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Abstract We apply the phenomenological Reggeon field
theory framework to investigate rapidity gap survival (RGS)
probability for diffractive dijet production in proton–proton
collisions. In particular, we study in some detail rapidity
gap suppression due to elastic rescatterings of intermedi-
ate partons in the underlying parton cascades, described
by enhanced (Pomeron–Pomeron interaction) diagrams. We
demonstrate that such contributions play a subdominant role,
compared to the usual, so-called “eikonal”, rapidity gap sup-
pression due to elastic rescatterings of constituent partons of
the colliding protons. On the other hand, the overall RGS fac-
tor proves to be sensitive to color fluctuations in the proton.
Hence, experimental data on diffractive dijet production can
be used to constrain the respective model approaches.

1 Introduction

An important direction in experimental studies of high energy
hadronic collisions is related to diffractive hadron produc-
tion, in particular, to production of high transverse momen-
tum pt particles in events characterized by large rapidity gaps
(RGs) not covered by secondary hadrons. The scientific inter-
est to such so-called hard diffraction phenomena is multifold
and related, in particular, to searches for signatures of new
physics in a relatively clean experimental environment (see
Ref. [1] for a recent review). On the other hand, the cor-
responding observables involve both perturbative and non-
perturbative physics and may thus shed some light on the
interplay of the two and provide an additional insight into
the nonperturbative proton structure.

In contrast to hard diffractive processes in deep inelastic
scattering, final states with large rapidity gaps constitute a
much smaller fraction of events containing high pt particles
in proton-proton collisions. This is because hard processes
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typically take place for small values of the impact parame-
ter b between the colliding protons, where one has a signif-
icant overlap of the projectile and target parton clouds, but
then, also the probability for additional inelastic rescatterings
between protons’ constituents is high. Therefore, there is lit-
tle chance that a rapidity gap produced in a hard diffraction
process at small b is not covered by secondaries created by
the accompanying multiple scattering [2]. It has been realized
long ago that the corresponding penalty factor, nicknamed
“rapidity gap survival (RGS) probability”, results from an
interplay between the transverse profile for a hard diffraction
process of interest and the much broader inelastic profile for
pp collisions [3].

Since then, the problem has been widely addressed in lit-
erature and numerous estimations of the RGS probability for
various hard diffraction reactions have been obtained [4–22].
Most of those studies have been devoted to the dominant, so-
called “eikonal”, mechanism of the RG suppression, related
to elastic rescatterings between constituent partons of the
colliding protons, addressing, in particular, the energy depen-
dence of the RGS probability [5,6] and the role of the inelas-
tic diffraction treatment in respective models1 [6,7,11,14].
Much less understood are the noneikonal absorptive effects
corresponding to elastic rescatterings of intermediate par-
tons, for which the obtained numerical results differ consid-
erably [8,9,14].

In this work, we are going to investigate the RGS prob-
abilities for diffractive dijet production in the framework of
the Gribov’s Reggeon Field Theory (RFT) [23], addressing,
in particular, in some detail the role of the noneikonal absorp-
tion. Our choice was partly motivated by previous study of
soft diffraction by one of us, where such noneikonal effects
proved to be extremely important, giving rise to huge (up to
an order of magnitude) corrections to diffractive cross sec-
tions [24] (see, e.g., Fig. 15 in that reference). Since the role

1 Note, however, the arguments of Ref. [17] concerning a suppression
of contributions of inelastic intermediate states.
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of semihard processes, for relatively small parton transverse
momentum, in multiple scattering is not too different from
the one of purely soft interactions, at least in our model, we
expected that the noneikonal absorption is quite important
for diffractive jet production as well.

More specifically, we employ the enhanced Pomeron
framework [25–29], as implemented in the QGSJET-II model
[30,31]. The approach treats consistently both the usual mul-
tiple scattering processes, describing individual parton cas-
cades as Pomeron exchanges, and rescatterings of interme-
diate partons in those cascades off the projectile and target
protons and off each other, which is treated as Pomeron–
Pomeron interactions. Importantly, the latter contributions
are resummed to all orders [28,29].

Hard processes are incorporated in the scheme follow-
ing the so-called “semihard Pomeron” approach [32,33]:
splitting general parton cascades into soft and hard parts.
The latter are characterized by high enough parton virtu-
alities |q2| > Q2

0, Q0 being some cutoff for pQCD being
applicable, and are treated by means of the Dokshitzer–
Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equa-
tions. In turn, the nonperturbative soft parts involve low-q2

(|q2| < Q2
0) partons and are described by phenomenological

soft Pomeron asymptotics.
To treat low mass diffraction and the related absorptive

effects, a Good–Walker-type [34] framework is employed,
considering the interacting protons to be represented by a
superposition of a number of eigenstates which diagonalize
the scattering matrix, characterized by different couplings
to Pomerons [35]. The respective partonic interpretation is
based on the color fluctuations picture [36], i.e. the represen-
tation of the proton wave function by a superposition of par-
ton Fock states of different sizes. Fock states of larger trans-
verse size are characterized by lower (more dilute) spatial
parton densities, while more compact ones are more densely
packed with partons.2 As will be demonstrated in the follow-
ing, such color fluctuations have an important impact on the
strength of the rapidity gap suppression.

The outline of the paper is as follows. In Sect. 2, we derive
expressions for cross sections of single and central diffrac-
tive dijet production, introducing step by step the various
absorptive corrections. In Sect. 3, we present our numerical
results and discuss them in some detail. Finally, we conclude
in Sect. 4.

