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Abstract Various methods are used in the literature for pre-
dicting the lightest CP-even Higgs boson mass in the Minimal
Supersymmetric Standard Model (MSSM). Fixed-order dia-
grammatic calculations capture all effects at a given order and
yield accurate results for scales of supersymmetric (SUSY)
particles that are not separated too much from the weak scale.
Effective field theory calculations allow a resummation of
large logarithmic contributions up to all orders and there-
fore yield accurate results for a high SUSY scale. A hybrid
approach, where both methods have been combined, is imple-
mented in the computer code FeynHiggs. So far, how-
ever, at large scales sizeable differences have been observed
between FeynHiggs and other pure EFT codes. In this
work, the various approaches are analytically compared with
each other in a simple scenario in which all SUSY mass scales
are chosen to be equal to each other. Three main sources are
identified that account for the major part of the observed dif-
ferences. Firstly, it is shown that the scheme conversion of
the input parameters that is commonly used for the compar-
ison of fixed-order results is not adequate for the compari-
son of results containing a series of higher-order logarithms.
Secondly, the treatment of higher-order terms arising from
the determination of the Higgs propagator pole is addressed.
Thirdly, the effect of different parametrizations in particular
of the top Yukawa coupling in the non-logarithmic terms is
investigated. Taking into account all of these effects, in the
considered simple scenario very good agreement is found for
scales above 1 TeV between the results obtained using the
EFT approach and the hybrid approach of FeynHiggs.
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1 Introduction

The properties of the Higgs boson that has been discovered
by the ATLAS and CMS collaborations at the CERN Large
Hadron Collider [1,2] are compatible with those predicted for
the Higgs boson of the Standard Model (SM) at the present
level of accuracy. Despite this apparent success of the SM,
there are several open questions that cannot be answered
by the SM and ask for extended or alternative theoretical
concepts. Supersymmetry is one of best motivated frame-
works for physics beyond the Standard Model (BSM), and
in particular the Minimal Supersymmetric Standard Model
(MSSM) is the most intensively studied scenario providing
precise predictions for experimental phenomena in the LHC
era.

Apart from associating a superpartner to each SM degree
of freedom, the MSSM extends the Higgs sector of the SM
by a second complex doublet. Consequently, the MSSM
employs two Higgs-boson doublets, denoted by H; and H>,
with hypercharges —1 and +1, respectively. After minimiz-
ing the scalar potential, the neutral components of H; and H»
acquire vacuum expectation values (vevs), vy and vy. With-
out loss of generality, one can assume that the vevs are real
and non-negative, yielding

vzzvlz—}—v%, tan 8 = vy /vy. (1)
The two Higgs doublets in the MSSM accommodate five
physical Higgs bosons. In lowest order these are the light and
heavy CP-even Higgs bosons, & and H, the CP-odd Higgs
boson, A, and two charged Higgs bosons, H*. Two param-
eters are required to describe the Higgs sector at the tree
level (conventionally chosen as tan 8 and the mass M4 of
the CP-odd Higgs particle); masses and couplings, however,
are substantially affected by higher-order contributions.
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Until now, experiments have not found direct evidence for
supersymmetric (SUSY) particles. On the other hand, preci-
sion observables provide an indirect access to the MSSM
parameter space from which significant constraints on the
allowed parameter regions can be obtained. On top of the
classical set of electroweak precision observables, the mass
of the detected Higgs boson constitutes an additional impor-
tant precision observable, MZ’XP = 125.09 £ 0.24 GeV
[3]. If the measured value is associated with the mass M},
of the lightest CP-even Higgs boson within the MSSM
(for a recent discussion of the viability of the interpreta-
tion in terms of the heavy CP-even Higgs boson H, see
[4]), the comparison of the predicted value with the mea-
surement constitutes an important test of the model with
high sensitivity to the SUSY mass scales (see e.g. [5—
7] for reviews). In order to fully exploit the high pre-
cision of the experimental measurement for constraining
the SUSY parameter space the accuracy of the theoret-
ical prediction for M) has to be improved very signifi-
cantly.

So far, the full one-loop corrections [8—11], dominant two-
loop corrections [12-35] and partial three-loop results [36—
38] for the light MSSM Higgs-boson mass have been cal-
culated diagrammatically. Besides fixed-order calculations,
effective field theory (EFT) methods have been used to resum
large logarithmic contributions in case of a large mass hier-
archy between the electroweak and the SUSY scale [39-43].
These EFT calculations, however, are less accurate for rela-
tively low SUSY mass scales owing to terms suppressed by
the SUSY scale(s) which correspond to higher-dimensional
operators in the EFT framework (see [44] for recent work in
this direction).

In order to profit from the advantages of both methods
— high accuracy for relatively low SUSY scales in the case
of the diagrammatic approach versus high accuracy for a
high SUSY scale in the case of the EFT approach — a
hybrid method combining both approaches has been devel-
oped [45,46], see also [47,48] for different implementations.
The method introduced in [45,46] has been implemented into
the publicly available code FeynHiggs [11,17,49-51] such
that the fixed-order result is supplemented with higher-order
logarithmic contributions.

Comparisons between FeynHiggs and pure EFT codes
in the literature [43,47,48] have revealed non-negligible dif-
ferences between the predicted values for M} . In particular,
deviations have been observed for large SUSY scales, where
terms not captured in the EFT framework are supposed to
be negligible. At first glance, such differences appear to be
unexpected since the resummation of logarithms included in
FeynHiggs is at the same level of accuracy as in pure EFT
calculations.

In order to clarify the situation, it is the purpose of this
work to perform an in-depth comparison of the various

@ Springer

approaches to explain the origin of the observed differences.
For simplicity, we choose a single-scale scenario,

Mot = u = My = Msysy, (2)

where Mg are the soft SUSY-breaking masses and p is the
Higgsino mass parameter. Furthermore, all parameters are
assumed to be real, i.e. we work in the CP-conserving MSSM
with real parameters.! While the chosen single-scale scenario
is particularly suitable for the EFT approach, it should be
noted that in realistic cases the actual task is to provide the
most accurate prediction (together with a reliable estimate of
the remaining theoretical uncertainties) for the Higgs-boson
masses of the model for a given SUSY mass spectrum which
may contain a variety of SUSY scales. We leave an investi-
gation of such multi-scale scenarios for future work.

We shall explain that there are essentially three sources
of the observed differences. In a first step, we show that the
usual scheme conversion of input parameters is not suitable
for the comparison of results containing a series of higher-
order logarithms. Such a scheme conversion can lead to large
shifts corresponding to formally uncontrolled higher-order
terms. Secondly, we analytically identify specific terms aris-
ing through the determination of the Higgs propagator pole
which cancel with subloop renormalization contributions in
the irreducible self-energies of the diagrammatic approach
for a large SUSY scale. We develop an improved treatment
where unwanted effects from incomplete cancellations are
avoided. Thirdly, we show how different parametrizations
of non-logarithmic terms can explain remaining differences
between the results of FeynHiggs and pure EFT codes for
high scales.

The paper is organized as follows. In Sect. 2, we review
the different approaches with a particular focus on how the
Higgs pole mass is extracted. In Sect. 3, we compare the
results of the various approaches for the Higgs pole mass
to each other. In Sect. 4, we discuss the issue of using DR
input parameters as input of an OS calculation. In Sect. 5,
we give a brief overview about the levels of accuracy of the
M), evaluation implemented in various codes. In Sect. 6, we
present a numerical analysis showing the impact of the effects
discussed in the previous sections and numerically compare
FeynHiggs to other codes. The conclusions can be found
in Sect. 7. Two appendices provide additional details.

2 Calculating the Higgs mass

In this section, we shortly review how the pole mass of the
lightest CP-even Higgs boson of the MSSM is calculated in

I Note that FeynHiggs works also with complex parameters includ-
ing an interpolation of the resummation routines.
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a pure diagrammatic calculation, in a pure EFT calculation,
and in the hybrid approach of FeynHiggs.

2.1 Diagrammatic fixed-order calculation

A well-established way to calculate corrections to the mass
of the SM-like Higgs of the MSSM, as well as to the mass
of the heavier CP-even neutral Higgs boson and the charged
Higgs boson, is a fixed-order Feynman diagrammatic (FD)
calculation. The prediction is based on the calculation of
Higgs self-energies involving contributions from SM parti-
cles, extra Higgs bosons, as well as their corresponding super-
partners. In this approach the contributions from all sectors
of the model and of all particles in the loop can be incorpo-
rated at a given order. The mass effects of all particles in the
loop can be taken into account for any pattern of the mass
spectrum. If there is however a large splitting between the rel-
evant scales, in particular a large mass hierarchy between the
electroweak and the scale of some or all of the SUSY par-
ticles, the fixed-order result will contain numerically large
logarithms that can spoil the convergence of the perturbative
expansion.

