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Abstract Based on the relativistic mean-field effective
interaction principle and random phase approximation theory
in superstrong magnetic fields (SMFs), we present an anal-
ysis of the influence of SMFs on the electron Fermi energy,
nuclear blinding energy, single-particle level structure and
electron capture for 55Co, and 56Ni by the shell-model Monte
Carlo method in the magnetar’s crust. The electron capture
rates increase by two orders of magnitude due to an increase
in the electron Fermi energy and a change in single-particle
level structure by SMFs. Then the rates decrease by more
than two orders of magnitude due to an increase in the nuclear
binding energy and a reduction in the electron Fermi energy
by SMFs.

1 Introduction

Electron capture (EC) has always been an interesting prob-
lem in the study of massive stars and supernova explosions.
Fuller et al. [1–3] (hereafter FFN), Dean et al. [4], Aufder-
heide et al. [5,6] (hereafter AUFD), Langanke et al. [7,8],
Nabi [9] (hereafter NKK), and Juodagalvis [10] discussed
the EC problem ignoring the influence of SMFs. In our pre-
vious work [11–18] we investigated the weak interaction and
neutrino energy loss and found that the matter properties
of manetars powered by the magnetic field energy [15–18]
could be modified significantly by SMFs. The properties of
strongly magnetized ultradense matter and their imprints on
magnetar were discussed in detail by Lai et al. [19–21].

Very recently, Mereghetti et al. [22] reviewed explic-
itly the magnetars’ properties, origin and evolution. Some
interesting behaviors such as a wide array of X-ray activity
including short bursts, large outbursts, giant flares, quasi-
periodic oscillations, enhanced spin-down, glitches and anti-
glitches are displayed in magnetars and discussed by Kaspi
and Beloborodov [23]. The electron Fermi energy, and the
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electron fraction in SMFs and the dipole magnetic field and
spin-down evolutions were explored in detail by Gao et al.
[24–28] and Zhu et al. [29].

A new improved relativistic mean-field effective interac-
tion theory (RMFEIT) with explicit density dependence of
the meson-nucleon couplings is used to calculate the energy
level for nuclear ground state and properties of excited states
[30,31]. RMFEIT has recently gained considerable success
in describing various facets of nuclear structure properties.
RMFEIT also can give a quantitative description of ground
state properties of spherical and deformed nuclei and has
been used to discuss the properties of nuclear matter by some
authors (e.g., [30–33]).

Our work differs from previous work [1–3,5,6,9]. FFN,
and AUFD based their work on the theory of the Brink
hypothesis. The Brink hypothesis is a very crude approxi-
mation, which assumes that the Gamow–Teller (GT) strength
distribution on excited states is the same as that on the ground
state. The GT strength distribution is only shifted by the exci-
tation energy of the states. NKK [9] investigated the EC issue
by using the quasi-particle random phase approximation and
addressed the problem only in the case without SMFs. We
analyze the EC in SMFs according to the shell-model Monte
Carlo (SMMC) method and random phase approximation
(RPA) theory [7,8]. Although Refs. [7,8] investigated in
detail the EC process, they have lost sight on the influence of
SMFs on the EC. Our discussions also differ from [34], which
analyzed the EC process by using the method of the Brink
hypothesis only in non-zero temperature crusts of neutron
stars.

In this paper, based on the Lai dong model [19–21] and the
RMFEIT [30–33], we improve our previous work (i.e., [12,
13]) and study the electron Fermi energy, nuclear blinding
energy, single-particle level structure and the EC problem
in SMFs. In Sect. 2, we describe the theoretical framework
and analyze the effect of SMFs on the electron property and
nuclear blinding energy in magnetars. The SMMC method,
Gamow–Teller response functions, and the EC in SMFs are
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also discussed. In Sect. 3 we present numerical results and
discussion and summarize our conclusions in Sect. 4.