2 Cross sections for diffractive dijet production

To set the scene, let us start with the inclusive cross section for
high pt jet production. Partial contributions to this cross sec-

2 It is noteworthy that the integrated parton density is, however, lower
for Fock states of smaller size [11,36].
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Fig. 1 Schematic view for the general RFT diagram for inclusive jet
production in pp collisions: the projectile and target “triangles” consist
of fanlike enhanced Pomeron graphs; VJ (pJ ) is the parton J emission
vertex from a cut Pomeron. The cut plane is shown by the vertical
dotted-dashed line

tion from various configurations of proton–proton collisions
generally involve multiple scattering processes, containing
additional soft (|q2| < Q2

0) and hard (|q2| > Q2
0) parton

cascades fragmenting into secondary hadrons, as well as vir-
tual parton cascades describing elastic rescatterings between
constituent partons of the protons. Nevertheless, by virtue
of the Abramovskii–Gribov–Kancheli (AGK) cancellations
[37], such multiple scattering processes give zero contri-
bution to the inclusive cross section of interest, which is
described by Kancheli–Mueller-type diagrams depicted in
Fig. 1. The internal structure of the projectile and target tri-
angles in Fig. 1 is explained in Fig. 2: it contains both the basic
contribution of an “elementary” parton cascade described as
a single Pomeron emission by the parent hadron [1st graph
in the right-hand side (rhs) of Fig. 2] and various absorptive
corrections to that process due to rescatterings of intermedi-
ate partons in the cascade off the parent hadron and off each
other.

As a result, we obtain the usual collinear factorization
ansatz for the inclusive cross section σ

2jet
pp (s, pcut

t ) for the
production of a pair of jets of transverse momentum pt >

pcut
t :

σ
2jet
pp (s, pcut

t )

=
∫
d2b d2b′

∫
dx+ dx−

∫
pt>pcut

t

dp2
t

×
∑

I,J=q,q̄,g

dσ 2→2
I J (x+x−s, p2

t )

dp2
t

GI (x
+, M2

F, b′)

× GJ (x
−, M2

F, |b − b′|) , (1)

where for future convenience we keep the impact param-
eter b dependence and express the integrand in the rhs of
Eq. (1) via the generalized parton distributions (GPDs) in
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Fig. 2 Examples of enhanced Pomeron graphs of lowest orders, contributing to the structure of the projectile and target triangles in Fig. 1; Pomerons
are shown by thick lines and multi-Pomeron vertexes by filled circles

impact parameter space GI (x, Q2, b), instead of the usual
integrated parton distribution functions (PDFs), f I (x, Q2) =∫
d2b GI (x, Q2, b). Here s is the center of mass (c.m.)

energy squared, x± - parton light-cone momentum fractions,
M2

F - the factorization scale, and dσ 2→2
I J (ŝ, p2

t )/dp
2
t is the

parton scatter cross section.
The GPDs for arbitrary Q2 > Q2

0 are obtained evolving
the input ones from the cutoff scale Q2

0:

GI (x, Q
2, b) =

∑
I ′

∫ 1

x

dz

z
EI ′→I (z, Q

2
0, Q

2)

× GI ′(x/z, Q2
0, b) , (2)

with EI→J (z, q2, Q2) being the solution of the DGLAP
equations for the initial condition EI→J (z, q2, q2) =
δ JI δ(1 − z). In turn, GI (x, Q2

0, b) is defined summing over
partial contributions of different diffractive eigenstates |i〉 of
the proton, with the partial weights Ci , as3 [30,38]

x GI (x, Q
2
0, b) =

∑
i

Ci

{
χP

(i)I (s0/x, b)

+ G
∫
d2b′

∫
dx ′

x ′ χP

PI (s0 x
′/x, |b − b′|)

×
[
1−e−χ fan

(i) (s0/x ′,b′)−χ fan
(i) (s0/x

′, b′)
]}

,

(3)

being expressed via the solution χ fan
(i) of the “fan” diagram

equation of Fig. 3,

χ fan
(i) (ŝ, b) = χP

(i)P(ŝ, b)

+ G
∫
d2b′

∫
dx ′

x ′ χP

PP
(x ′ŝ, |b − b′|)

×
[
1 − e−χ fan

(i) (s0/x ′,b′) − χ fan
(i) (s0/x

′, b′)
]
. (4)

In Eqs. (3–4), s0 = 1 GeV2 is the hadronic mass scale and
the eikonals χP

(i)P and χP

PP
correspond to Pomeron exchanges

between the proton diffractive eigenstate |i〉 and a multi-
Pomeron vertex or, respectively, between two multi-Pomeron

3 To simplify the discussion, we neglect here Pomeron “loop” contri-
butions, exemplified by the last graph in the rhs of Fig. 2, the complete
treatment being described in Refs. [24,31].

= +

>=2

...

x, b x, b x, b

x’, b’

Fig. 3 Recursive equation for a fan diagram contribution χ fan
(i) (ŝ, b),

ŝ = s0/x

vertexes, while χP

(i)I and χP

PI describe Pomerons coupled to
parton I on one side and to the proton represented by its
diffractive eigenstate |i〉 or, respectively, to a multi-Pomeron
vertex, on the other side, as discussed in more detail in
[30,31]. It is easy to see that the expression in the curly
brackets in Eq. (3) is obtained from the rhs of Eq. (4) under
the replacements χP

(i)P → χP

(i)I , χP

PP
→ χP

PI , i.e. by picking
up parton I from the downmost Pomeron.

It is noteworthy that Eqs. (2–4) have been derived in Ref.
[30], neglecting parton transverse diffusion during the per-
turbative (|q2| > Q2

0) evolution and assuming Pomeron–
Pomeron interactions to be mediated by nonperturbative
parton processes, using the vertexes for the transition of
m into n Pomerons of the form [27]: G(m,n) = G γm+n

P
,

where G is related to the triple-Pomeron coupling r3P as
G = r3P/(4πγ 3

P
). For smaller x , the soft (|q2| < Q2

0) parton
evolution proceeds over a longer rapidity interval and results
in a larger transverse spread of the parton cloud at the scale
Q2

0, due to the transverse diffusion. On the other hand, for a
higher scale Q2, a larger part of the available rapidity range is
“eaten” by the perturbative evolution [c.f. Eq. (2)]. As a con-
sequence, for a given x , partons of higher Q2 are distributed
over a smaller transverse area.