In the MSSM with real parameters, after calculating the
renormalized Higgs-boson self-energies, the physical masses
of the CP-even Higgs bosons /2, H can be obtained by finding
the poles of their propagator matrix, whose inverse is given
by

Ay =i (PZ —m} & EMSM(p2)

ZA‘MSSM (p2)

£ ()
hH

P i+ S )

3

where mj, (mpyg) denotes the tree-level mass of the & (H)
boson and ZA‘hh,h H,HH are the corresponding self-energies.
We introduced the label “MSSM” to indicate that the corre-
sponding self-energy contains SM-type contributions as well
as non-SM contributions.

Concerning the renormalization, we follow here the
approach used in the program FeynHiggs. Accordingly,
the circumflex "~ indicates that the self-energies have been
renormalized using the mixed on-shell (OS) and DR-scheme
of [11]. In particular, the A-boson mass is renormalized on-
shell, whereas the Higgs field renormalization and the renor-
malization of tan f is performed using the DR scheme.

The masses of the weak gauge bosons (Mz, My ) and the
electromagnetic charge e are renormalized on-shell, and the
tadpole renormalization is carried out such that the tadpole
contributions are cancelled by their respective counterterms.
The OS vev is a dependent quantity, which is given in terms
of the OS values of the observables My, sy and e by

252 M2
o = 2 @

where sy, denotes the sine of the weak mixing angle. The
renormalization of this quantity at the one-loop level is there-
fore given in terms of the OS counterterms of My, sy and e,

2 172
255 My,
2

2 172
255 My, .
2

e e

2 2 2
| om, +é SMy  SMy\ e
My, SR\ MZ o M e |’
w w z w

&)

where 6 M %V , are the mass counterterms of the W and Z
bosons, respectively, and 8¢ is the counterterm of the elec-
tromagnetic charge (c\z,v =1- s\%). Motivated by the fact that
the renormalization of the vev receives a contribution from
the field renormalization of the Higgs doublet, we identify the
counterterm given in Eq. (5) with § U%s / U(Z)s + 6 Zpp, where
8 Zyy 1s the field renormalization counterterm of the SM-like
Higgs field fixed in the DR scheme.” Accordingly, the OS
counterterm of the vev defined in this way reads

513 5M3V> se?

SM? 2 ([ sMZ
= W C—W ( Z — 6—2 — 8Zhh.

s ML s2\ ML M
(6)

The results for the self-energies in FeynHiggs have been
reparametrized in terms of the Fermi constant G r instead of
the electric charge e. The corresponding vev vg,. is related
to vos via

1
2V2GF

MSSM predictions for the quantity Ar can be found in [52—
55]. The effect of this reparametrization in the one-loop self-
energies is formally of two-loop order.

Furthermore (in the default choice), the stop sector is
renormalized using the OS scheme, which is defined by
applying on-shell conditions for the respective masses: the
top-quark mass M;, and the top-squark masses M; and M.
A fourth renormalization condition fixes the mixing of the
stops and can be identified with a condition for the top-squark
mixing angle.

Employing this scheme, in FeynHiggs the full one-
loop corrections to the Higgs self-energies as well as two-
loop corrections of (oo, apory, atz, o ap, ocZ) are imple-
mented [11,17,22,23,25,27,30,33,34,49-51]. While those
two-loop corrections in the gauge-less limit have been
obtained for vanishing external momentum, there is further-
more an option to incorporate the momentum dependence of

vds = véF(l + Ar) with vép =

(N

2 Here, we already implicitly assume the decoupling limit (M4 > Mz)
in the sense that we identify the /& boson as the SM-like Higgs.

@ Springer
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the corrections at & (a;a5) [56,57] (see also [58]). Finding
the (complex) poles for the case where CP conservation is
assumed corresponds to solving the equation

<p2 _mz n Zﬁ}ll\/ISSM(pZ)> (p _mH + EMSSM( 2))
_( MSSM( 2)> —0. 8)

In the decoupling limit, M4 > My, the physical mass of
the lightest Higgs boson can approximately be obtained as
solution of the simpler equation

p*—mi + ZMSM(p2y = 0 9)

up to corrections from the 4 H and H H self-energies, which
are suppressed by powers of M 4. In the following discussion
we will for simplicity use Eq. (9) for determining the pole
of the propagator and we will furthermore neglect the imagi-
nary parts of the self-energies. In FeynHiggs the complex
poles of the propagator are obtained from the full propagator
matrix, taking into account the real and imaginary parts of
the Higgs-boson self-energies.

Solving Eq. (9) iteratively for the case where imaginary
parts are neglected yields an expression for the Higgs pole
mass,

(M}%)FD — m%; MSSM(mh) + EMSSM/( %l)ﬁ-%SSM(mi)
T (10)

where the prime denotes the derivative of the self-energy
with respect to the momentum squared. The ellipsis stands
for terms involving higher-order derivatives and products of
differentiated self-energies. In Appendix B we provide a for-
mula from which these terms can be derived recursively. The
Higgs pole mass at a given order is obtained from Eq. (10)
via a loop expansion to the appropriate order.

2.2 Effective field theory calculation

Another approach to calculate the mass of the SM-like Higgs
boson in the MSSM is using effective field theory (EFT)
methods. These allow the resummation of large logarithmic
contributions, so that higher-order contributions beyond the
order of fixed-order diagrammatic calculations can be incor-
porated. Without including higher dimensional operators in
the effective Lagrangian, contributions suppressed by a heavy
scale are however not captured.

In the simplest EFT framework, all SUSY particles are
integrated out from the full theory at a common mass scale
Mgusy. Below Msysy the SM remains as the low-energy
EFT. The couplings of the EFT are determined by matching
to the MSSM at the scale Msysy. In the case of the SM as the

@ Springer

EFT? below Msysy this concerns only the effective Higgs
self-coupling A, all the other couplings are fixed by matching
them to observables at the low-energy scale. Renormalization
group equations (RGEs) are used to correlate the couplings
at the high scale Msysy and the low scale, typically chosen
to be the OS top mass M; (or Mz).

The effective Higgs self coupling A(M;) obtained from
the matched A(Msysy) determines the MS mass of the SM
Higgs boson at the scale M; via

<mhM75~SM) = 20(M)) vk, (11)

with the MS vev (at the scale M;). The MS vev can be related
to the on-shell vev via the finite part of § v(z)s defined in Eq. (6),

va—S: U%s +8v(2)5‘ﬁn. (12)

It should be noted that since the quantity in Eq. (11) is the
SM MS veyv, in Eq. (12) only SM-type contributions have to
be considered in 5U%S.

Getting from the running mass (11) to the physical Higgs
mass one has to solve the pole equation for the Higgs-boson
propagator,

p? = (miSM) 4 MY = 0, (13)

involving the renormalized SM Higgs boson self-energy
(denoted by a tilde)

o = =ien|, - 5=, (14
MS

which is renormalized accordingly in the MS scheme at the
scale M, but with the Higgs tadpoles renormalized to zero,
i.e. the tadpole counterterm is chosen to cancel the sum of
the tadpole diagrams, ThSM, for the Higgs field,

STM = — M. (15)

With all these ingredients, the Higgs pole mass is now
obtained as the solution of the equation

s, (16)

Expanding the Higgs self-energy perturbatively around the
tree-level mass m% of the MSSM yields

M = 2. (My)vee —

Zintomi)
— ESM (2 . [Zvi/[—sk(Mt) — SM(m2) — mi]

T (17)

(Mp)err = 2v A(M;) —

where the ellipsis indicates higher-order terms in the expan-
sion.

3 In case of M4 ~ M, the effective theory is a Two-Higgs-Doublet
model and not the SM, see [42].
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We discuss the current status of EFT calculations in
Sect. 5.

2.3 Hybrid calculation

In FeynHiggs, the fixed-order approach is combined with
the EFT approach in order to supplement the full diagram-
matic result with leading higher-order contributions [45,46].
The logarithmic contributions resummed using the EFT
approach are incorporated into Eq. (9),

p?—mi 4+ IMSSM(p2y L AS2 = 0. (18)

The quantity AXy;, contains all logarithmic contributions
obtained via the EFT approach as well as subtraction terms
compensating the logarithmic terms already present in the
diagrammatic fixed-order result for X:‘}IV}IISSM,

- (M)
The subscript ‘log’ indicates that we take only logarithmic
contributions into account. Note that in ZA‘%[SSM (m%l) the log-
arithms appear only explicitly when expanding in v/ Msysy-
For more details on the combination of the fixed-order and
the EFT result, we refer to [45,46].

