
Eur. Phys. J. C (2018) 78:61
https://doi.org/10.1140/epjc/s10052-018-5560-3

Regular Article - Theoretical Physics

The ηc decays into light hadrons using the principle of maximum
conformality

Bo-Lun Du, Xing-Gang Wua , Jun Zeng, Shi Bu, Jian-Ming Shen

Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China

Received: 9 December 2017 / Accepted: 13 January 2018 / Published online: 23 January 2018
© The Author(s) 2018. This article is an open access publication

Abstract In the paper, we analyze the ηc decays into light
hadrons at the next-to-leading order QCD corrections by
applying the principle of maximum conformality (PMC).
The relativistic correction at the O(αsv

2)-order level has
been included in the discussion, which gives about 10%
contribution to the ratio R. The PMC, which satisfies the
renormalization group invariance, is designed to obtain a
scale-fixed and scheme-independent prediction at any fixed
order. To avoid the confusion of treating nf -terms, we trans-
form the usual MS pQCD series into the one under the
minimal momentum space subtraction scheme. To com-
pare with the prediction under conventional scale setting,

RConv,mMOM−r =
(

4.12+0.30
−0.28

)
× 103, after applying the

PMC, we obtain RPMC,mMOM−r =
(

6.09+0.62
−0.55

)
×103, where

the errors are squared averages of the ones caused by mc and
�mMOM. The PMC prediction agrees with the recent PDG
value within errors, i.e. Rexp = (6.3 ± 0.5) × 103. Thus we
think the mismatching of the prediction under conventional
scale-setting with the data is due to improper choice of scale,
which however can be solved by using the PMC.

The heavy quark mass provides a natural hard scale for
the heavy quarkonium decays into light hadrons or photons.
Calculations of their decay rates are considered as one of the
earliest applications of pQCD. The charmonium has become
a popular field since the discovery of J/ψ resonance at SLAC
and Brookhaven in 1974. There are lots of successful experi-
mental studies about charmonium, including the precise mea-
surements of spectrum, lifetimes and branch ratios, cf. a com-
prehensive review given in the PDG [1]. At the same time,
many theoretical efforts have been tried for an appropriate
description of charmonium. As an important breakthrough,
a systematic pQCD analysis of the heavy quarkonium inclu-
sive annihilation and production has been given within the
nonrelativistic QCD theory (NRQCD) in 1995 [2].
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According to the NRQCD framework, the quarkonium
decay rate can be factored into a sum of products of the short-
distance coefficients and the long-distance matrix elements
(LDMEs). The short-distance coefficients are perturbatively
calculable in a power series of αs . The LDMEs can be esti-
mated by means of the velocity power counting rule, i.e.
the LDMEs can be classified in terms of the relative veloc-
ity between the constituent quarks of the heavy quarkonium.
Especially, the color-singlet ones can be directly related to the
wavefunction (derivative of the wavefunction) at the origin,
which then can be calculated via proper potential models.

The decay rates of the pseudoscalar quarkonium into light
hadrons and photons have been calculated at the next-to-
leading order (NLO) level [3,4]. The relativistic corrections
at the O(αsv

2)-order have been given in Refs. [5,6]. Within
the NRQCD factorization framework, the decay rate of the
ηc into light hadrons or photons can be expressed as

�(ηc → LH) = F1(
1S0)

m2
c

〈ηc|O1(
1S0)|ηc〉

+ G1(
1S0)

m4
c

〈ηc|P1(
1S0)|ηc〉 + · · · (1)

and

�(ηc → γ γ ) = Fγ γ (1S0)

m2
c

〈ηc|O1(
1S0)|ηc〉

+ Gγ γ (1S0)

m4
c

〈ηc|P1(
1S0)|ηc〉 + · · · , (2)

where F1, G1, Fγ γ and Gγ γ are short distance coefficients.
The symbol · · · stands for the contributions from high-
dimensional LDMEs which are at least at the level ofO(v4�).
mc is the c-quark pole mass.1 v2 is the squared heavy quark
or antiquark velocity in the meson rest frame. For the case of
ηc, it can be calculated by

1 The choice of pole mass avoids the ambiguity of using MS-mass for
separating the renormalization group involved β-terms [7].
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〈v2〉ηc = 〈ηc|P1(
1S0)|ηc〉

m2
c〈ηc|O1(1S0)|ηc〉 . (3)