If we naively assumed the same kind of factorization
for diffractive dijet production, the respective cross sections
would be defined by subsets of cut diagrams corresponding
to Fig. 1, characterized by a desirable structure of rapid-
ity gaps. For example, for the case of central hard diffrac-
tion (“double Pomeron exchange”), with the forward and
backward rapidity gaps being larger than ygap, we would
obtain
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Fig. 4 Recursive equation for
the contribution
2χ

fan(D)
(i) (ŝ, b, ygap) of

diffractive cuts of fan diagrams
of Fig. 3, ŝ = s0/x . The cut
plane is shown by the vertical
dotted-dashed lines; the rapidity
gaps are also indicated

>=1...
>=0...

x,b

x’,b’

...>=2

+ −

x,b
x’,b’

y
gap

gapy

x’,b’
=

x,b

y
gap

x,b

y
gap

σ
2jet−DPE(fact)
pp (s, pcut

t , ygap)

=
∫
d2b d2b′

∫
dx+dx−

×
∫
pt>pcut

t

dp2
t

∑
I,J=q,q̄,g

dσ 2→2
I J (x+x−s, p2

t )

dp2
t

× GD
I (x+, M2

F, b′, ygap)GD
J (x−, M2

F, |b − b′|, ygap).

(5)

Here the diffractive GPDs GD
I (x, Q2, b, ygap) for an arbi-

trary scale Q2 are obtained via DGLAP evolution from Q2
0

till Q2 [similarly to Eq. (2)], while GD
I (x, Q2

0, b, y
gap) is

expressed via the contribution 2χ
fan(D)
(i) of diffractive cuts of

the fan diagrams of Fig. 3 as

x GD
I (x, Q2

0, b, y
gap)

=
∑
i

Ci

{
G

2

∫
d2b′

∫
dx ′

x ′

× Θ(− ln x ′ − ygap) χP

PI (s0 x
′/x, |b − b′|)

×
[
(1 − e−χ fan

(i) (s0/x ′,b′)
)2 + (e2χ

fan(D)
(i) (s0/x ′,b′,ygap) − 1)

× e−2χ fan
(i) (s0/x ′,b′) − 2χ

fan(D)
(i) (s0/x

′, b′, ygap)
]}

. (6)

The latter are defined by the recursive equation of Fig. 4:

2χ
fan(D)
(i) (ŝ, b, ygap)

= G
∫
d2b′

∫
dx ′

x ′

× Θ(− ln x ′ − ygap) χP

PP
(x ′ŝ, |b − b′|)

×
[
(1 − e−χ fan

(i) (s0/x ′,b′)
)2 + (e2χ

fan(D)
(i) (s0/x ′,b′,ygap) − 1)

× e−2χ fan
(i) (s0/x ′,b′) − 2χ

fan(D)
(i) (s0/x

′, b′, ygap)
]
. (7)

Similarly to Eqs. (3–4), the expression in the curly brack-
ets in Eq. (6) is obtained from the rhs of Eq. (7) under the
replacement χP

PP
→ χP

PI .

J s2eik

p

p

ygap

y
gap

Fig. 5 Schematic view for central hard diffraction; parton J is emitted
from a cut Pomeron at the central rapidity. Eikonal absorption due to
constituent parton rescatterings is shown symbolically by the vertical
ellipse marked “S2

eik”; noneikonal absorptive corrections due to rescat-
terings of intermediate partons mediating the diffractive scattering are
indicated by inclined ellipses. The cut plane is shown by the vertical
dotted-dashed line; the rapidity gaps are also indicated

The analog of Eq. (5) for single (here, projectile) hard
diffraction is4

σ
2jet−SD(fact)
pp (s, pcut

t , ygap)

=
∫
d2b d2b′

∫
dx+dx−

×
∫
pt>pcut

t

dp2
t

∑
I,J=q,q̄,g

dσ 2→2
I J (x+x−s, p2

t )

dp2
t

× GD
I (x+, M2

F, b′, ygap)GJ (x
−, M2

F, |b − b′|) . (8)

Since the integrated diffractive PDFs f DI (x, Q2, ygap) =∫
d2b GD

I (x, Q2, b, ygap) can be inferred from experimental
studies of diffractive deep inelastic scattering, Eqs. (5) and
(8) could have been well-defined predictions. In reality, there
is no good reason to assume such kind of factorization for not

4 Strictly speaking, Eq. (8) contains also the contribution of double
diffraction, corresponding to a dissociation of the projectile proton into
a low mass hadronic system, in addition to the formation of a high mass
state on the target side (see the discussion in Refs. [24,39]). Similarly,
Eq. (5) accounts also for situations when the projectile or/and target
protons are excited into low mass hadronic states, in addition to the
formation of the central diffractive system.
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fully inclusive quantities, like diffractive cross sections, and
the real picture is significantly more complicated, as shown
symbolically in Fig. 5.

First, the expressions in the rhs of Eqs. (5) and (8) have to
be supplemented by the probability that the desirable rapidity
gaps are not filled by secondary particles produced in addi-
tional inelastic scatterings processes between constituent par-
tons of the projectile and target protons. For given diffractive
eigenstates |i〉, | j〉 of the two protons and impact parameter
b, the corresponding RGS probability is exp(−Ωi j (s, b)),
where the so-called opacity Ωi j is defined as twice the sum
over imaginary parts of all significant irreducible Pomeron
graphs coupled to the eigenstates |i〉 and | j〉.

A relatively compact expression for Ωi j has been obtained
in [28,29] summing the contributions of arbitrary Pomeron
“nets” exchanged between the projectile and target protons:5

Ωi j (s, b) = 2χP

i j (s, b) + 2G
∫
d2b′

∫
dx ′
x ′ {(1

− e
−χnet

(i)|( j)(s0/x ′,b′|s,b)
) (1 − e

−χnet
( j)|(i)(x ′s,b−b′|s,b)

)

− χnet
(i)|( j)(s0/x ′,b′|s,b) χnet

( j)|(i)(x ′s, b − b′|s,b)

− (χnet
(i)|( j)(s0/x ′, b′|s,b) − χP

(i)P(s0/x ′, b′))

×
[
(1 − e

−χnet
( j)|(i)(x ′s,b−b′|s,b)

) e
−χnet

(i)|( j)(s0/x ′,b′|s,b)

− χnet
( j)|(i)(x ′s,b − b′|s,b)

]}
, (9)

where χP

i j (s, b) is the eikonal for a single Pomeron exchange
between the eigenstates |i〉 and | j〉 while the “net-fan”
eikonal χnet