Plugging the expression for A Z:‘hh into Eq. (18), we obtain
for the physical Higgs mass

ASE = —[2U%A(M,)] (19)

log log*

2 2 SMSSM 2 2
(MPYpu = mj — ShoMyy + [21)1\475,\(1\@)]10g
~MSSM /2
+ [Ehh (mh)]log

= mj, + [203 M), — [EMom)]

— SMSSMY (.2 ([ZUI%A(M,)]

log nolog

log
~[EMSMD) o) + - (20)

We use the label ‘nolog’ to indicate that we take only terms
not involving large logarithms into account for the labelled
quantity. We again would like to stress that the large loga-
rithms (and thereby the meant non-logarithmic terms) appear
only explicitly in ZAJ})’}IISSM (m,21) when expanding in v/ Msysy.-

Before comparing the various approaches in depth, we
also shortly comment on the renormalization scheme con-
version needed for the combination of the fixed-order and
the EFT calculation. As mentioned before, in FeynHiggs
(in the default choice) the stop sector is renormalized using
the OS scheme. In contrast, in the EFT calculation, i.e. the
calculation of A(M;), all SUSY parameters enter in DR-
renormalized form. As argued in [46], it is sufficient to con-
vert only the stop mixing parameter X; using only the one-
loop large logarithmic terms,

XPR'EFT

3a M?
= xS 14+ (&2 x2 M) ) =2, @1
( [+<n o 1= XIMD 0 U5 12D

where M§ = M; M;,, oy = g3/(4m) (with g3 being the
strong gauge coupling) and oy = y,2 /(4m) (with y; being the
top Yukawa coupling).

3 Comparison of the different approaches

In the following we will discuss the differences between the
various approaches. It is obvious from the discussion of the
previous section that the diagrammatic fixed-order result and
the pure EFT result differ by higher-order logarithmic terms
that are contained in the EFT result but not in the diagram-
matic fixed-order result as well as by non-logarithmic terms
that are contained in the diagrammatic fixed-order result but
not in the pure EFT result. In the hybrid approach the dia-
grammatic fixed-order result is supplemented by the higher-
order logarithmic terms obtained by the EFT approach. We
focus in the following on the comparison between the hybrid
approach and the pure EFT result. In the present section
we leave aside issues related to the used renormalization
schemes, which will be addressed in Sect. 4.

While the hybrid approach and the pure EFT approach
both incorporate the higher-order logarithmic terms obtained
by the EFT approach, this does not necessarily imply that all
logarithmic terms in the two results are the same. This is due
to the fact that the determination of the Higgs-boson mass
from the pole of the propagator within the hybrid approach is
performed in the full model (in the example considered here
the MSSM, incorporating loop contributions from all SUSY
particles), while in the EFT approach it is determined in the
effective low-scale model (in the considered example the
SM). We will demonstrate below that the determination of the
propagator pole in the hybrid approach generates logarithmic
terms beyond the ones contained in the EFT approach at the
two-loop level and beyond which actually cancel in the limit
of a heavy SUSY scale with contributions from the subloop
renormalization. This cancellation is explicitly demonstrated
at the two-loop level. We will furthermore discuss the dif-
ference in non-logarithmic terms between the results of the
hybrid and the EFT approach.

3.1 Higher-order logarithmic terms from the determination
of the pole of the propagator

In the EFT approach where the Higgs boson mass is deter-
mined as the pole of the propagator in the SM as the effective
low-scale model, while the SUSY particles have been inte-
grated out, the logarithmic terms are given by (see Eq. (17))

2,log 2 SSMy o 2 2
(MR, = [2UWA(MI)]10g — S (m2) [2UWA(MI)]10g

4+ (22)

@ Springer



57 Page 6 of 21

Eur. Phys. J. C (2018) 78:57

The logarithmic terms contained in the result of the hybrid
approach implemented in FeynHiggs are given by (see
Eq. (20))

M = [203gh 0]
+ [‘@%’SSM/W%)] . [EMSSM( h)]

— S (m h)[ZvMSA(Mt)] o (23

nolog

In the decoupling limit (Msysy = Ma > M;, where in
particular the light CP-even Higgs boson has SM-like cou-
plings), we can split up the MSSM Higgs self-energy into a
SM part and a non-SM part,

In the mixed OS/DR scheme of the full diagrammatic calcu-
lation, the Higgs field renormalization constants are fixed in
the DR scheme. For scalar propagators, there is no difference
between the DR and the MS scheme at the one-loop level.
Consequently,

SM/

(my) = I (m3) (25)

holds.

Using this relation, we obtain for the difference between
the higher-order logarithmic terms from the determination of
the pole of the propagator obtained in the EFT and the hybrid
approach

ARE = (M) — (M)
:[ SnonSM’ h)] [2%SSM(mﬁ):|
— SnonSM/ h)[

1
=: A;zg. (26)

nolog

SA(M,)]lOg +..

Since this difference, which is of two-loop order and beyond,
results only from the momentum dependence of the non-

SM contributions to the Higgs self-energy, we call it Al;g

in the following. We give analytic expressions for A 2 in
Appendix B.

In Sect. 3.3 we will demonstrate at the two-loop level that
in the limit of a heavy SUSY scale the quantity Alozg con-
sisting of “momentum-dependent non-SM contributions” as
given in Eq. (26) cancels out with contributions of the Higgs
self-energy’s subloop renormalization. Before we address
this issue we first compare the non-logarithmic terms in the
two approaches.

3.2 Non-logarithmic terms

In the EFT approach, the non-logarithmic terms are given by
(see Eq. (17))

@ Springer

1 ~
(M2)ME [ZUI%TSMM’)]HOlog — EM(m?)
- Z‘SM’(m%)( [2

SM(12) mi) . 27)

UI%/TS)L(M,):I

nolog

By construction, all non-logarithmic terms contained in
the result of the hybrid approach originate from the fixed-
order diagrammatic calculation (see Eq. (20)),

1 A
(Mh)no og m]% _ [E%SSM(mi)]
nolog
+ [ff;l,\ngSM/(m%)] [2}1:/}[!ssm(m%)]
nolog nolog
+oe (28)

In this way one- and two-loop terms that are suppressed
by the SUSY scale, Am; gSUSY, are included in the result of
the hybrid approach. Terms of this kind would result from
higher-dimensional operators in the EFT approach. Those
terms that are included in the hybrid result as implemented
in FeynHiggs but not in the publicly available pure EFT
results constitute an important source of difference between
the corresponding results, which is expected to be sizeable if
some or all SUSY particles are relatively light (see also [44]
for a recent discussion of contributions of this kind in the
EFT approach). It should be noted that in general terms of
O (v/Msuysy) also originate from solving the full pole mass
equation, Eq. (8), rather than the approximated one, Eq. (9).

At zeroth order in v/ Msysy, the non-logarithmic terms of
the EFT approach contained in A(M;) in Eq. (27) agree with
the non-SM contributions in Eq. (28). They result from the
threshold corrections at the matching scale Msysy. These
threshold corrections are so far only known fully at the one-
loop order. At the two-loop order only the & (s, atz) cor-
rections are implemented in publicly available codes so far.*
Thus, those terms in [ﬁ‘“‘)“SM’(m h)]nolog[f]MSSM (m h)]nolog
being not of & (at) are not present in (M )EFT- At higher
orders, all terms involving a derivative of E,’l‘g“SM are
affected. As we will demonstrate in the following section,
also the non-logarithmic non-SM contributions arising from
the determination of the pole of the propagator cancel out
with contributions of the subloop renormalization in the limit
of a high SUSY scale.

Apart from these terms and from the non-logarithmic
terms of O(v/Msysy) discussed above, Ag?ﬁgsUSY, a fur-
ther difference between the hybrid approach and the EFT
approach is due to the parametrization of the non-logarithmic
terms. In the EFT approach all low-scale parameters are MS
quantities. The results of FeynHiggs, on the other hand, are
expressed in terms of physical, i.e. on-shell, parameters. For

4 Two-loop corrections controlled by the bottom and tau Yukawa cou-
plings have recently been derived in [44].
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the top-quark mass both the results expressed in terms of the
pole mass, M;, and the running mass at the scale M, m;(M;)
(see [59] for details on the involved reparametrization) have
been implemented (the applied renormalization schemes for
SUSY parameters will be discussed below). The Higgs vev
is a dependent quantity in FeynHiggs which is expressed
in terms of the physical observables My, sy and e according
to Eq. (4) (where e is furthermore reparametrized in terms
of the Fermi constant, see Eq. (7)). Accordingly, if choos-
ing low-energy SM parameters to express the EFT result, the
non-logarithmic terms in this result are parametrized in terms
of the MS quantities m,(M;) and vyg(M;), while depend-
ing on the option chosen for the top-quark mass the non-
logarithmic terms in FeynHiggs are expressed in terms of
either m;(M;) and vg, or M; and vg,. Those parametriza-
tions differ from each other by higher-order terms. The
observed differences are therefore related to the remaining
uncertainties of unknown higher-order corrections.

It should be noted that also within the EFT approach there
is a certain freedom for choosing different parametrizations.
For instance, the threshold corrections at the matching scale
can be expressed in terms of the SM MS top Yukawa coupling
or in terms of the MSSM DR top Yukawa coupling.