2 Theoretical framework

2.1 The electron properties in magnetar’s crust

The properties of matter are significantly modified by strong
magnetic fields, such as the equation of state, the electron
energy, the outer crust structure and the composition in neu-
tron stars. Some work presented the motions of charged par-
ticle in a SMF with the quantum mechanism in detail (e.g.,
[35–37]). At first, we consider the non-relativistic motion
of a charged particle (charge ei and mass mi ) in a uniform
magnetic field, which is assumed to be along the z-axis,
the circular orbit radius and the cyclotron frequency in the
process of particle gyrates are given by r = micv⊥/|ei |B,
ωc = |ei |B/mic, respectively, here v⊥ is the velocity per-
pendicular to the magnetic field. The kinetic energy for the
electron (mi → me, ei → −e) transverse motion is quan-
tized and can be written

Ekin = 1

2
miv

2⊥ →
(
nl + 1

2

)
h̄ωc (1)

where nl = 0, 1, 2..., is the Landau level number. The
cyclotron energy for an electron is given by

Ecyc = h̄ωc = h̄
eB

ec
= 11.577B12 keV, (2)

where B12 = B/1012 G is the magnetic field strength in
units of 1012 G, The total electron energy, which includes
the kinetic energy associated with the z-momentum (pz) and
the spin energy in non-relativistic quantum environment can
be written as [35–37]

En = νh̄ωc + p2
z

2me
, (3)

where ν = nl + (1 + σz)/2. σz = −1, σz = ±1 are the
spin degeneracy for the ground Landau level (nl = 0), and
excited levels, respectively.

We define a critical magnetic field strength Bcr from the
relation of h̄ωc = mec2 (i.e. Bcr = m2

ec
3/eh̄ = 4.414×1013

G). The transverse motion of the electron becomes relativistic
when h̄ωc ≥ mec2 (i.e. B ≥ Bcr) for extremely strong mag-
netic fields. The energy eigenstates of electrons must obey
the relativistic Dirac equation and are given by [35–37]

En =
[
c2 p2

z + m2
ec

4
(

1 + 2ν
B

Bcr

)]1/2

, (4)

where the shape of the Landau wavefunction in the relativistic
theory is the same as that in the non-relativistic theory due to
the fact that the cyclotron radius is independent of the particle
mass.

In SMFs the number density of electrons ne is related to
the chemical potential UF by [19–21]

nB
e = 1

(2πρ̂)2h̄

∞∑
0

gn0

∫ +∞

−∞
f dpz, (5)

where ρ̂ = (h̄c/eB)1/2 = 2.5656 × 10−10B1/2
12 cm is the

cyclotron radius (the characteristic size of the wave packet),
and gn0 is the spin degeneracy of the Landau level, g00 = 1
and gn0 = 2 for n ≥ 1, and f = [1+exp((En−UF)/kT )]−1

is the Fermi–Dirac distribution.
According to the relation of the usual relativistic energy

and momentum from Eq. (4), the interaction energy term,
which is proportional to the quantum number ν, cannot
exceed the electron chemical potential due to the elec-
tron interaction with the magnetic field. Thus the maxi-
mum number of Landau levels νmax, related to the high-
est value of the allowed interaction energy, should be sat-
isfied with En = UF when νmax, and pz = 0. So we have
νmax = Bcr/2B(U 2

F/(m2
ec

4) − 1). However, in the general
case (i.e., 0 ≤ ν ≤ νmax), when the maximum electron
momentum is equaled to the Fermi momentum PF for dif-
ferent Landau level value ν, the electron chemical potential
from Eq. (4) can be computed as follows:

En(ν) =
[
c2 p2

F + m2
ec

4
(

1 + 2ν
B

Bcr

)]1/2

= UF. (6)