To suppress the uncertainty from the LDMEs, one usually
calculates the ratio

R = �(ηc → LH)

�(ηc → γ γ )

= R0(μ)

{
1 +

[
2β0

(
8

3
+ ln

μ2

4m2
c

)
− 13π2

2
+ 74

+
(

7π2

3
− 2β0 − 14

) 〈
v2

〉
ηc

]
a(μ) + · · ·

}
, (4)

where a(μ) = αs(μ)/(4π), R0(μ) = 81π2CF
2α2NC

a2(μ), μ is

an arbitrary renormalization scale, and β0 = 11 − 2
3n f (n f

being the active flavor number) is the leading β-term of the
renormalization group function. It is noted that the factor-
ization scale dependence is missing at this level, which is
the case even at the NNLO level [8], we are thus free of the
factorization scale-setting problem.

It is conventional to take the renormalization scale as the
typical momentum flow of the process or the one to eliminate
the large logs of the pQCD series, we call this conventional
scale-setting approach. As will be shown later, such a sim-
ple treatment on scale introduces large scale uncertainty and
makes the lower-order prediction unreliable. At present, the
ηc decays into light hadrons or photons have been calcu-
lated up to NNLO level, which however still shows a poor
pQCD convergence [8–10]. Thus by simply pursuing higher-
and-higher order terms may not be the solution for those
high-energy processes. In fact, even if we obtain a small
scale uncertainty for global quantities such as the total cross-
section or the decay rate at a certain fixed order, it is due
to cancelations among different orders; the scale uncertainty
for each order is still uncertain and could be very large. Two
such examples for Higgs boson decay and the hadronic pro-
duction of Higgs boson can be found in Refs. [11,12]. When
one applies conventional scale-setting, the renormalization
scheme- and initial renormalization scale- dependence are
introduced at any fixed order. Thus, a proper scale-setting
approach is important for the fixed-order predictions.

Such large scale uncertainty has long been observed, and
to improve the accuracy of R, Ref. [13] suggested to resum
the final-state chains of the vacuum-polarization bubbles and
got RNNA = (3.01 ± 0.30 ± 0.34) × 103 for the naive
non-Abelianization resummation [14] and RBFG = (3.26 ±
0.31±0.47)×103 for the background-field-gauge resumma-
tion [15], respectively. Both predictions are consistent with
the world average given by Particle Data Group (PDG) in
year 2000 [16], which gives Rexp = (3.3 ± 1.3) × 103. As
an attempt, the authors of Ref. [13] also presented a predic-
tion by using the Brodsky–Lepage–Mackenzie (BLM) scale-

setting approach [17] and got a much larger R value, i.e.
RBLM = 9.9 × 103.

We should point out that those predictions are different
from the value derived from the new experimental measure-
ments, which shows Rexp = (6.3 ± 0.5)×103 [1]. As will be
shown later, the BLM prediction given in Ref. [13] is ques-
tionable. Thus it is interesting to show whether an improved
pQCD analysis could be done and could explain the new
Rexp, as is the purpose of this paper. Especially, it is impor-
tant to show whether the mismatching of the data and the
pQCD prediction is caused by improper choice of scale or
by some other reasons.

A novel scale-setting approach, the Principle of Maxi-
mum Conformality (PMC) [18–21], has been developed in
recent years. The PMC satisfies renormalization group invari-
ance [22] and it reduces in NC → 0 Abelian limit [23] to the
standard Gell–Mann–Low method [24]. A more convergent
pQCD series without factorial renormalon divergence can be
obtained. The PMC scales are physical in the sense that they
reflect the virtuality of the gluon propagators at a given order,
as well as setting the effective number (n f ) of active flavors.
The resulting resummed pQCD expression thus determines
the relevant “physical” scales for any physical observable,
thereby providing a solution to the renormalization scale-
setting problem. Because all the scheme-dependent {βi }-
terms in pQCD series have been resummed into the run-
ning couplings with the help of renormalization group equa-
tion, the PMC predictions are renormalization scheme inde-
pendent at every order. Such scheme independence can be
demonstrated by using commensurate scale relations [25]
among different observables. A number of PMC applications
have been summarized in the review [26–28]. The PMC pro-
vides the underlying principal for the BLM, and in the follow-
ing, we shall adopt the PMC to set the renormalization scale.