(i)|( j) corresponds to the summary contribution of
arbitrary irreducible Pomeron nets exchanged between the
projectile and target protons (represented by the eigenstates
|i〉 and | j〉) and coupled to a given multi-Pomeron vertex,
which is defined by the recursive equation [c.f. Eq. (4)]:

χnet
(i)|( j)(ŝ,b

′′|s,b)

= χP

(i)P(ŝ, b′′) + G
∫
d2b′

∫
dx ′

x ′

× χP

PP
(x ′ŝ, |b′′ − b′|)

[
(1 − e−χnet

(i)|( j)(s0/x ′,b′|s,b)
)

× e−χnet
( j)|(i)(x ′s,b−b′|s,b) − χnet

(i)|( j)(s0/x
′,b′|s,b)

]
. (10)

Taking into consideration only the above-discussed eikonal
rapidity gap suppression, shown symbolically by the vertical
ellipse in Fig. 5, Eqs. (5) and (8) will change to

σ
2jet−DPE(eik)
pp (s, pcut

t , ygap)

=
∫
d2b d2b′

∫
dx+dx−

5 As mentioned above, in our discussion we neglect for simplicity the
contributions of graphs containing Pomeron loops. In numerical cal-
culations, presented in Sect. 3, we use the complete formalism of the
QGSJET-II model, Pomeron loop contributions included.

×
∫
pt>pcut

t

dp2
t

∑
I,J=q,q̄,g

dσ 2→2
I J (x+x−s, p2

t )

dp2
t

×
∑
i, j

Ci C j G
D
I (i)(x

+, M2
F, b′, ygap)

× GD
J ( j)(x

−, M2
F, |b − b′|, ygap) e−Ωi j (s,b) (11)

σ
2jet−SD(eik)
pp (s, pcut

t , ygap)

=
∫
d2b d2b′

∫
dx+dx−

×
∫
pt>pcut

t

dp2
t

∑
I,J=q,q̄,g

dσ 2→2
I J (x+x−s, p2

t )

dp2
t

×
∑
i, j

Ci C j G
D
I (i)(x

+, M2
F, b′, ygap)

× GJ ( j)(x
−, M2

F, |b − b′|) e−Ωi j (s,b), (12)

where GI (i) and GD
I (i) are obtained evolving from Q2

0 till

M2
F the corresponding partial contributions [expressions in

the curly brackets in Eqs. (3) and (6), respectively] of the
eigenstate |i〉.

Neglecting color fluctuations in the interacting protons,
i.e. considering a single eigenstate i ≡ 1, would significantly
simplify the analysis since the total opacity Ωpp(s, b) can be
inferred from measurements of the differential elastic pp
cross section. Yet, as already stressed previously [3,11,13],
even in such a case the overall RGS factor would not be a
universal constant, depending generally on the process under
study and the respective kinematics. In the particular case
of diffractive dijet production, considered here, a higher jet
transverse momentum cutoff pcut

t implies a lower probability
for the rapidity gap survival, since a larger part of the avail-
able rapidity range will be “eaten” by the DGLAP evolution
of GI (i) and GD

I (i) in the high q2 range [c.f. Eq. (2)]. Hence,
a smaller part will be left for parton transverse diffusion dur-
ing the soft evolution at |q2| < Q2

0, with the end result that
the contribution of moderately large impact parameters b to
the integrands of Eqs. (11–12) will be reduced. On the other
hand, diffractive production at small b is strongly suppressed
by a higher opacity Ωpp(s, b), which reflects a higher prob-
ability for additional inelastic scattering processes, due to a
stronger overlap of parton clouds of the interacting protons.

While Eqs. (3) and (6) already account for absorptive cor-
rections to GI and GD

I due to rescatterings of intermedi-
ate partons off their parent protons, additional suppression,
shown symbolically by the inclined ellipses in Fig. 5, comes
from their elastic rescatterings off the partner protons. Inter-
mediate partons in the cascades mediating those rescatterings
may in turn scatter elastically off the initial protons, etc. Tak-
ing these effects into consideration, we obtain, similarly to
the case of soft diffraction in Refs. [24,30], the cross sec-
tions for central and single (here, projectile) diffractive dijet
production as
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σ
2jet−DPE
pp (s, pcut

t , ygap)

=
∫
d2b d2b′

∫
dx+dx−

×
∫
pt>pcut

t

dp2
t

∑
I,J=q,q̄,g

dσ 2→2
I J (x+x−s, p2

t )

dp2
t

×
∑
i

Ci C j G̃
D
I (i)|( j)(x

+, M2
F,b′, ygap|s,b)

× G̃D
J ( j)|(i)(x

−, M2
F,b − b′, ygap|s,b) e−Ωi j (s,b) (13)

σ
2jet−SD
pp (s, pcut

t , ygap) =
∫
d2b d2b′

∫
dx+dx−

×
∫
pt>pcut

t

dp2
t

∑
I,J=q,q̄,g

dσ 2→2
I J (x+x−s, p2

t )

dp2
t

×
∑
i

Ci C j G̃
D
I (i)|( j)(x

+, M2
F,b′, ygap|s,b)

× G̃ J ( j)|(i)(x−, M2
F,b − b′|s,b) e−Ωi j (s,b), (14)

where G̃ I (i)|( j) and G̃D
I (i)|( j) now depend explicitly on the

geometry of the pp collision, being defined at the Q2
0-scale

as

x G̃ I (i)|( j)(x, Q2
0,b

′′|s,b)

= χP

(i)I (s0/x, b
′′)

+ G
∫
d2b′

∫
dx ′

x ′ χP

PI (s0 x
′/x, |b′′ − b′|)

×
{
(1 − e−χnet

(i)|( j)(s0/x ′,b′|s,b)
) e−2χnet

( j)|(i)(x ′s,b−b′|s,b)

− χnet
(i)|( j)(s0/x

′,b′|s,b)
}

(15)

x G̃D
I (i)|( j)(x, Q

2
0,b

′′, ygap|s,b) = G

2

∫
d2b′

∫
dx ′

x ′

× Θ(− ln x ′ − ygap) χP

PI (s0 x
′/x, |b′′ − b′|)

×
{
(1 − e−χnet

(i)|( j)(s0/x ′,b′|s,b)
)2

× e−2χnet
( j)|(i)(x ′s,b−b′|s,b) + (e2χ

net(D)
(i)|( j) (s0/x ′,b′,ygap|s,b)