If we define a non-dimensional Fermi momentum xe(ν) =
pF/mec, and a non-dimensional Fermi energy γe = UF/

mec2, the electron density, the electron energy, and the elec-
tron pressure can be written as [19–21]

nB
e = B

2π2Bcrλ3
e

νmax∑
ν=0

gn0xe(ν), (7)

εe = Bmec2

2π2Bcrλ3
e

νmax∑
ν=0

gn0

(
1 + 2ν

B

Bcr

)
ϑ+

[
xe(ν)

(1 + 2νB/Bcr)1/2

]
,

(8)

and

Pe = Bmec2

2π2Bcrλ3
e

νmax∑
ν=0

gn0

(
1 + 2ν

B

Bcr

)
ϑ−

[
xe(ν)

(1 + 2νB/Bcr)1/2

]
,

(9)

respectively, where ϑ±(x) = 1
2 x

√
1 + x2 ± 1

2 ln(x +√
1 + x2), λe = h̄/mec is the electron Compton wavelength.
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2.2 The nuclear energy in magnetar’s crust

The matter in the outer crust of a cold (T = 0 K) magnetar
consists of a Coulomb lattice of completely ionized atoms
and a uniform Fermi gas of relativistic electrons. The Gibbs
free energy per baryon g(A, z, P) at a constant pressure and
zero temperature is given by [38]

g(A, Z , P) = E(A, z, p) + PV

A
= ε + P

n
, (10)

where ε is the corresponding energy per nucleon,n = A/V is
the baryon density in a cell, and V is the volume occupied by
a unit cell of the Coulomb lattice. The energy per nucleon ε,
which consists of three different contributions from nucleus,
electrons, and lattice is given by

ε = εn(A, z) + εe(A, z, P) + εl(A, z, n), (11)

where the nuclear contribution to the total energy per nucleus
is simple and independent of the density and is written as

εn(A, z) = M(A, z)

A
= 1

A
[zm p + (A − z)mn − εb(A, z)],

(12)

where M(A, z) is the nucleus mass, εb(A, z) is the corre-
sponding binding energy, and mn and mp are neutron and
proton masses, respectively.

Based on RMFEIT [32,33], Pena Arteaga et al. [39] dis-
cussed the influence of SMFs on the nuclear binding energies.
An effective Lagrangian with nucleons and mesons is given
by the simple and independent density function [39–41]

L = LN + Lm + L int + LBO + LBM, (13)

where LN, Lm, and L int are the Lagrangian of the free
nucleus, the free meson fields and the electromagnetic field
generated by protons, and the Lagrangian describing the
interactions, respectively. These Lagrangians are represented
as

LN = ψ̄(iγ μ∂μ − mnu)ψ, (14)

Lm = 1

2
∂μσ∂μσ − 1

2
mσ σ 2 − 1

4

μν


μν + 1

2
m2

ωωμωμ

−1

4
RμνRμν + 1

2
m2

ρρμρμ − 1

4
FμνF

μν −U (σ ),

(15)

and

L int = −gσ ψ̄σψ − gωψ̄γ μωμσψ − gρψ̄γ μτρμψ

−eψ̄γ μAμψ, (16)

respectively, where ψ is the Dirac spinor. mnu, and mσ ,mω,

mρ, are the nucleon and meson masses, respectively.U (σ ) =
(g2/3)σ 3 + g3/4)σ 4 is the standard form for the nonlin-
ear coupling of the σ meson field. gσ , gω, gρ are the cou-
pling constants for the σ, ω, ρ, respectively. e is photon fields
which vanishes for neutrons.

The coupling of the proton orbital motion with the exter-
nal magnetic field, and the coupling of proton and neutron
intrinsic dipole magnetic moments with the external mag-
netic field can be expressed as [42]

LBO = eψ̄γ μA(ext)
μ ψ, (17)

and

LBM = −ψ̄χ(ext)
τ3

ψ, (18)

respectively, where χ
(ext)
τ3 = κτ3μN 1

2σμνF (ext)μν , F (ext)μν

is the external field strength tensor. σμν = i
2 [γ μ, γ ν], μN =

eh̄/2m is the nuclear magneton, κn = gn/2, κp = gp/2 − 1
(here gn = −3.8263, gp = 5.5856) are the intrinsic mag-
netic moments of protons and neutrons, respectively.

