial operators mix to vector
operators and vice versa, but there is no rescaling for axial
and vector operators.

Scalar operators
Combining the third and fourth diagrams of Fig. 5 with the

wavefunction diagrams renormalise the scalars while the last
four diagrams mix the tensors to the scalars:

ch  cik
vl =clllea+0h 0 vl
il 0 6(1+0%
cgh cik
= ¢}, |90, 0 . (78)
cil 0 —960;

The scalars coefficients at the experimental scale read

o M
CEL ) = 240 fr5 0y log -—-CY!, (M)
3, M 5
~—“log—(1 clt (m).
i +Qq)] & )

i
T
(79

Tensor operators

Similarly, the last four diagrams mix the scalars to the ten-
sors. Only the wavefunction diagrams renormalise the ten-
sors, because for the third and fourth diagrams y*#oy,, = 0.
We obtain the following matrices:

ff ff
CT,L CT,R
yif = Cf‘; —20+0%) 0,
. 2
cfel 0 204 0Y

ff off
if CTL CT,R
1 =cll 205 0

7 , (80)
CS,R 0 2Qf

o M
CPiL(1n) = =A% fsTQq 7~ log mczf’L(zm

e M 2\ | ~aq
#2014 2 10g 21+ 03) |, . 81)

@ Springer

Finally, the coefficients at the experimental scale uy are
obtain via the matching condition,

CON ) = Y. GICH, (un). (82)
q=u,d,s
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