− 1) e−2χnet
(i)|( j)(s0/x ′,b′|s,b)−2χnet

( j)|(i)(x ′s,b−b′|s,b)

− 2χ
net(D)
(i)|( j) (s0/x

′,b′, ygap|s,b)
}
. (16)

Here the total contribution 2χ
net(D)
(i)|( j) of all the unitarity cuts of

the net-fan diagrams, characterized by the desirable rapidity
gap signature, is defined by the recursive equation of Fig. 6
[c.f. Fig. 4 and Eq. (7)]:

2χ
net(D)
(i)|( j) (ŝ,b

′′, ygap|s,b)

= G
∫
d2b′

∫
dx ′

x ′

× Θ(− ln x ′ − ygap) χP

PP
(x ′ŝ, |b′′ − b′|)

×
{
(1 − e−χnet

(i)|( j)(s0/x ′,b′|s,b)
)2e−2χnet

( j)|(i)(x ′s,b−b′|s,b)

+(e2χ
net(D)
(i)|( j) (s0/x ′,b′,ygap|s,b) − 1)

× e−2χnet
(i)|( j)(s0/x ′,b′|s,b)−2χnet

( j)|(i)(x ′s,b−b′|s,b)

− 2χ
net(D)
(i)|( j) (s0/x

′,b′, ygap|s,b)
}
. (17)

Clearly, the rhs of Eq. (16) is obtained from the rhs of Eq. (17)
under the replacement χP

PP
→ χP

PI .
In the next section, we apply Eqs. (5), (8), (11–12), and

(13–14) to investigate the rapidity gap survival for diffractive
dijet production in pp collisions. We shall use the parameter
set of the QGSJET-II-04 model [31], which has been obtained
by fitting the model to available accelerator data on total and
elastic proton–proton cross sections, elastic scattering slope,
and total and diffractive structure functions F2, FD(3)

2 .

3 Results and discussion

Let us start with the investigation of the energy depen-
dence of the dijet production cross section and of the respec-
tive rapidity gap survival probability for single diffractive
(SD) proton–proton collisions. In Fig. 7 (left), we compare
our results for

√
s-dependence of σ

2jet−SD(fact)
pp calculated

according to Eq. (8), based on the factorization assumption,
to the one of σ

2jet−SD(eik)
pp [Eq. (12)], which accounts for the

eikonal rapidity gap suppression, and to σ
2jet−SD
pp [Eq. (14)],

which takes into account all the above-discussed suppression
effects. We impose here cuts on the jet transverse momentum,
pjet

t > pcut
t = 20 GeV/c, and on the light cone momentum

loss by the projectile proton, ξ = M2
X/s < ξmax = 0.01,

i.e. ygap = − ln ξmax, with M2
X being the mass squared of

the produced diffractive system. Additionally, we demand
both jets to be produced in the central pseudorapidity η

region, |ηjet| < 2.5. In Fig. 7 (right), we plot the correspond-

ing RGS factors S2
SD(eik) ≡ σ

2jet−SD(eik)
pp /σ

2jet−SD(fact)
pp and

S2
SD(tot) ≡ σ

2jet−SD
pp /σ

2jet−SD(fact)
pp . While the plotted diffrac-

tive dijet cross sections steeply rise with energy, due to the
increase of the kinematic space for parton evolution, we
observe a mild energy-dependence for the respective RGS
factors. Naturally, the probability for the rapidity gap survival
goes down at higher energies – due to the increase of parton
densities, resulting in an enhancement of multiple scattering,
hence, in a decrease of S2

SD(eik). However, the additional RG
suppression by absorptive corrections of non-eikonal type,
reflected by the ratio S2

SD(tot)/S
2
SD(eik) � 0.6, appears to be a

much weaker and almost energy-independent effect. At the
first sight, this seems surprising as the energy rise of parton
densities should lead to an enhancement of rescatterings of
intermediate partons from the cascades mediating the diffrac-
tive scattering, hence, to stronger non-eikonal absorptive cor-
rections.
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Fig. 6 Recursive equation for
the contribution 2χ

net(D)
(i)|( j) of

diffractive cuts of net-fan
diagrams. The cut plane is
shown by the vertical
dotted-dashed line; the rapidity
gaps are also indicated
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Fig. 7 Left: energy dependence of the calculated single diffractive
dijet cross sections: σ

2jet−SD(fact)
pp (dotted), σ

2jet−SD(eik)
pp (dashed), and

σ
2jet−SD
pp (solid). Right: energy dependence of the corresponding RGS

probabilities: S2
SD(eik) (dashed) and S2

SD(tot) (solid). All for pcut
t = 20

GeV/c, ξmax = 0.01, and |ηjet| < 2.5

To get a further insight into the problem, let us check
the dependence of the dijet SD cross sections and of the
RGS factors on the jet transverse momentum cutoff pcut

t
at the energies of the Tevatron (Fig. 8), for ξmax = 0.1,
and the LHC (Fig. 9), for ξmax = 0.01. The obtained pcut

t -
dependencies for both S2

SD(eik) and S2
SD(tot) are rather flat.

There is a mild decrease of S2
SD(eik) for increasing pcut

t - due
to the shift of the dijet production into more opaque region
of smaller impact parameters, which is related to the reduc-
tion of the phase space available for soft (|q2| < Q2

0) parton
evolution, as discussed in Sect. 2. On the other hand, the
ratio S2

SD(tot)/S
2
SD(eik) remains nearly constant over the stud-

ied range 5 GeV/c< pcut
t < 50 GeV/c. To some extent,

this is less surprising than the flat energy-dependence in
Fig. 7 (right), since there are two competing effects here, both
arising from the reduced kinematic phase space for the soft
parton evolution. On the one side, the shift of the dijet pro-
duction towards smaller impact parameters should enhance
the absorptive effects related to rescatterings of intermedi-

ate partons. On the other hand, due to the reduction of the
rapidity space for the soft parton evolution, one may expect
a weakening of those effects.6

For completeness, let us also study the dependencies of
the dijet SD cross sections and of the RGS factors on the
size of the rapidity gap. These are plotted in Fig. 10 as a
function of ξmax, for the production of jets of pjet

t > 20
GeV/c at the LHC energy

√
s = 7 TeV. Here we observe a

rather flat behavior for S2
SD(eik), since the size of the rapidity

gap makes a small impact on the slope for the diffractive
scattering, hence, on the range of impact parameters relevant
for SD dijet production. On the other hand, for decreasing
ξmax (thus, for an increasing rapidity range for virtual parton
cascades mediating the diffractive scattering), there is some
enhancement of absorptive effects related to rescatterings of
intermediate partons, which results in a slight decrease of the

6 Let us remind that in the current approach only rescatterings of soft
(|q2| < Q2

0) partons are taken into consideration.