The contribution of electrons, which are treated as a degen-
erate free Fermi gas, is given by

εe(A, z, P) = 1

nπ2

∫ pF

0
p2

√
p2 + m2

ec
4dp

= m4
ec

8

8nπ2 [xe(ν)γe(x
2
e (ν) + γ 2

e )

− ln(xe(ν) + γe)]. (19)

The lattice energy per baryon εl(A, Z , n) can be written
as [42]

εl(A, Z , n) = −1.81962
(ze)2

a
= −Cbcc

z2

A4/3 pF, (20)

where Cbcc = 3.40665 × 10−3, and a is the lattice constant.
Similar calculations such as faced-centered cubic or simple
cubic ones can be carried out by evaluating different lattice
configurations.

2.3 The SMMC method and Gamow–Teller response
functions

Here we neglect the effect of SMFs on the GT properties here
because the GT transition matrix elements for electron cap-
ture do not depend on the magnetic fields [35,43]. A detailed
discussion of the SMMC method can be found in [44]. Based
on a statistical formulation of the nuclear many-body prob-
lem in the finite-temperature version of this approach, an
observable is calculated as the canonical expectation value
of a corresponding operator Â by the SMMC method at a
given temperature T , and is written by [45–48]
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Â = (TrA[ Âe−β Ĥ ])/(TrA[e−β Ĥ ]). (21)

The problem of the shell-model Hamiltonian Ĥ has been
investigated in detail by Ref. [48]. When a certain many-
body Hamiltonian Ĥ is given, a tractable expression for
an imaginary-time evolution operator is written by Û =
exp−β Ĥ , where β = 1/TN, TN is the nuclear temperature
in units of MeV. TrAÛ is the canonical partition function
for A nucleons. In terms of a spectral expansion, the total
strength of a transition operator Â is then given by the fol-
lowing expectation value:

B(A) ≡ 〈 Â† Â〉 =
∑

i, f e
−βEi |〈 f | Â|i〉|2∑
i e

−βEi
, (22)

here |i〉, | f 〉 are the many-body states of the initial and final
nucleus with energy Ei , E f , respectively.

The SMMC method is used to calculate the response func-
tion RA(τ ) of an operator Â at an imaginary time τ . By using
a spectral distribution of initial and final states |i〉 and | f 〉
with energies Ei and E f . RA(τ ) is given by [4,7,8]

RA(τ ) ≡ 〈 Â†(τ ) Â(0)〉 = TrA[e−(β−τ)Ĥ Â†e−τ Ĥ Â]
TrA[e−β Ĥ ]

=
∑

i f (2Ji + 1)e−βEi e−τ(E f −Ei )|〈 f | Â|i〉|2∑
i (2Ji + 1)e−βEi

. (23)

Note that the total strength for the operator is given by
R(τ = 0). SGT+ is the total amount of the GT strength avail-
able for an initial state given by summing over a complete
set a final states in GT transition matrix elements |MGT|2i f .
The strength distribution is given by [4]

SGT+ (E) =
∑

i f δ(E − E f + Ei )(2Ji + 1)e−βEi |〈 f | Â|i〉|2∑
i (2Ji + 1)e−βEi

= SA(E), (24)

which is related to RA(τ ) by a Laplace transform, RA(τ ) =∫ ∞
−∞ SA(E)e−τ EdE . Note that here E is the energy trans-

fer within the parent nucleus, and the strength distribution
SGT+(E) has units of MeV−1.