As a result, the deviations A™°¢ between the non-
logarithmic terms in the hybrid approach and the EFT
approach arise from the following sources,

1 1
Anolog (Mh )no 0g (M}%)E%_}"g
= A ARRE 4 @

Here Az(/)llt(jliusy are terms present in the hybrid approach

that would correspond to higher-dimensional operators in
the EFT approach. The term Ag‘.ﬁ;’g indicates the differences
in the parametrization of the non-logarithmic terms, and

[ 2%SSM(m%)]
nolog
O 1 A O(ar)
_[ SonSM h)] - [E%SSM(m%)]

+ [higher order terms involving

A;(;log [ EnonSM/ (m%)]

nolog

nolog

(0/0p*)" SmonSM > 1] (30)

are terms arising from the different determination of the prop-
agator poles, as discussed above.

3.3 Terms arising from the determination of the propagator
pole at the two-loop level

We saw in Sects. 3.1 and 3.2 that the different determination
of the propagator pole in the hybrid approach and the EFT
approach gives rise to both logarithmic and non-logarithmic
contributions in which the expressions given for the two

approaches in the previous sections differ from each other.
We will now explicitly demonstrate at the two-loop level that
those differences in fact cancel out in the limit of a heavy
SUSY scale if all the relevant terms at this order are taken
into account.

As afirst step, we write down the correction to M%, derived
by an explicit diagrammatic calculation. At strict two-loop
order, we obtain

My = mjy — S o) —
+ <2nonSM (1)/( 2y 4 2—;SM (l)/( h)) ]

MSSM (1)( 2). 31)

AMSSM 2
h ()( 2)

The superscripts indicate the loop-order of the corresponding
self-energy.’

We obtain the renormalized two-loop self-energy from the
unrenormalized one via

~AMSSM,(2), 2 MSSM,(2) , 2
2 ( )(mh) =2y ( )(mh)

+ (two-loop counterterms)
+ (subloop-ren.). (32)

The subloop-renormalization can be derived from the one-
loop self-energy via a counterterm-expansion. Expressing
all couplings appearing in the one-loop self-energy through
masses divided by v . (for the remainder of this section we
drop the subscript “G ¢”, i.e. we use the shorthand v = vg;.),
we can write

(subloop-ren.)

S MSSM(I)( 2)

d ~MSSM,(1
+Z(8mi)MSSMa_mi2hh ,(>(m%)

1
+ (field ren.).
(5U2)MSSM

AMSSM, (1), 2
) X (mp)

d  AMSSM,(1
+ Z(ami)MSSMa_’/niEhh N )(m%)

+ (field ren.), (33)

where we used in the last line that Z‘MSSM M1 Jv? if all

couplings are expressed by the respective mass divided by v.

We are interested in terms involving the finite parts of the
derivative of the Higgs self-energy, i.e. terms which could
potentially cancel the term proportional to ZJHOHSM W )
in Eq. (31). At first sight it would seem that terms of this
kind could arise from an on-shell field renormalization of the

5 In our discussion here we treat the two-loop self-energy as the full
result containing all contributions that appear at this order. The specific
approximations that have been made at the two-loop level in Feyn-
Higgs will be discussed below.
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Higgs field. It is well-known, however, that those field renor-
malization constants drop out of the prediction of the mass
parameter order by order in perturbation theory (in Feyn-
Higgs, a DR renormalization is employed for the Higgs
fields). Also the mass counterterms as well as the genuine
two-loop counterterms do not contribute terms that are pro-
portional to £7"M-((;,2) The only remaining term is the
vev counterterm. According to Eqgs. (6) and (7) it is given at
the one-loop level by, having the same form in the SM and
the MSSM,

2 2 2
s sM} <8M ~ 5MW> 5e?
2 2 2 2 2
v My, M7 My, e
+AF — 8Zn. (34)

The renormalization constant §Zj;, represents within the
MSSM the DR field renormalization constant of the SM-
like Higgs field, while in the SM it is understood to be the
MS field renormalization constant of the Higgs field.

We verified by explicit calculation that in the limit of a
large SUSY scale the following relation holds

GuHMSSM (5u)SM L sML ), o
) = 2 2 (mp)
+ O0(v/Msusy). (35)

Using this relation, we can rewrite the two-loop self-energy
(omitting terms of ' (v/Msusy)),

SMSSMLQ) (2,
S M (5U2)MSSM_ (5,2)SM

SM, (1 SMSSM, (1
+ EponSML7 2y SMSSM(D .2y - (36)

EMSSM 2 (m h)

where the subscript “(BvHMSSM . (592)SM i5 used to
indicate that the MSSM vev counterterm, appearing in the
subloop renormalization, is replaced by its SM counterpart.

Plugging this expression back into Egs. (33) and (31), we

obtain

SMSSM, (1
(MPyep = m} — Sy O )

[ eMSSM, ), 2

<2hh () (502)MSSM_, (5,,2)SM
SM, (1 &SMSSM (1

+ Zpn SO ) SRS D gy

+ (S ) + Z30 o) ) -
&SMSSM, (1
B ()( 2)
_ m%l Z‘MSSM (1)( h)

~MSSM, (2
= 2y ( )(mh)

n ESM (1)/( %)ZA,}ll\/i[lSSM‘(l)(m%). 37)

(5v2)MSSM_; (592)SM

We observe that the corresponding subloop renormalization
term cancels in Eq. (31) the term EHOHSM (1)/(m%) involv-
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ing the non-SM contributions to the Higgs self-energy by
which the determination of the propagator pole in the hybrid
approach differs from the EFT approach.

The origin of Eq. (35) is the different normalization of the
SM-like MSSM Higgs doublet @\ssv and the SM Higgs
doublet @g);. Comparing the derivative of the two-point
function, appearing in the LSZ factor of amplitudes with
external Higgs fields,® we obtain in the limit of a heavy SUSY
scale

1
DMssM <1 + 2EMSSM W (m %))

1
= Doy (1 + ZZ‘SM Mo ﬁ)) , (38)

or equivalently

Prissm = Psu (1 - %&?,‘;“SM’“)/(mi)) : (39)
Expressed in terms of a relation between the counterterms of
the vevs, this implies Eq. (35).

While as mentioned above the Higgs field renormalization
constant drops out in the Higgs mass prediction order by
order, it is nevertheless noteworthy that the introduction of
an OS field renormalization constant would lead to

ENSSM (2| 5205 =0 (40)
and
GuMIM a5 = (307)SM] o5, (41)

implying that no terms involving ZA‘;I‘,(;“SM/ appear in the
subloop renormalization at the two-loop level.

While we have demonstrated this cancellation at the two-
loop level, it is to be expected that it would also occur at
higher orders. Explicit formulas for higher-order terms of
this kind are given in Appendix B. While the described can-
cellation occurs at the full two-loop level, only partial can-
cellations occur between the full one-loop self-energy times
its derivative and the two-loop self-energy if for the latter
certain approximations are made.

In FeynHiggs, the two-loop self-energies are derived
in the gaugeless limit (i.e., two-loop corrections of &' (a s,
apa, o, a0, o) are incorporated [22,23,25,27,33,34]),7
and by default the external momentum of the two-loop graphs
is neglected. There is, however, an option to include momen-
tum dependence at (o) (see [56,57]). Accordingly, all
0 (octz, o, ag) non-SM terms arising through the determi-
nation of the propagator pole at the two-loop level are can-
celled in the limit of a large SUSY scale by corresponding

6 Tt should be noted that such an LSZ factor enters in the EFT approach
via the matching condition at the high scale.

7 The recent results of [35] for the O(azap, oel%) corrections in the gen-
eral case of complex parameters will be implemented into FeynHiggs.
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subloop renormalization contributions within the diagram-
matic calculation (the determination of the propagator pole
obviously does not give rise to terms of &' (oo, apay)). In
previous versions of FeynHiggs, we have already taken
care when constructing the subtraction terms according to
Eq. (19) that we do not subtract logarithmic contributions
that are needed for the cancellation with the correspond-
ing terms arising from the determination of the propagator
poles. For terms arising through the determination of the
propagator pole beyond ﬁ’(af, o, ag), however, so far
the cancellation in the limit of a large SUSY scale did not
occur because the corresponding contributions in the irre-
ducible self-energies at the two-loop level and beyond are
not incorporated. In order to avoid unwanted effects from an
incomplete cancellation, we have removed the uncompen-
sated terms arising from the determination of the propagator
pole in FeynHiggs.

4 DR parameters as input for an OS calculation

In this section we discuss issues related to the conversion
between parameters of OS and DR renormalization schemes.
While the discussion will focus on the case where DR input
parameters are converted into OS ones that are then inserted
into a result in the OS scheme, it should be stressed that
the related problems are not intrinsic to the OS approach.
The same problems would occur if a DR result were used
with OS input parameters. The discussed problems are also
not specific to Higgs mass predictions in SUSY models, but
would appear whenever there are numerically large higher-
order logarithms arising from a large splitting between the
relevant scales of the considered quantity. In predictions for
the mass of the SM-like Higgs boson within the MSSM,
the result is however particularly sensitive to higher-order
effects of this kind through the pronounced dependence on
the stop mixing parameter X,, which receives large correc-
tions when converting from the DR to the OS scheme or vice
versa.