Up to NLO level, the expression of R can be rewritten as

R = r1,0a
2(μ) + [

r2,0 + 2β0r2,1
]
a3(μ) + O(a4), (5)

where the MS-coefficients ri, j can be read from Eq. (4), in
which ri,0 are conformal ones. Following the standard PMC
procedures, we get

R = r1,0a
2(Q1) + r2,0a

3(Q1), (6)

where ln Q2
1/μ

2 = −r2,1/r1,0. Here, we have set the
unknown PMC scale Q2 = Q1 such that to ensure
the scheme-independence of R under any renormaliza-
tion schemes via proper commensurate scale relations [25],
whose exact value can be determined by the NNLO term
which is not available at present.

If directly using the MS-scheme expression (4), we shall
obtain a small PMC scale Q1 = 0.86 or 0.78 GeV for the
prediction with or without relativistic correction. It is already
close to the low-energy region, this explains why a large
RBLM is obtained in Ref. [13]. [At the NLO level, the BLM
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prediction is the same as the PMC prediction if all n f -terms
are pertained to αs-running.] For this case, a reliable pre-
diction can only be obtained by using certain low-energy
αs-model, which however will introduce extra model depen-
dence for the prediction.

Following the idea of PMC, only those {βi }-terms that
are pertained to the renormalization of running coupling
should be absorbed into the running coupling. For the pro-
cesses involving three-gluon or four-gluon vertex, the scale-
setting problem is more involved [29]. The MOM scheme
is a physical scheme which is based on the renormaliza-
tion of the triple-gluon vertex at some symmetric off-shell
momentum. The MOM scheme carries information about
the vertex at a specific momentum configuration. This exter-
nal momentum configuration is non-exceptional and there
are no infrared issues, thus avoiding the confusion of distin-
guishing {βi }-terms. Thus to avoid the ambiguity of apply-
ing the PMC on R, similar to the case of QCD BFKL
Pomeron [30–32], we shall first transform the results from
the MS-scheme to the momentum space subtraction scheme
(MOM-scheme) [33,34] and then apply the PMC. Another
reasons for choosing the MOM scheme lie in that a bet-
ter pQCD convergence can be obtained by using the MOM
scheme than using the MS-scheme, and a more reasonable
PMC scale in perturbative region can be achieved.

For the purpose, we adopt the perturbative relation
between the MS-scheme running coupling and the mMOM-
scheme one as [35]

aMS(μ) = amMOM(μ)
[
1 − 4D1a

mMOM + · · ·
]
, (7)

where for the Landau gauge, D1 = d1,0 + d1,1n f , d1,0 =
169
144 NC , and d1,1 = − 5

18 . We then obtain

RmMOM(μ)

= RmMOM
0 (μ)

{
amMOM

[
2β0

(
ln

μ2

4m2
c

+ 1

)

−13π2

2
+ 165

2
+

(
7π2

3
− 2β0 − 14

) 〈
v2

〉
ηc

]

+ 1

}
, (8)

where RmMOM
0 (μ) = 81π2CF

2α2NC

(
amMOM(μ)

)2
. After applying

the PMC, we obtain a new PMC scale Q′
1 = exp(−3d1,1)Q1,

which equals to 1.99 or 1.80 GeV for the prediction with or
without relativistic correction. Such a larger PMC scale indi-
cates a reliable pQCD prediction can be achieved by using
the mMOM scheme.

To do the numerical calculation, we adopt the c-quark
and b-quark running masses as the MS-scheme ones [1]:
mc(mc) = (1.27 ± 0.03) GeV and mb(mb) = (4.18+0.04

−0.03)

GeV. By using the relation between the pole mass mQ and
the MS-scheme running mass m̄Q [36–39]:

Table 1 Asymptotic scales under the MS-scheme and the mMOM-
scheme with different flavor number nf

n f = 3 n f = 4 n f = 5

�
(n f )

MS
0.370+0.018

−0.018 0.325+0.018
−0.018 0.228+0.014

−0.014

�
(n f )

mMOM 0.566+0.027
−0.026 0.531+0.030

−0.028 0.397+0.025
−0.024

mQ = m̄Q
(
m̄Q

)
[

1 + 4ᾱs
(
m̄Q

)

3π
+ · · ·

]
, (9)

we obtain mc = 1.49±0.03 GeV. To be consistent, we adopt
the two-loop αs-running, whose behavior is fixed by using
the reference point αs(mZ ) = 0.1181 ± 0.0011 [1]. And we
adopt

〈
v2

〉
ηc

= 0.430 GeV2/m2
c [40,41].