2.4 The study of EC

The weak interactions were investigated by some authors,
e.g., Refs. [8,10], by using the RPA theory and SMMC
method with a global parameterizations of the single-particle
numbers, The EC rate in the absence of a SMFs is related to
the electron capture cross-section and can be given by Eq.
(4) in Ref. [4]. We can compute the EC rates from one of
the initial states to all possible final states in a SMFs and in
a weak magnetic field approximation (B << Bcr). The EC
rates in both cases are expressed by [12,13]

λ0
ec(LJ) = ln 2

6163

∫ ∞

0
dξ SGT

c3

(mec2)5

×
∫ ∞

p0

dpe p
2
e (−ξ + εn)

2F(Z , εn) f (εn,UF, T ),

(25)

and

λB
ec(LJ) = ln 2

6163

∫ ∞

0
dξSGT

c3

(mec2)5

b

2

∞∑
0

θn, (26)

respectively, where θn = gno
∫ ∞
pB0

dpe p2
e (−ξ +εn)

2F(Z , εn)

f (εn,UF, T ), b = B/Bcr, the εn is the total rest mass and
kinetic energies, and F(Z , εn) is the Coulomb wave correc-
tion.

In the case without and with SMFs, the p0 and pB0 are
defined as

p0 =
{√

Q2
i f − m2

ec
4 (Qi f < −mec2)

0 (otherwise); (27)

and

pB0 =
{√

Q2
i f − �, (Qi f < �1/2)

0 (otherwise),
(28)

respectively, where � = m2
ec

4(1 + 2νB/Bcr) = m2
ec

4(1 +
2νb).

3 Results and discussions

The magnetar surface thermal temperature is high as (4−6)×
106 K, and the crust temperature may be higher, about several
108 K. For example, the maximum of inner crust temperature
for some light elements may be as high as 2 × 108 K (e.g.,
[23,49]), but the maximum of inner crust temperature for
some iron elements may be as high as 109 K (e.g., [50–52]).
In this paper, we discuss the electron capture for iron group
nuclei, so we select several typical inner crust temperature
value at the order of 109 K.

In considering relativistic electrons in magnetar crust, the
electron chemical potential should range from 10 mec2 to
100 mec2. Figure 1 shows the EC rates of 55Co, and 56Ni as
a function ofUF (note ρ7 and T9 are in units of 107 g/cm3 and
109 K, respectively). The electron chemical potential effects
greatly on EC process in SMFs due to the different Q-value
and transition orbits. When density and temperature are given
(e.g., ρ7 = 5.86,Ye = 0.47, T9 = 3.40), the rates decrease
when 1 mec2 < UF < 5 mec2, then increase by about more
than one order of magnitude as electron chemical potential
increases when 5 mec2 < UF ≤ 100 mec2. According to the
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Fig. 1 The EC rates for 55Co and 56Ni as a function of electron Fermi
energy UF when 10 < B12 < 106 under the different conditions
CDi, i = 1–5, corresponding to ρ7 = 5.86, Ye = 0.47, T9 = 3.40;

ρ7 = 6.63, Ye = 0.46, T9 = 3.51; ρ7 = 11.7, Ye = 0.45, T9 = 3.73;
ρ7 = 14.5, Ye = 0.44, T9 = 3.80; and ρ7 = 106, Ye = 0.43, T9 =
4.93

discussions in Refs. [19–21], the electron chemical poten-
tial is strongly depended on the factor B−2

12 (Yeρ)2. When
magnetic field strength is given, the higher the density, the
larger the electron chemical potential. When the density and
temperature are given, the smaller the magnetic fields, the
larger the electron chemical potential becomes. Thus, a large
number of electrons involve an EC reaction because their
chemical potential exceeds the Q-value.

A SMFs has a great influence on EC rates. From Fig. 2, one
sees that the higher the density, the larger the rates become.
Because the electron kinetic energy and electron chemical
potential are so high that the influence of SMFs on rates is
dramatic at relativity higher density. As the SMFs increases,
the rates increase by about two orders of magnitude. Then
the rates decrease by more than two orders magnitude when
1014G < B < 1015 G. But then another increase of the EC
rates appears when B > 1015 G.