In the case where fixed-order results at the n-loop level
obtained in two different renormalization schemes are com-
pared with each other, and higher-order logarithms are
unknown and not expected to be particularly enhanced, it
is well known that the results based on the same type of cor-
rections in two schemes differ by terms that are of &'(n 4 1).
The same is true for different options regarding how to per-
form the parameter conversion that differ from each other
by higher-order contributions. The numerical differences
observed in such a comparison can therefore be used as an
indication of the possible size of unknown higher-order cor-
rections.

The situation is different, however, in the case that we
are considering here, since the comparison is not performed

between fixed-order results but between results incorporat-
ing a series of (resummed) higher-order logarithms. It is cru-
cial in such a case that the correct form of the higher-order
logarithms that can be derived via EFT methods, which in
our case arise from the large splitting between the assumed
SUSY scale and the weak scale, is maintained in the parame-
ter conversion. We will demonstrate below that the parameter
conversion that is usually applied for a comparison of renor-
malization schemes in fixed-order results does not main-
tain the correct form of the higher-order logarithms. Since
those higher-order logarithms are numerically important, a
conversion carried out in the described way leads to very
large numerical discrepancies for large values of the SUSY
scale.

4.1 Conversion between DR and OS parameters applicable
to fixed-order results

The most straightforward method used for the conversion of
DR input parameters to OS parameters in fixed-order results
is to derive the shift between a parameter p in the two schemes
according to pOS = pPR + Ap at the considered loop order,
see e.g. [60]. Accordingly, at the full one-loop level, includ-
ing logarithmic as well as non-logarithmic terms, the conver-
sion from DR to OS parameters for the stop mixing parame-
ter and the stop masses, which are particularly relevant in the
context of MSSM Higgs mass predictions, reads (for explicit
formulas see [22,23,25,59])

X9 = xPR 4 Ax,, (42)
M; = mtEITR + Amy,, (43)
M;2 = ng + Am;z. (44)

Here Amj, , is given by the corresponding difference of the

DR and the OS counterterm. In FeynHiggs, the shift of
X, is obtained by first calculating the OS stop masses and
the OS stop mixing angle 9503. These are then used to obtain

XOS via
M XPS = (M,~21 — M%) sin 095 cos 625 (45)

Relating this prescription for X f)s to the DR input parameters
X PR, mER, ng, one can see that Eq. (45) contains products
of one-loop contributions and therefore involves higher-order
terms. Alternatively one could have used an expression for
the conversion that is truncated at the one-loop level. The
difference between the two prescriptions would be of the
order of unknown higher-order corrections in a fixed-order
comparison. The on-shell parameters obtained as described
above are then used as input of the fixed-order OS renormal-
ized calculation. This means in particular that the knowledge
of the initial DR parameters is not used any further once the
conversion to OS parameters has been carried out. While this

@ Springer



57 Page 10 of 21

Eur. Phys. J. C (2018) 78:57

procedure is suitable for fixed-order results, it leads to prob-
lems if results containing a series of higher-order logarithms
are meant to be converted.

Indeed, applying the described parameter conversion to
the case of a DR result that incorporates higher-order log-
arithms generates additional higher-order terms causing a
deviation in the logarithmic contributions. This can be seen
by investigating the Higgs self-energy up to the two-loop
level where the parameter X9 obtained from the conversion
has been inserted,

- &(1),08 £(2),08
TS = ER xS + ER xS, (46)
Using instead Eq. (42) to write XS in terms of XPT,
- - OS /DR
i (x2%) = S xR + ax))
+ 578 (xPR 4 ax,), 47)

and performing an expansion in AX, yields

- ~(1),0S , » DR d  ~(1),08, vDR
208(x08) = )95 (xPR) 1 [ax ) (XPR)i| AX,
t

A SR d - R
+ 50 o + [Mzﬁ)“ (X,DR)] AX,
t

+0(AXD) (48)
= EPR(xPR) 4 [8 ng,)*os(xﬁm)] AX,
IX,
+0(AX?). (49)

Thus, the obtained expression obviously differs from the
original DR result by terms of 3-loop order and beyond. One
would furthermore need to convert also all other parameters
entering the self-energy to the DR scheme in order to exactly
recover the DR renormalized self-energy.

4.2 The case of large higher-order logarithms

The higher-order terms in Eq. (49) that are not present in the
original DR result contain in general logarithmic contribu-
tions which for a result containing a series of higher-order
logarithms cause a deviation from the logarithmic correc-
tions determined via the RGE. In our numerical discussion
in Sect. 6 below we will demonstrate that those higher-order
contributions that are induced by the parameter conversion
are indeed numerically sizeable.

Another issue that is relevant in a hybrid approach, as pur-
sued in FeynHiggs, where a fixed-order result in the OS
scheme is combined with higher-order logarithmic expres-
sions that are expressed in the DR scheme concerns the
DR value of X, that is used in the EFT part of the calcula-
tion. Only logarithmic terms are kept in the relation between

X;TR’EFT and X©5, see Eq. (21). If instead an input value for

X }TR were converted to X ?S using the full one-loop contribu-
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tions according to Eq. (42), the stop mixing parameter used in
the EFT calculation of FeynHiggs, X ? R’EFT, would differ
from the input parameter X PR.

In order to properly address the case where DR param-
eters associated with a result containing a series of higher-
order logarithms are used as input for FeynHiggs, we fol-
low the strategy to perform the parameter conversion in the
fixed-order result rather than in the infinite series of higher-
order logarithms. For this purpose we have extended Feyn-
Higgs such that the incorporated fixed-order result is given
in terms of the DR parameters X})R, m]t?R, m]t?R (the actual
input parameters are the soft-breaking parameters of the stop
sector). This new result complements the existing result that

is given in terms of the on-shell parameters X ,OS, M; = mgs,

M;, = mgs. The reparametrisation on which the new result
is based can be viewed as the parameter conversion described
in the example of the previous section, but truncated at the
two-loop level,

o o PR 9 £(1),08, DR
ZOS(x98) - £95(xPRy 4 [ﬁz}ﬁ,} (xPR) | AX,
t

= ZPR(xPR), (50)

We have used the same procedure as the one described here
for the stop mixing parameter also for the stop masses. The
two-loop terms that are induced by the conversion at the one-
loop level have been added to the two-loop result derived in
the on-shell scheme in order to arrive at the corresponding
expression in the DR scheme. Compact expressions for these
additional terms valid in the case Msysy > M; and degen-
erate M = M;, = Msusy can be found in Appendix A. It
should be noted that we would have obtained the same result
if we had performed the diagrammatic calculation with a
DR renormalization of the respective parameters instead of
reparametrizing the final result. Using the above result given
in terms of DR parameters, the value of X, that is used in the

EFT part of the calculation equals the DR input parameter,
XPR’EFT = XPiR. For this setting in FeynHiggs with DR
input parameters the subtraction terms have been adjusted
such that the logarithms already contained in the fixed-order
result for the DR renormalized self-energy are subtracted
(rather than the ones contained in the OS renormalized self-
energy, as it is the case for OS input parameters).
Accordingly, depending on the provided input parameters
the evaluation of the prediction for the mass of the SM-like
Higgs bosonin FeynHiggs proceeds in the following ways:

— For on-shell input parameters the on-shell fixed-order
result is combined with the higher-order logs obtained

in the EFT approach, where X P REFT is related to X tOS

as specified in Eq. (21).
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— For DR input parameters in the stop sector associated
with a result containing a series of higher-order loga-
rithms the DR fixed-order result is combined with the
higher-order logs obtained in the EFT approach, where
xPRET = xPR,

— For DR input parameters in a low-scale SUSY scenario
where the impact of higher-order logarithms is expected
to be small, both the fixed-order DR result and the fixed-
order on-shell result can be employed, where for the latter
the parameter conversion described in the previous sec-
tion is used.

5 Comparison of FeynHiggs to other codes

In the previous sections, we investigated methodical differ-
ences between the different approaches for predicting the
lightest CP-even Higgs boson mass in the MSSM, focusing
in particular on the comparison of the hybrid approach imple-
mented in FeynHiggs with a pure EFT calculation. In the
following, we compare FeynHiggs numerically to other
codes.

Publicly available codes based on diagrammatic fixed-
order results or effective potential methods include
CPSuperH|[61-63], SoftSUSY [64], SPheno [65,66] and
SUSPECT [67]. Publicly available pure EFT calculations
are SUSYHD [43] and MhEFT [40,42,68]. FlexibleSUSY
[69], based on SARAH [70-73], includes both a diagrammatic
and an EFT result. Furthermore, it also has the option to use
a hybrid method different from the one pursued in Feyn-
Higgs, called FlexibleEFTHiggs [47]. Its basic idea
is to include terms suppressed by the SUSY scale into the
matching conditions in order to obtain accurate results for
both low and high scales. Recently, the same approach has
been included into SPheno [48].