Numerical results of the QCD asymptotic scales �MS and
�mMOM under Landau gauge are listed in Table 1, where the
errors are dominantly caused by the uncertainty 
αs(mZ ) =
±0.0011. The asymptotic scales for different schemes satisfy
the relation [11,35], �mMOM/�MS = exp(2D1/β0).

As a cross-check, by using the same input parameters, we
obtain the same MS-scheme prediction on R under conven-
tional scale-setting as that of Ref. [13]. Due to the reasons
listed above, we shall adopt the mMOM-scheme to do our
following discussions.

We present the PMC prediction on R at the NLO level
versus the initial choice of μ in Fig. 1, which is under the
mMOM scheme and both the results before and after apply-
ing the PMC are presented. Under conventional scale setting,
R shows a strong scale dependence which decreases with the
increment of μ. More explicitly, by varying μ from mc to
4mc, the ratio R will change from ∼ 9 × 103 to ∼ 3 × 103.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

µ (GeV)

R

Conv.
PMC
Conv−r
PMC−r

Fig. 1 The ratio R at the NLO level versus the initial choice of μ under
the mMOM scheme. mc = 1.49 GeV. The symbol “−r” stands for
relativistic corrections. For conventional scale setting, the sensitivity of
μ is very large. After applying the PMC, R is independent to the choice
of μ
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Table 2 The LO and NLO terms of R under the mMOM-scheme,
respectively

LO NLO Total κ

Conv. 2.18 × 103 2.03 × 103 4.21 × 103 0.93

Conv.-r 2.18 × 103 1.94 × 103 4.12 × 103 0.89

PMC 4.28 × 103 2.81 × 103 7.09 × 103 0.66

PMC-r 3.66 × 103 2.43 × 103 6.09 × 103 0.67

μ = 2mc. The symbol “−r” stands for relativistic corrections. κ =
RNLO/RLO, which shows the relative importance of the NLO-term and
the LO-term of R

After applying the PMC, the PMC scale Q′
1 is the same for

any choice of μ, leading to scale independent prediction. The
relativistic correction brings an extra ∼ 2% contribution to
the conventional prediction and ∼ 14% contribution to the
PMC prediction. Thus the relativistic correction is impor-
tant, especially for the PMC predictions. Figure 1 shows that
if choosing μ = Q′

1, the values of R under conventional
scale setting shall be equal to the PMC ones.

After applying the PMC, due to the elimination of diver-
gent renormalon terms as n!βn

0 αn
s , the pQCD series shall be

more convergent. We present the LO and NLO terms of R
before and after applying the PMC in Table 2. We define a
parameter κ = RNLO/RLO to show the relative importance of
the NLO-term and the LO-term. Table 2 confirms that a better
pQCD convergence can be achieved by applying the PMC. A
larger κ and a larger scale uncertainty for each term indicate
that one cannot get the exact value for each term by using a
guessed scale suggested by conventional scale-setting.

Analyzing the pQCD series in detail, we observe that the
scale errors for conventional scale-setting are rather large for
each term, and a possible net small scale error for a pQCD
approximant is due to correlations/cancelations among dif-
ferent orders. On the other hand, due to the fact that the
running of αs at each order has its own {βi }-series governed
by the renormalization group equation, the β-pattern for the
pQCD series at each order is a superposition of all the {βi }-
terms which govern the evolution of the lower-order αs con-
tributions at this particular order. Thus, inversely, the PMC
scale at each order is determined by the known β-pattern,
and the individual terms of R at each order shall be well
determined.