Form Fig. 2, we find that the EC rates decrease when
B12 > 100. According to Eqs. (4)–(8), when νmax � 1,
for electron Fermi energy, the Landau energy level spacing
becomes a very small fraction. When the electron gas is in
a mildly relativistic state, we have νmax → Ue/h̄ωc. But
for relativistic electron gas, the νmax ≥ 100/B12 when the
Ue ≥ 1 MeV. Thus, the νmax tends to the order of unity, and
the electron Landau levels will be termed strongly quantized
as the magnetic field strength increases (i.e. when B12 ≥
10 ∼ 100).

Based on the RMFEFT models of [32,33], we study the
effect of SMFs on the binding energy per particle, which

has a parabolic increase as the SMFs increases. According to
Eqs. (12)–(18), we calculate the binding energy for 56Ni, and
55Co, and find that the binding energies increase by 0.601,
and 0.402 MeV, respectively when the SMFs increases from
1016 to 1018 G. This is equivalent to significantly raise the
threshold energy of EC due to an increase in nuclear bind-
ing energy. Thus, the EC is crippled greatly by a SMFs.
Meanwhile, because of the interaction between the electrons
and SMFs, the electron Fermi energy decreases as a SMFs
increases. This actually discourages the EC reaction.

Based on Eqs. (17) and (18), and Refs. [32,33], we
find that an abrupt increase is shown for EC rates when
1014 G ≤ B ≤ 1016 G shown as in Fig. 2. Such a jump
shows that the underlying shell structure may be changed in
a fundamental way. This jump in nuclear properties can be
traced to the single-particle behavior. A particle will move
from a level going upwards and go to a level downward with
increasing spin by SMFs. Because of the two levels have
opposite angular momentum along the symmetry axis, the
nucleus becomes spin-polarized. The single-particle struc-
ture for protons and neutrons is strongly modified by a SMFs.
Firstly, the strong interaction between the magnetic field and
the neutron (proton) magnetic dipole moment will lead to
the nucleon paramagnetism. Secondly, the coupling of the
orbital motion of protons with SMFs also make the proton
orbital magnetism. The interaction between the nucleus and
SMFs maybe removes all degeneracies in the single-particle
spectrum, and it breaks significantly the formerly degenerate
levels with opposing signs of the angular momentum projec-
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Fig. 2 The EC rates for 55Co and 56Ni as a function of magnetic field
strength B under the different conditions CDi, i = 1–5, corresponding
to ρ7 = 5.86, Ye = 0.47, T9 = 3.40; ρ7 = 6.63, Ye = 0.46, T9 =
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Fig. 3 The GT+ distributions SGT+ for nuclei 55Co and 56Ni as a function of the energy transfer from the electron, E = E f −Ei at the temperature
of T = 0.8 MeV

tion. A reduction of the neutron and proton pairing gaps will
show because of splitting from single-particle energy as the
SMFs increases. Finally, it will lead to their disappearance.

Here we neglect the effect of SMFs on the GT because
the GT transition matrix elements for electron capture do not
depend on the SMFs [35,43]. Figure 3 shows the strength dis-
tributions SGT+ for 55Co and 56Ni as a function of the daugh-
ter state excitation energy. According to Eqs. (21)–(23), we

calculate the SGT+ and find the peak of it reaches to 2.211,
and 4.89 MeV−1 at 3.5, 1.45 MeV of daughter nuclei 55 Fe,
and 56Co, respectively. The total GT strength for 56Ni in a
full p f -shell may be calculated by B(GT) = 10.1g2