123



67 Page 8 of 14 Eur. Phys. J. C (2018) 78 :67

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10
 pt

cut (GeV)

σ 2j
etSD

 (m
b)

 
 1.8 TeV c.m.; ξmax = 0.1;  |ηjet| < 2.5

 factorization
 eik. suppr.

 all suppression effects

10
-2

10
-1

10
 pt

cut (GeV)

 R
GS

 p
ro

ba
bi

lit
y 

fo
r S

D 
di

jet
s

 1.8 TeV c.m.; ξmax = 0.1;  |ηjet| < 2.5

Fig. 8 Left: pcut
t -dependence of the calculated SD dijet cross sections: σ
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√
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Fig. 9 Same as in Fig. 8 for
√
s = 7 TeV and ξmax = 0.01

RGS probability, with S2
SD(tot)/S

2
SD(eik) changing from 0.65

for ξmax = 0.1 to 0.53 for ξmax = 10−3.
It is clear from our discussion so far that the key to the

understanding of the rapidity gap suppression of diffrac-
tive dijet production is in the impact parameter dependence
of the respective transverse profiles d2σ

2jet−SD(fact)
pp /d2b,

d2σ
2jet−SD(eik)
pp /d2b, and d2σ

2jet−SD
pp /d2b, which are defined

by the b-integrands of Eqs. (8), (12), and (14), respectively.
In Fig. 11 (left), we plot d2σ

2jet−SD(fact)
pp /d2b for

√
s = 7

TeV and ξmax = 10−2, for two values of the jet pt-cutoff:
pcut

t = 5 and 50 GeV/c, in comparison to the inelastic
profile G inel

pp (s, b) = 1 − ∑
i, j Ci C j e−Ωi j (s,b). Here we

immediately see the origin of the factorization breaking for
diffractive dijet production: the respective profile defined by
the factorization ansatz, Eq. (8), is confined to the opaque

region of small impact parameter b, where the probabil-
ity of additional inelastic rescatterings between the protons’
constituents is close to unity. When taking into account the
eikonal RG suppression, i.e. including the probability for no
such rescatterings [factor e−Ωi j (s,b) in the rhs of Eq. (12)],
the corresponding production rate at b � 0 is reduced by
many orders of magnitude [c.f. dotted and dashed lines in
Fig. 11 (right)]. At b > 2 fm, the absorption becomes weak,
yet the production rate is miserable there. Hence, the bulk
of the SD dijet production comes from the intermediate
region b ∼ 1–1.5 fm. It is worth stressing that the above-
discussed transverse picture is of generic character, being
a consequence of the fundamental feature of hadronic col-
lisions, namely, that the slope for diffractive scattering is
considerably smaller than the elastic scattering slope Bel

pp
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Fig. 10 Left: ξmax-dependence of the calculated SD dijet cross sections: σ
2jet−SD(fact)
pp (dotted), σ 2jet−SD(eik)

pp (dashed), and σ
2jet−SD
pp (solid). Right:

ξmax-dependence of the corresponding RGS probabilities: S2
SD(eik) (dashed) and S2
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√
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|ηjet| < 2.5
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Fig. 11 Left: transverse profiles for SD dijet production
d2σ

2jet−SD(fact)
pp /d2b, calculated based on the factorization assump-

tion, for pcut
t = 5 and 50 GeV/c (dashed and dotted-dashed lines,

respectively), compared to the inelastic profile (solid line). Right:
transverse profiles for SD dijet production for pcut

t = 5 GeV/c,

calculated taking different absorptive effects into account; dotted,
dotted-dashed, dashed, and solid lines correspond, respectively,
to d2σ

2jet−SD(fact)
pp /d2b, d2σ

2jet−SD(noneik)
pp /d2b, d2σ

2jet−SD(eik)
pp /d2b,

and d2σ
2jet−SD
pp /d2b. All for

√
s = 7 TeV, ξmax = 0.01, and |ηjet| < 2.5

which defines the transverse spread of the inelastic profile
G inel

pp (s, b).

Let us next consider the profile d2σ
2jet−SD(noneik)
pp /d2b,

plotted as the dotted-dashed line in Fig. 11 (right), which
corresponds to taking noneikonal absorption into account,
while neglecting the eikonal RG suppression. It is defined by
the b-integrand of Eq. (14), omitting the factors e−Ωi j (s,b).
We see that the respective effects, being reflected by the dif-
ferences between the dotted and dotted-dashed lines in the
Figure, are strongest at small b, i.e. where rescatterings of

intermediate partons are enhanced by a higher parton den-
sity. However, as discussed above, the contribution of the
small b region to the diffractive dijet production is strongly
suppressed by the eikonal absorption. This explains the rela-
tively weak effect of the noneikonal absorption, observed in
Figs. 7, 8, 9 and 10. In other words, as argued in Ref. [1,14],
the eikonal RG suppression effectively eliminates the kine-
matic region where noneikonal absorptive effects could be
of significant importance. This also helps us to understand
the very week energy-dependence of the noneikonal absorp-
tion, observed in Fig. 7 (right). Moving to higher ener-
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Fig. 12 Average b2 for inelastic pp collisions (solid) and for SD dijet
production for

√
s = 7 TeV, pcut

t = 20 GeV/c, ξmax = 0.01, and
|ηjet| < 2.5, as calculated using the different approximations: factoriza-
tion (dotted), eikonal suppression (dashed), and all suppression effects
(dotted-dashed)

gies, diffractive dijet production at relatively small b is
stronger and stronger suppressed by the eikonal RG sup-
pression and important contributions come only from larger
impact parameters where the noneikonal absorption becomes
weaker.