The different levels of higher-order corrections imple-
mented in the various diagrammatic codes are listed in [74].
A detailed numerical comparison between various diagram-
matic and EFT codes can be found in [47]. In there, it is also
discussed in detail how FlexibleEFTHiggs compares
to other codes. We therefore focus in this work on a com-
parison of FeynHiggs to SUSYHD as an exemplary EFT
calculation.

Before we can investigate the impact of the effects dis-
cussed in the previous sections on the comparison of Feyn-
Higgs and SUSYHD, we have to ensure that the RGE results,
i.e. the results for A(M;), of both codes are compatible with
each other. Both codes implement full leading and next-
to-leading resummation and &(o;0y, Oltz) next-to-next-to-
leading resummation of large logarithms. So the levels of
accuracy are basically identical. There are however several
differences which are listed below.

— SUSYHD by default uses the top-Yukawa coupling
extracted at the NNNLO level. FeynHiggs instead uses
the NNLO value by default, which is formally the appro-
priate setting for the resummation of NNLL contribu-
tions. For all numerical results shown in this work, we
deactivate the NNNLO corrections to the top-Yukawa
coupling in SUSYHD.

— SUSYHD includes the bottom- and tau- Yukawa couplings
in the renormalization group running and also includes
corresponding one-loop threshold corrections. In Feyn-
Higgs, the bottom and tau Yukawa couplings are set
to zero in the EFT calculation. In the fixed-order dia-
grammatic calculation, however, terms proportional to
the bottom Yukawa coupling are included at the one- and
two-loop level (at the one-loop level for the case of the
tau Yukawa coupling).

— SUSYHD includes the electroweak gauge couplings in the
running up to the three-loop level. FeynHiggs takes
them into account up to the two-loop level. At the three-
loop level, they are set to zero.

— FeynHiggs includes a one-loop running of tan 8 to
relate tan 8 (M;), which is used as input of FeynHiggs,
to tan B(Msusy), which enters through the matching at
the SUSY scale. In contrast, SUSYHD uses tan S (Msysy)
as input.

— Similarly, FeynHiggs uses a DR renormalized Hig-
gsino mass parameter u at the scale M;. The running
to the scale Msysy, at which it enters the EFT calcula-
tion via the matching conditions at the SUSY scale, is
neglected. SUSYHD uses u(Msysy) as input.

More details on the implemented EFT calculations are given
in [43,46].

Despite the listed differences including the different treat-
ment of the renormalization scales of tan 8 and u, we find
excellent agreement between the results of the RGE run-
ning of both codes. The numerical difference of the quantity
v2A(M,) calculated using the two codes is always < 50 GeV?
for the single scale scenario defined in Eq. (2) and tan 8 ~
0 (10). This translates into a difference in M}, of < 0.1 GeV.

6 Numerical results

In this section, we present a numerical investigation of the
effects discussed in the previous sections and compare the
result obtained by FeynHiggs to SUSYHD as an exemplary
pure EFT code. We restrict ourselves to the single scale sce-
nario defined in Eq. (2). Apart from the parameters of the
stop sector, we neglect all renormalization scheme conver-
sions necessary to relate the parameters of Eq. (2) as defined
in FeynHiggs to the parameters as defined in SUSYHD. We
furthermore set
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tan 8 = 10, (51)

i.e. we use tan B(M;) = 10 as input for FeynHiggs and
tan f(Msysy) = 10 as input for SUSYHD. As mentioned in
Sect. 5, the difference in the renormalization scales is negli-
gible for the considered scenario. All soft-breaking trilinear
couplings except the one of the scalar top quarks are chosen
to be

Ae,u,r,u,d,c,s,b =0. (52)

For all soft-breaking parameters (i.e. those of the stop sector),
we use the DR scheme with the renormalization scale being
Msgusy. If not stated otherwise, we use a parametrization of
the non-logarithmic contributions in terms of the SM MS
NNLO top mass and vg, (see Sect. 3.2), corresponding to
choosing runningMT = 1 as FeynHiggs flag.

We first look at the numerical difference between employ-
ing the type of conversion from DR to OS input parameters
which is suitable for the comparison of fixed-order results
(“FH 2.13.0 param conv”) and using a DR renormalized
fixed-order result (“FH 2.13.0 DR”), see the discussion in
Sect. 4. The left plot of Fig. 1 shows the corresponding results
for XPR /Msyusy = 0 (2) as solid (dashed) lines as a func-
tion of Msysy. One can see that for Msysy < 5 TeV the
difference between the two methods leads to an approxi-
mately constant shift in the prediction for My,. For vanishing
mixing the prediction obtained by using a DR renormalized
fixed-order result is ~ 0.5 GeV higher than the one obtained
by a naive scheme conversion of the input parameters. For
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Fig. 1 Left: M, as a function of Msysy for XPT/ Msysy = 0 (solid)

and XPR/Msysy = 2 (dashed). The results of FeynHiggs2.13.0
with a DR to OS conversion of the input parameters (blue) and a DR
renormalization of the fixed-order result (red) are compared. Right:
Same as left plot, apart that M}, is shown in dependence of X PR /Msusy
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X:/Msusy = 2, the shift is larger. The result obtained using
a DR fixed-order result is ~ 1—1.5 GeV smaller than the
one obtained by the naive conversion of the input parame-
ters. The shifts occur not only for scales of a few TeV, but
also for very low scales (Msysy =~ 0.3 TeV). Therefore, we
conclude that at low scales the observed shifts are mainly
caused by non-logarithmic higher-order terms by which the
DR result and the result involving a parameter conversion
differ from each other. As usual, non-logarithmic terms tend
to be larger for | X PR /Msusy| ~ 2 than for vanishing stop
mixing.

For Msysy = 5 TeV, we observe that the difference be-
tween the two results is increasing rapidly toup to 10 GeV for
vanishing mixing and up to 5 GeV for | X PR /Msysy| ~ 2in
the region up to Msysy ~ 20 TeV. This behavior is mainly
due to the fact that the parameter conversion that is used for
the comparison of fixed-order results induces higher-order
logarithmic contributions that are not compatible with the
implemented resummation of logarithms to all orders (see
the discussion in Sect. 4.1). For high SUSY scales, where the
higher-order logarithmic contributions become numerically
large, this mismatch leads to the observed large deviations.
To a lesser extent, also the deviation between the input XPR
and the X, DREFT \\sed in the EFT calculation plays a role in
this context, see Sect. 4.2.

In the right plot of Fig. 1 the two results are compared
as a function of XPR/Mgygy for Msysy = 1, 5,20 TeV,
shown as solid, dashed and dot-dashed lines, respectively.
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for Msysy = 1 TeV (solid), Msysy = 5 TeV (dashed) and Msysy =
20 TeV (dot-dashed). In the bottom panels, the difference between the
blue and red curves is shown (AM;, = M}, (FH 2.13.0 param conv) —
M;,(FH 2.13.0 DR))
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Fig. 2 Comparison of the M), predictions of FeynHiggs2.13.0
DR with FeynHiggsnew DR, where in the new version terms aris-
ing from the determination of the propagator pole are omitted that go
beyond the level of the corrections implemented in the irreducible self-
energies. Left: Prediction for M) as function of Msysy for vanish-

For Msuysy = 1 TeV and Msysy = 5 TeV the devia-
tions stay relatively small except for the highest values of
| X PR /Msusy|. In contrast, for Msysy = 20 TeV the uncon-
trolled higher-order contributions induced by the naive con-
version of the input parameters are seen to have a huge
effect which even reverts the usual pattern of the depen-
dence on |XPR/Msusy|, giving rise to local minima at
|XPR/MSUsy| ~ +2.3. We emphasize again that the same
kind of uncontrolled higher-order effects would occur if a
naive conversion of OS to DR parameters would be used as
input for a DR result containing a series of numerically large
higher-order logarithms. Figure 1 shows that numerical insta-
bilities noticed in comparisons of EFT results with Feyn-
Higgs carried out in the literature are a consequence of an
inappropriate application of the conversion of input parame-
ters between the OS and the DR schemes. The higher-order
contributions implemented in FeynHiggs are seen to be
numerically stable up to very high SUSY scales in the con-
sidered scenario.