A accord-
ing to the data of experiment. For 55Co, we discuss the total
GT strength and the distribution in a truncated calculation,
in which five particles in the final nucleus are maximally
allowed to be excited out of the state of f7/2. We obtain a
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Table 1 Comparisons of the maximum value of our calculations
λB

max(LJ) with those of minimum value λB
min(LJ) for 55Co, and 56Ni

when 1013G ≤ B ≤ 1018G under the conditions CDi, i = 1–
6, corresponding to ρ7 = 5.86, Ye = 0.47, T9 = 3.40; ρ7 =

6.63, Ye = 0.46, T9 = 3.51; ρ7 = 11.7, Ye = 0.45, T9 = 3.73;
ρ7 = 14.5, Ye = 0.44, T9 = 3.80; ρ7 = 106, Ye = 0.43, T9 = 4.93,
and ρ7 = 4010, Ye = 0.41, T9 = 7.33. The ratio is computed as
s = λB

max(LJ)/λB
min(LJ)

Condition 55Co 56Ni

B λB
min(LJ) B λB

max(LJ) s B λB
min(LJ) B λB

max(LJ) s

CD1 3.678e14 7.207 1.000e18 7.031e3 9.7560e2 3.6780e14 2.873 1.000e18 2.851e3 9.9230e2

CD2 4.132e14 7.838 1.000e18 7.067e3 9.0160e2 4.132e14 3.185 1.000e18 2.866e3 8.9980e2

CD3 7.391e14 1.373e1 1.000e18 7.140e3 5.2000e2 7.391e14 5.580 1.000e18 2.897e3 5.1920e2

CD4 9.326e14 1.682e1 1.000e18 7.163e3 4.2590e2 8.302e14 6.839 1.000e18 2.907e3 4.2510e2

CD5 6.734e15 1.181e2 1.000e18 7.567e3 6.4100e1 6.734e15 4.790e1 1.000e18 3.074e3 6.4200e1

CD6 1.000e13 1.713e2 3.432e16 5.875e5 3.4297e3 1.000e13 1.485e2 3.430e16 3.062e5 3.4296e3

Table 2 Comparisons of the no SMFs rates of FFN [2] (λ0
ec(FFN)), AUFD [6] (λ0

ec(AUFD)), and our rates (λ0
ec(LJ)), with those of ours λB

ec(LJ)
in SMFs for ρ7 = 4.32, Ye = 0.47, T9 = 3.26, respectively

AZ λ0
ec(FFN) λ0

ec(AUFD) λ0
ec(LJ) λB

ec(LJ)

B12 = 10 B12 = 102 B12 = 103 B12 = 104 B12 = 105 B12 = 106

56Ni 7.41e−3 8.55e−3 6.321e−3 1.485e2 3.004e1 3.466e0 2.709e1 2.767e2 2.832e3
55Co 8.42e−2 5.13e−2 3.225e−3 1.713e2 4.367e1 8.544e0 6.681e1 6.825e2 6.986e3

Table 3 Comparisons of the rates of FFN [2] (λ0
ec(FFN)), AUFD [6] (λ0

ec(AUFD)), NKK [9] (λ0
ec(NKK)), and our rates (λ0

ec(LJ)), which are in
the case without SMFs with those of ours λB

ec(LJ) in the case with SMFs for ρ7 = 5.86, Ye = 0.47, T9 = 3.40, respectively

AZ λ0
ec(FFN) λ0

ec(AUFD) λ0
ec(NKK) λ0

ec(LJ) λB
ec(LJ)

B12 = 10 B12 = 102 B12 = 103 B12 = 104 B12 = 105 B12 = 106

56Ni 1.30e−2 1.28e−2 4.83e−3 1.250e−2 1.479e2 1.663e2 3.946e0 2.733e1 2.786e2 2.851e3
55Co 1.36e−1 7.99e−2 3.99e−2 1.336e−1 1.674e2 1.844e2 9.627e0 6.737e1 6.870e2 7.031e3

total GT strength of 8.7g2
A from the ground states of 55Co,

and 8.9g2
A from both of the excited states of J = 3/2.