We present the theoretical uncertainties for the conven-
tional and the PMC scale settings in Fig. 2, in which the errors
are squared averages of the ones from the choices of the c-
quark pole mass mc and the asymptotic scale �mMOM. As a
comparison, the experimental prediction of Ref. [1] is also
presented. Under conventional scale-setting, Fig. 2 shows
that the errors caused by mc and �mMOM is smaller than the
case of PMC scale-setting, which is however diluted by the
quite large scale uncertainty. For example, the value of R with

3

4

5

6

7

8

R

Exp.error

Exp.

Conv.

PMC

Conv.− r

PMC− r

×103

Fig. 2 Uncertainties of R under the mMOM-scheme from the c-quark
pole massmc and the asymptotic scale �mMOM, where the error bars are
squared averages of the errors from those two error sources. The symbol
“−r” stands for corresponding relativistic corrections. The experimen-
tal prediction of Ref. [1] is presented as a comparison

[or without] relativistic corrections shall be varied within the

large region of
(

4.12+4.69
−1.50

)
×103 [or

(
4.21+5.06

−1.56

)
×103] for

μ ∈ [mc, 4mc]. Under PMC scale-setting, the scale uncer-
tainty is greatly suppressed, and the R uncertainty is dom-
inated by the choices of two parameters mc and �mMOM,
which give about 10% contribution to R. The value of R
decreases with the increment of mc, and increases with the
increment of �mMOM. More explicitly, we have

RConv,mMOM =
(

4.21+0.13+0.29
−0.11−0.26

)
× 103, (10)

RConv,mMOM−r =
(

4.12+0.12+0.28
−0.11−0.26

)
× 103, (11)

RPMC,mMOM =
(

7.09+0.32+0.75
−0.29−0.66

)
× 103, (12)

RPMC,mMOM−r =
(

6.09+0.21+0.58
−0.19−0.52

)
× 103, (13)

where the first error is for mc ∈ [1.46, 1.52] GeV and the
second one is caused by taking �mMOM to be the values
listed in Table 1.

Figure 2 shows that the conventional prediction of R with
or without relativistic correction is about 3.6σ deviation from
the data. This discrepancy becomes even larger by including
the NNLO term [8], thus the authors there even doubt the
validity of NRQCD theory for this particular observable.2

However, Fig. 2 shows that after applying the PMC, the
pQCD prediction and the data are consistent with each other
within reasonable errors even at the NLO level. The condi-
tion of the branching ratio 1/R is similar. This indicates that
the large discrepancy between the data and the pQCD predic-

2 The NNLO results given in Ref. [8] cannot be conveniently adopted
for setting the PMC scales. We need to confirm which n f -terms are
conformal and which are not, thus the scale-setting procedures are much
more involved. And, we think such a complex NNLO calculation need
to be confirmed by other groups.
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tion is caused by improper choice of renormalization scale,
and a simple guessed scale may lead to false prediction or
false conclusion. Thus a proper setting of the renormalization
scale is important for lower-order predictions.

As a final remark, one may also calculate R by using the
determined predictions on the decay widths (1) and (2) sepa-
rately. If taking all input parameters as the central value of our
present choices, we obtain RConv.,mMOM−r ∼ 2.57 × 10−3

and RPMC,mMOM−r ∼ 2.64 × 10−3, both of which are quite
different from our above predictions (11,13). Thus there are
large differences for those two treatments on R, which starts
at α4

s -order level. Such large differences can be explained by
the weaker pQCD convergence as can be seen from Table 2,
which shall be suppressed by including more-and-more loop
terms. We prefer the usually adopted way of using Eq. (4)
to calculate R, in which the uncertainty from the LDME is
suppressed and there is no factorization scale dependence up
to the NNLO level.

As a summary, in this paper, we have studied the ratio of
the ηc(1S) decay rate into hadrons over its decay rate into
photons by applying the PMC. The PMC provides a system-
atic way to set the optimal renormalization scale for high
energy process, whose prediction is free of initial renormal-
ization scale dependence at any fixed order. A more con-
vergent pQCD series can be achieved and the residual scale
dependence due to unknown high-order terms are highly sup-
pressed. Figure 2 shows that the large discrepancy between
the data and the pQCD prediction by using a guessed scale
suggested by conventional scale-setting can be cured by
applying the PMC. The PMC, with its solid physical and the-
oretical background, greatly improves the precision of stan-
dard model tests, and it can be applied to a wide variety of
perturbatively calculable processes.
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