For the further FeynHiggs results shown below we
use the DR renormalization of the parameters in the stop
sector. As a next step we investigate the impact of the
terms arising from the determination of the propagator pole.
As explained in Sect. 3, there occurs a cancellation in
the limit of a large SUSY scale between non-SM terms
arising through the determination of the propagator pole
and contributions from the subloop renormalization of the
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TeV (dashed) and Mgysy = 20 TeV (dot-dashed). In the bottom pan-
els, the differenci between the blue ﬂd red curves is shown (AM;, =
My, (FH 2.13.0 DR) — M}, (FH new DR))

irreducible self-energy diagrams. While up to the version
FeynHiggs2.13.0 this cancellation was incomplete for
terms beyond & (04,2, o, oe,%) (see Eq. (20)), we have mod-
ified the determination of the propagator poles in the new
version of FeynHiggs such that terms are omitted that
would not cancel because their counterpart in the irre-
ducible self-energies is not incorporated at present. In Fig. 2
FeynHiggs2.13.0 DR is compared with the new ver-
sion, which is labelled as FeynHiggsnew DR. The differ-
ence between the two results corresponds essentially to the
terms Al;gs and A;(;]Og given in Egs. (26) and (29). In the left
plot of Fig. 2, we show the results as a function of Msysy
for XPR = 0 and XPR/Mgsysy = 2. One observes that the
difference grows nearly logarithmically with Msysy. This
is expected since the largest terms in A8 + A?;log
fact logarithms of the SUSY scale over M,. Consequently,
for small scales (Msysy < 1 TeV), these terms induce only
a small upwards shift of < 0.5 GeV. For large scales how-
ever (Msusy 2 5 TeV), this shift grows to up to 1.5 GeV
for vanishing stop mixing and 2 GeV for X PR /Msusy = 2.
In the right plot of Fig. 2 the difference is depicted as a func-
tion of XPR/Msysy for Msysy = 1, 5,20 TeV, shown as
solid, dashed and dot-dashed lines, respectively. One can see
that the difference between the two results is approximately

quadratically dependent on X;TR/ Msusy. This reflects the

are in

X }TR dependence of the derivative of the Higgs-boson self-
energy (see Eq. (B.26) below).
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Fig. 3 Comparison of the M} predictions of FeynHiggsnew DR
with SUSYHD. Left: M}, as function of Msysy for X}TR/MSUSY =0
(solid) and XPT/MSUSY = 2 (dashed). Right: M} as function of
XPR/MER . for Msysy = 1 TeV (solid), Msysy = 5 TeV (dashed)

Having investigated the numerical impact of the scheme
conversion of the input parameters as well as of the terms
arising from the determination of the propagator pole, we
now turn to a direct comparison of FeynHiggs with SUSY -
HD.® The FeynHiggs results in this comparison are the ones
of the new version, FeynHiggsnew DR, where the stop
sector is renormalized in the DR scheme and terms arising
from the determination of the propagator pole are omitted
that go beyond the level of the corrections implemented in
the irreducible self-energies, as described above.

The left plot of Fig. 3 shows M, as a function of Msysy for
XPR/Msysy = 0 (2) as solid (dashed) lines. For vanishing
stop mixing and Msysy 2 1 TeV, we observe an excel-
lent agreement of the FeynHiggs curve with the SUSYHD
result. Even for very large scales Msysy =~ 20 TeV, we
find agreement within ~ 0.5 GeV in the considered simple
numerical scenario, in which all SUSY scales are chosen to
be equal to each other. For low scales (Msysy < 1 GeV),
it can be seen that the FeynHiggs result is higher by up
to ~ 1.7 GeV compared to the SUSYHD result. The origin
of this difference are terms suppressed by the SUSY scale,
which are included in FeynHiggs but not in SUSYHD, as
will be discussed below. For X PR /Msusy = 2, we basically
observe the same behavior as in case of vanishing stop mix-

8 We remind the reader that we use SUSYHD with the top Yukawa
coupling evaluated at the NNLO level. Using instead the NNNLO
value would shift the results of SUSYHD shown here downwards by
~ 0.5 GeV.
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ing. The overall agreement in the simple numerical scenario
is very good (within ~ 0.7 GeV for Msysy =, 0.5 TeV). For
low scales (Msusy < 0.5 GeV), the FeynHiggs result is
lower compared to the SUSYHD result by up to ~ 1 GeV.
As in the case of vanishing stop mixing, this can be traced
back to terms suppressed by the SUSY scale. We will discuss
this and investigate the remaining differences in more detail
below.

In the right plot of Fig. 3 the comparison between the
M, prediction of the new FeynHiggs version and SUSY -
HD is shown as a function of XPR /Msusy for Msysy =
1, 5,20 TeV, shown as solid, dashed and dot-dashed lines,
respectively. Again one can see an overall very good agree-
ment between both codes for Msysy = 1 TeV (within
1 GeV) in the considered simple numerical scenario. The
agreement is especially good for small |XPR/Msusy|, but
the deviations stay below 1 GeV also for increasing mixing in
the stop sector except for the highest values of | X PR /Msusy|
in the case of Msysy = 1 TeV. The larger deviations of
up to ~ 2 GeV for |XPR/Msusy| 2= 2.5 in the case of
Msysy = 1 TeV are due to terms suppressed by Msysy
which become large for increasing | X PR /Msusy|.

In Fig. 4, we further investigate these remaining differ-
ences between FeynHiggs and SUSYHD observed in Fig. 3.
In the left plot we show the difference between the results
of FeynHiggs and SUSYHD for M} (not for Mj). Since
in both codes actually M,% is calculated, taking the square
root of these results can obscure the true dependences of
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Fig. 4 Left: Difference of the M,% predictions of FeynHiggsnew
DR and SUSYHD as a function of Msysy for XPR/Msysy = 0 (solid)

and X}TR/ Msusy = 2 (dashed). For the parametrization of the dia-
grammatic result of FeynHiggs the SM NNLO MS top-quark mass
is chosen. Right: Differences due to the different parametrization of

the difference. As an example, if the difference in M}% is
constant when varying Msysy, we would not observe a con-
stant difference when comparing the difference in M;. We
show in the plot the difference in M }% for the case where the
fixed-order result of FeynHiggs is parametrized in terms
of the SM NNLO MS top mass. For Msysy < 1 TeV in

the case of vanishing mixing and for Msysy < 3 TeV in
the case of XPR/MSUSY = 2 we observe large gradients.
For larger scales (Msysy = 3 TeV), the difference is only
slowly increasing when raising Msysy. For vanishing stop
mixing, the difference is growing by ~ 50 GeV? when rais-
ing Msysy from 3 TeV to 20 TeV. For XPR/MSUSY = 2,sim-
ilarly a growth of ~ 50 GeV? is recognizable. This behavior
is mostly due to the differences in the EFT calculations imple-
mented in FeynHiggs and SUSYHD discussed in Sect. 5. In
addition, however, we observe an offset relative to the zero
axis for Msysy 2 3 TeV. For vanishing stop mixing, it is
small (~ 50 GeVz), whereas for X PR /Msysy = 2, the shift
is more significant (~ 150 GeV?). The nearly constant offset
between the two codes can be traced back to the different
parametrization of the non-logarithmic terms discussed in
Sect. 3.2.

We further analyse the influence of the different ways to
parametrize the non-logarithmic terms in the right plot of
Fig. 4.1t shows the difference in M ,% obtained from a diagram-
matic calculation of &' (o oy, oz,z) using different parametriza-
tions of the vev for the non-logarithmic one- and two-loop
terms (see Sect. 3.2 for more details). Note that these non-
logarithmic terms, apart of &'(v/Msysy) contributions, stay
constant when varying Msusy . For XPR/Mgysy ~ 2 the dif-
ference between parametrizations in terms of vg, and vy
(both using the SM NNLO MS top-quark mass) amounts

[ — (M, va,.)-para — (M, vyg)-para ]
200
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T b b
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the top-quark mass and the vev in a fixed-order &'y, 04,2) calcula-
tion, taking into account only non-logarithmic terms, as a function of
X PR /Msusy. The difference between the result parametrized in terms
of the MS NNLO top-quark mass and v, and the one parametrized in
terms of the MS NNLO top-quark mass and vygg is shown

to ~ 170 GeV?2. Such a shift accounts for the main part
of the nearly constant offset observed in the left plot of
Fig. 4. For XPR/Mgysy ~ 0 the difference between the
parametrizations in terms of vi . and vyg is seen to become
very small. The nearly constant offset for vanishing stop mix-
ing observed in the left plot of Fig. 4 can be explained in a
similar way by different parameterization of terms that are
not of & (oo, atz).

Finally, we briefly comment on the differences between
FeynHiggs and other codes that have been reported in the
literature. In [43] it was claimed that differences between
FeynHiggs and SUSYHD of up to ~ 9 GeV would occur
for Msusy = 2 TeV and XPR /Msusy ~ V6. As already
noted in [43], this difference was somewhat reduced if the
NNLO MS top mass was employed in the calculation of
FeynHiggs.? While at the time of the comparison car-
ried out in [43] the EFT calculation of FeynHiggs was
not yet at the same level of accuracy as the one of SUSY-
HD, the differences claimed in [43] were in fact primarily
caused by an inappropriate application of the conversion of
input parameters between the DR and the OS scheme. The
inappropriate parameter conversion, for which the authors
of [43] used their own routine, caused a deviation of 3—
4 GeV for Msysy = 2 TeV and XPR/Msysy ~ +/6 and
was also responsible for the apparent numerical instabil-
ity at large SUSY scales of the FeynHiggs curve with

9 In the FeynHiggs version employed in the comparison by default
the NLO MS top mass was used. This was formally correct for the
resummation of the LL. and NLL contributions that was implemented
in FeynHiggs at that time. Numerically, the shift in the top-quark
mass from NLO to NNLO generated the main effect when going to
NNLL resummation [46].
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XPR/ Msyusy = 0 shown in [43]. The numerical effect of
this deviation was larger than the shift caused by employing
the NNLO or NNNLO MS top-quark mass in FeynHiggs,
in contrast to the claim made in [43].