The above-discussed tendencies become more clear if
we compare the energy-dependence of the average impact
parameter squared for the different approximations, 〈b2

(X)〉 =
∫
d2b b2 d2σ

(X)
pp

d2b
/σ

(X)
pp [X = 2jet-SD(fact), 2jet-SD(eik),

and 2jet-SD], to the one for general inelastic collisions,
〈b2

inel〉 = ∫
d2b b2 G inel

pp (s, b)/σ inel
pp (s), as plotted in Fig. 12.

We notice that 〈b2
(2jet−SD(fact))〉 calculated based on the fac-

torization assumption is more than twice smaller than 〈b2
inel〉.

This is not surprising since, firstly, already the slope for soft
diffraction is considerably smaller than Bel

pp and, secondly,
in case of hard diffraction a large part of the available rapid-
ity range is “eaten” by hard (|q2| > Q2

0) parton evolution
characterized by weak transverse diffusion, Δb2 ∼ 1/|q2|,
neglected here. Let us also remark that for increasing energy
〈b2

(2jet−SD(fact))〉 rises slower than 〈b2
inel〉 because the hard

parton evolution covers a longer and longer rapidity interval.
Next, we notice that, firstly, 〈b2

(2jet−SD(eik))〉 is considerably

larger than 〈b2
(2jet−SD(fact))〉 and, secondly, it has a signifi-

cantly steeper energy rise. This is because the region of small
b is strongly suppressed by the eikonal absorption [c.f. dotted
and dashed lines in Fig. 11 (right)] and for higher energies
the strong absorption extends towards larger impact param-
eters, as a consequence of the widening and “blackening” of
the inelastic profile, as noticed already in Ref. [5], which are

caused by parton transverse diffusion and the energy rise of
parton densities, respectively. The same arguments apply to
the noneikonal absorption, due to its dependence on parton
density: it is strongest at small b and, for increasing energy,
becomes more important at larger impact parameters. Con-
sequently, 〈b2

(2jet−SD)〉 is slightly larger than 〈b2
(2jet−SD(eik))〉.

As the cross section formulas, Eqs. (8), (12), and (14), are
obtained averaging over contributions of different Fock states
of the projectile and target protons, it may be sensible to dis-
cuss the relative roles of the different absorptive corrections
separately for particular combinations of those Fock states.
This is illustrated in Fig. 13, where we plot for

√
s = 7 TeV,

pcut
t = 5 GeV/c, and ξmax = 10−2 the respective partial

contributions d2σ
2jet−SD(fact)
pp(i j) /d2b, d2σ

2jet−SD(noneik)

pp(i j) /d2b,

d2σ
2jet−SD(eik)

pp(i j) /d2b, and d2σ
2jet−SD
pp(i j) /d2b for the 4 different

cases: when both the projectile and the target protons are rep-
resented by their largest size Fock states, marked as “L–L”
in the Figure, for an interaction between the small size states
(“S–S”), and for interactions between Fock states of differ-
ent sizes (“L–S” and “S–L”). In the “L–L” case, we see that
all the above-discussed tendencies, in particular, the strong
suppression of the small b region are much more prominent,
being enhanced by the larger (integrated) parton densities for
the large size states. On the other hand, in the “S–S” case,
the interaction profile is more transparent due to smaller par-
ton densities, resulting in a weaker absorption at small impact
parameters. However, because of the smaller scattering slope,
the dijet production is confined here to the smallb region, thus
making a small contribution to the overall yield. A similar
competition between the transverse spread and the strength
of absorption we observe for the two non-diagonal cases.
In the “L–S” case, the diffractive scattering of the projectile
proton is enhanced by its larger parton density. Moreover,
both the eikonal absorption and the one due to intermediate
parton rescatterings off the target proton are reduced because
of the lower parton density for the latter. However, the scat-
tering slope in this case is sizably smaller tahn in the “S–L”
case. Consequently, the latter contribution appears to be a
more important one, despite stronger noneikonal absorptive
corrections related to rescatterings of intermediate partons
off the target proton which has a higher parton density than
in the “L–S” case (c.f. dotted and dotted-dashed lines in the
lower right panel of Fig. 13).

Let us now turn to the case of central diffractive dijet
production. In Fig. 14, we plot the energy (for pjet

t >

20 GeV/c) and the pcut
t (for

√
s = 7 TeV) dependen-

cies of the corresponding RGS factors (all for ξmax =
0.1), S2

DPE(eik) = σ
2jet−DPE(eik)
pp /σ

2jet−DPE(fact)
pp and S2

DPE(tot)

= σ
2jet−DPE
pp /σ

2jet−DPE(fact)
pp , where σ

2jet−DPE(fact)
pp ,

σ
2jet−DPE(eik)
pp , and σ

2jet−DPE
pp are defined by Eqs. (5), (11),

and (13), respectively. Additionally, in Fig. 15 we show
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pp /d2b (dotted), d2σ

2jet−SD(eik)
pp /d2b

(dashed), and d2σ
2jet−SD
pp /d2b (solid); ξmax = 0.1, |ηjet| < 2.5

the corresponding transverse profiles d2σ
2jet−DPE(fact)
pp /d2b,

d2σ
2jet−DPE(eik)
pp /d2b, and d2σ

2jet−DPE
pp /d2b, given by the b-

integrands in the rhs of Eqs. (5), (11), and (13). Here we
observe for the RGS probability the same tendencies as
in the case of single diffraction: a relatively weak depen-
dence on the collision energy and a low sensitivity to the
jet transverse momentum cutoff, also a nearly constant ratio
S2

DPE(tot)/S
2
DPE(eik) � 0.4. The overall absorption is approx-

imately twice stronger, compared to SD dijet production,
because of the smaller scattering slope for central diffrac-
tion, which thus concentrates at smaller impact parameters
[c.f. dotted lines in Figs. 11 (right) and 15]. There, both
eikonal and noneikonal absorptive corrections are enhanced
by the higher parton densities in the projectile and target pro-
tons, resulting in a substantial suppression of the production
profile, as one can see in Fig. 15. Interestingly, the obtained
additional suppression of the RGS probability by noneikonal
absorptive effects, S2

DPE(eik)/S
2
DPE(tot) � 2.5, fits well in the

range [2–3] estimated earlier in Ref. [17] using a different
framework.