According to Eqs. (6)–(8) and (25), we calculate the max-
imum and the minimum value of the EC rates in SMFs for the
two typical nuclei by considering the effect of all evaluating
factors, and list them in Table 1. The maximum rates reach
5.875×105 s−1, and 3.062×105 s−1 when B = 3.432×1016

G for 55Co, 56Ni, at ρ7 = 4010,Ye = 0.41, T9 = 7.33,
respectively. However, the minimum EC rates are 7.207 s−1,
and 2.873 s−1 when B = 3.678 × 1014 G for 55Co, 56Ni,
at ρ7 = 5.86,Ye = 0.47, T9 = 3.40, respectively. The
rates increase by about three orders magnitude as the SMFs
increases.

FFN [1–3], AUFD [5,6], and NKK [9] studied EC rates
in the case that there are no SMFs. In Tables 2 and 3, we
present the comparisons of our results in SMFs with those of
FFN, AUFD, and NKK. Our results in the case that there are
no SMFs are about 14.7, and 26.07% lower than FFN, and
AUFD, respectively, but they are about one order of mag-
nitude larger than that of NKK (e.g. at ρ7 = 5.86, T9 =

3.40,Ye = 0.47). Our SMFs rates are by about six orders of
magnitude higher than those of FFN (AUFD), and NKK when
10 < B12 < 106 for 55Co, and 56Ni. FFN used the semi-
empirical atomic mass formula from Ref. [53] to estimate
the Q-value and the EC rates, thus the Q-value used in the
effective rates are quite different. Based on the nuclear shell
model and the Brink hypothesis method, AUFD expanded
the FFN work and analyzed the nuclear excited level by
a simple calculation on the nuclear excitation levels tran-
sitions. The Brink hypothesis is a very crude approxima-
tion. Thus the calculation method is a little rough. Using
the quasi-particle random phase approximation theory, NKK
expanded the nuclear excitation energy distribution by con-
sidering the particle emission processes, which constrained
the parent excitation energies. However, only low angular
momentum states are considered. The SMMC method actu-
ally draws an average of GT intensity distribution of the
EC process, and the calculated results are in good agree-
ment with experiments. Thus the method is relatively accu-
rate.

123



84 Page 8 of 9 Eur. Phys. J. C (2018) 78 :84

4 Summary

In this work, we investigate the EC for 55Co, and 56Ni and the
influences of SMFs on electron Fermi energy, binding energy
per nuclei, and single-particle level structure in magnetar
crust based on the RMFEIT, and Lai dong model; we compare
our results with those of FFN, AUFD, and NKK. Our results
increase by about two orders of magnitude as SMFs increase,
and then decrease by more than two orders magnitude. There
is an abrupt increase in EC rates around B = 3 × 1014 G for
ρ7 < 100 (but around B = 3×1015 G for ρ7 > 100). Such a
jump may be an indication that the underlying shell structure
has changed in a fundamental way because of single-particle
behavior by SMFs. We find that the EC rates in the case that
there are no SMFs are about 14.70, and 26.07 % lower than
those of FFN, and AUFD (e.g. for 55Co at ρ7 = 4.32, T9 =
3.26,Ye = 0.47), but they are about one order of magnitude
larger than that of NKK (e.g., at ρ7 = 5.86, T9 = 3.40,Ye =
0.47). But our EC rates in SMFs are by about six orders of
magnitude higher than those of FFN, AUFD, and NKK when
10 < B12 < 106 for 55Co, and 56Ni.

The observations show that the persistent X-ray emission
of a magnetar could originate from magnetic field decay or
heating from magnetospheric current and/or from the EC
reaction in the crust. The research on EC reaction in magne-
tar’s crust is still a long-term and arduous task. Our results
may be helpful to the future study of the magnetar thermal
evolution, and soft X-ray emission mechanism.
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