It may be interesting to check how robust are the pre-
sented results with respect to variations of parameters of the
adopted model. To address that, we repeat the calculations
of the RGS probability for SD dijet production using two
alternative parameter tunes of the QGSJET-II-04 model, dis-
cussed in Ref. [39] in relation to present uncertainties of
soft diffraction measurements at the LHC. One of the tunes,
referred to as “SD-”, yields 30% smaller low mass diffrac-
tion cross section, compared to the default parameter set-
tings, because of a smaller difference between the strengths
of the Pomeron coupling to different diffractive eigenstates of

the proton. At parton level, this would correspond to weaker
color fluctuations in the proton. The other one, referred to as
“SD+”, is characterized by an increased rate of high mass
diffraction in pp collisions, which has been achieved by
using a higher value for the triple-Pomeron coupling, and
a slightly smaller low mass diffraction. Apart from those
features, both parameter tunes have been calibrated with the
same set of experimental data on hadronic cross sections
and particle production as the default model (see Ref. [39]
for more details). The calculated energy (for pcut

t = 20
GeV/c and ξmax = 0.01) and pcut

t (for
√
s = 1.8 TeV

and ξmax = 0.1) dependencies of the corresponding RGS
factors for SD dijet production are shown in Fig. 16, being
very similar to each other and to the above-discussed results
obtained using the default model parameters. This applies
also to the relative importance of the noneikonal absorption:
the calculated S2

SD(tot)/S
2
SD(eik) ranges between 0.6 and 0.8,

depending on the parameter set and the event selection. How-
ever, the absolute value of the RGS probability appears to
be quite sensitive to the treatment of low mass diffraction,
being some 70% higher for the SD- tune, due to a slightly
more transparent inelastic profile, compared to the default
case.

Let us finally check whether the obtained values for the
RGS probability are compatible with available experimental
data. Here the situation is somewhat confusing. At

√
s = 1.8

TeV, using the parameter sets of QGSJET-II-04, SD+, and
SD- tunes, for SD dijet production (pcut

t = 7 GeV/c and
ξmax = 0.1) we obtain the values S2

SD(tot) � 0.05, 0.07, and
0.09, respectively [see Fig. 16 (right)], which are all compat-
ible with the CDF result, 0.06 ± 0.02 [40]. However, recent
measurements at the LHC by the CMS [41] and ATLAS
[42] experiments indicate that the RGS probability for SD
dijet production at

√
s = 7 TeV (pcut

t = 20 GeV/c and
ξmax ∼ 10−3) is at 10% level, which is compatible with
the CDF result at

√
s = 1.8 TeV and is almost an order

of magnitude higher than what we obtain here [c.f. Fig. 16
(left)]. Thus, we find the experimental situation very puz-
zling since the decrease with energy of the RGS proba-
bility is closely related to the significant shrinkage of the
diffractive cone, convincingly demonstrated by the TOTEM
[43–47] and ATLAS [48,49] measurements. As the scatter-
ing slope for (unabsorbed) diffractive dijet production rises
with energy slower than Bel

pp (c.f. dotted and solid lines
in Fig. 12 for the respective 〈b2〉), at higher energies the
bulk of the production becomes confined to more and more
opaque region. If the flat energy behavior of the RGS proba-
bility is further confirmed, notably, by using also information
from proton tagging by forward detectors at the LHC, this
would imply a very nontrivial dynamics of hadronic colli-
sions.
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Fig. 16 Energy dependence for pcut
t = 20 GeV/c, ξmax = 0.01 (left)

and pcut
t -dependence for

√
s = 1.8 TeV, ξmax = 0.1 (right) of the RGS

factors S2
SD(eik) and S2

SD(tot) for SD dijet production, using alternative
parameter tunes: SD- (respectively, dashed and upper solid lines), and

SD+ (respectively, dotted and dotted-dashed lines); |ηjet| < 2.5. The
downmost solid lines correspond to S2

SD(tot) calculated with the default
parameters

4 Conclusions

In this work, we applied the phenomenological Reggeon
field theory framework for calculations of the rapidity
gap survival probability for diffractive dijet production in
proton–proton collisions, investigating in some detail vari-
ous absorptive effects contributing to the RG suppression.
Most importantly, we have demonstrated that the absorption
due to elastic rescatterings of intermediate partons mediat-
ing the diffractive scattering plays a subdominant role, com-
pared to the eikonal rapidity gap suppression due to elastic
rescatterings of constituent partons of the colliding protons.
The corresponding suppression factors, S2

SD(tot)/S
2
SD(eik) and

S2
DPE(tot)/S

2
DPE(eik), are found to depend very weakly on the

collision energy and the event kinematics. This is good news
since, for a given process of interest, one may account for
such effects, in the first crude approximation, via a rescal-
ing of jet rates by a constant factor. On the other hand,
such a weak dependence is somewhat accidental, as it results
from a complex interplay between particular event selections
(e.g. the choice for the jet pt cutoff) and the corresponding
modification of the transverse profile for diffractive dijet pro-
duction. Generally, such corrections depend on the shape of
the transverse profile for a hard diffraction process of interest
and on the kinematic range available for soft parton evolu-
tion, which is influenced, in turn, by the kinematics of the
hard process. For example, we observed � 40% difference
for the noneikonal suppression factors between the cases
of single and central diffraction. Consequently, our results
can not be directly applied to other hard diffraction reac-
tions.

The main suppression mechanism for hard diffraction,
related to elastic rescatterings of constituent partons of the
colliding protons, is defined by the interplay between the
shape of the inelastic profile for general pp collisions and
the transverse profile for a diffractive process of interest, as
already demonstrated previously [1,3,11,17]. On the other
hand, it appears to depend sizably on color fluctuations in
the proton, which thus introduces a significant model depen-
dence for calculations of the RGS probability. Reversing the
argument, experimental studies of rapidity gap survival in
hard diffraction can provide an insight into the nonperturba-
tive structure of the proton.
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