Also the comparison figures shown in [47,48] are plagued
by deficiencies arising from an inappropriate application
of the parameter conversion between the DR and the OS
scheme. We stress again that such a parameter conversion
would give rise to the same kind of problems when starting
from OS parameters and converting to DR ones.

7 Conclusions

We have presented a detailed comparison between various
approaches used to predict the mass of the SM-like Higgs
boson in the MSSM in a scenario in which all SUSY mass
scales are chosen equal to each other. In particular we have
compared pure EFT calculations with the hybrid approach, in
which an explicit Feynman-diagrammatic fixed-order result
is combined with the leading higher-order contributions
obtained from EFT methods. In the literature significant devi-
ations between the results obtained via the two approaches
have been reported especially at large SUSY scales. In this
work, we have identified three sources of the observed dif-
ferences.

We could show that a large part of the reported discrep-
ancies can be traced back to parameter conversions between
different renormalization schemes. In EFT calculations typi-
cally the DR scheme is used for the renormalization of SUSY
breaking parameters, e.g. the stop mixing parameter. In the
diagrammatic calculation of FeynHiggs (in the default
case) however, the OS scheme is employed in the scalar top
sector. We have demonstrated that the usual scheme conver-
sion of input parameters used for the comparison of fixed-
order results is not suitable for the comparison of results
containing a series of higher-order logarithms. This kind of
parameter conversion would induce higher-order logarith-
mic contributions that are not compatible with the imple-
mented resummation of logarithms to all orders. We have
shown that the form of the higher-order logarithms obtained
in one scheme can manifestly be maintained if the fixed-
order part of the calculation is consistently reparametrized to
this scheme. In order to enable this approach for DR input
parameters, we have extended FeynHiggs such that the
results are provided both in terms of the on-shell parame-
ters X5, M; = mgs M:, = m9S (as before) and the DR

b %) B
arameters XPR, mPR_ PR 1n practice, this was achieved
p ‘ 1 7 p

by reparametrizing the existing OS fixed-order result. We
have demonstrated that many of the apparent discrepancies
reported in the literature have mainly been caused by an inap-
propriate application of the conversion of input parameters

@ Springer

between the OS and the DR schemes. It should be emphasized
that this issue is not a problem of the OS renormalization, but
analogously appears if OS parameters are used as input for
codes employing the DR scheme.

Another difference between pure EFT calculations and the
hybrid approach arises from the determination of the poles of
the Higgs propagator matrix. We have shown explicitly at the
two-loop level that there occurs a cancellation in the limit of a
large SUSY scale between non-SM terms arising through the
determination of the propagator pole and contributions from
the subloop renormalization of the irreducible self-energy
diagrams. Since we expect that similar cancellations will
happen at higher loops, we have modified the determination
of the propagator poles in the new version of FeynHiggs
such that terms are omitted that would not cancel because
their counterpart in the irreducible self-energies is not incor-
porated at present. Unless otherwise stated, the numerical
results presented in this paper have been obtained with this
new version of FeynHiggs. Numerically, we found that the
terms beyond & (atz, a;ap) for which in previous versions of
FeynHiggs the cancellation was incomplete are negligible
for low scales (Msysy < 0.5 TeV). They can be more sig-
nificant for high scales (~ 1.5 GeV for Msysy ~ 20 TeV).

Furthermore, we investigated the impact of different
parametrizations of the non-logarithmic one- and two-loop
terms. In this context, we found the top-quark mass and the
vev to be especially relevant. Despite the results being for-
mally identical at the strict two-loop level, using e.g. a SM
NNLO MS top quark mass instead of the OS top quark mass
induces changes in the higher-order non-logarithmic contri-
butions.

In our numerical comparison, we focused on a single
scale scenario with a moderate tan 8, which is particularly
suited for an EFT calculation. We specifically compared the
results of FeynHiggs and the EFT code SUSYHD. Using
the NNLO value of the MS top Yukawa coupling in SUSY-
HD (by default the NNNLO value is used in SUSYHD, which
leads to adownward shift by ~ 0.5 GeV in M},), we find very
good agreement between the new version of FeynHiggs
and SUSYHD for scales Msysy = 1 TeV. Such a good
agreement is in fact expected for high SUSY scales since the
hybrid approach of FeynHiggs incorporates essentially the
same logarithmic contributions as pure EFT calculations. For
Msusy < 1 TeV we observe significant differences between
FeynHiggs and SUSYHD due to terms suppressed by the
SUSY scale that are not incorporated in the EFT calculation
of SUSYHD. The observed differences stay relatively small
for the considered simple scenario with a single SUSY scale,
reaching ~ 1 GeV for Msysy ~ 300 GeV. Larger devia-
tions can be expected in SUSY scenarios with non-negligible
mass splittings between the various SUSY particles. Such
kind of mass patterns are accounted for in the diagrammatic
fixed-order part of the hybrid approach.



Eur. Phys. J. C (2018) 78:57

Page 17 of 21 57

The new version of FeynHiggs described in this paper,
comprising an improvement in the determination of the prop-
agator poles and an option for using the DR scheme for the
renormalization of the stop sector, will be made public soon.

The results obtained in this paper provide important input
for an improved estimate of the remaining theoretical uncer-
tainties from unknown higher-order corrections. In this con-
text, we would like to stress once more that for the numerical
evaluations in this paper we have used a rather simple sce-
nario where all SUSY masses have been set to be equal to
each other. Having reconciled the hybrid approach of Feyn-
Higgs with pure EFT calculations for this simple single
scale scenario, we are now in a position to assess the accuracy
of the theoretical predictions also for more general scenarios
with different hierarchies of scales. This will be analysed in
a forthcoming publication.
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Appendix A: Fixed-order conversion: additional two-
loop terms

In the limit Msysy > M; and degenerate M = M;, =
Msusy, the one-loop contributions from the stop/top sector
to the neutral Higgs self-energies at & («;) are given by (for
the remainder of this section we drop the subscript “Gr”, i.e.

we use the shorthand v = vg)

1 1 m? ,uthz

= ——L , Al
1 16n2s§ v M A1)
. 1 1 m?uXx, X2 1 uX,

Sh=—- -t e 2L 220 A2
sy relyl K7 vl R e

. 1 1 mf Mg X2 X
167 s U m; S s
2 uX X2 1 u2x?
—= (6— —’2> + =1, (A4)
tf; Mg Mg g Mg

where M% = Mj; M;,, and m; is either the OS top mass or
the MS SM top mass. We furthermore introduced the abbre-

viations

Sy =Ssinx, ¢y =cCOSx, I, =tanx. (A.S)

If we convert the stop masses and the stop mixing param-
eter from the OS to the DR scheme using the shifts defined in
Egs. (42)—(44), the following two-loop terms are generated
(see Eq. (50)),

11 m |:AX, 12X, AN n2x?

ASy = =
U8 g0 My My T Mg M}
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ASy =
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AMg X2 X}
Mg

2 uX X2 1 2X2
SR Zo)  SESD)
tp M3 M? 2 M}
The quantity AMy is given by

1 Amfl [}
AMg = - + Ms,
2 M;, M;,

(A.8)

(A9)

where AX; and Am;, , are defined in Egs. (42)—(44).

Note that for all numerlcal results presented in this work,
we used expressions valid also for low Msusy (Msusy ~
M;) and general SUSY breaking. Note also that the shifts
are performed for all self-energies and not only for the hh
self-energy as shown exemplary in Sect. 4. Therefore, the
procedure remains also valid in non-decoupling scenarios
(M4 ~ Mz).

As described in Sect. 4, these two-loop terms are finally
added to the respective self-energies, i.e., the A 3s are added
to the two-loop self-energies obtained from the diagrammatic
calculation. Higher-order terms which would be generated by
a scheme conversion of the input parameters are omitted. In
this way, the renormalization of the stop sector is changed

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

57 Page 18 of 21

Eur. Phys. J. C (2018) 78:57

from the OS to the DR scheme. This alternative renormal-
ization scheme will be available as an option in the next
FeynHiggs version.

Appendix B: Logarithms arising from the determination
of the propagator pole

In this appendix, we give explicit expressions, valid in the
decoupling limit, for the logarithms induced by the momen-
tum dependence of the non-SM contributions to the MSSM
Higgs self-energy, i.e. for the quantity AIOZgS defined in
Eq. (26). g

In order to derive the (n + 1)th order iterative solution to
the Higgs pole mass equation (see Eq. (9)) in terms of lower
order solutions, Faa di Bruno’s formula (extended chain rule
for derivatives) is used,

(M]%)(I’FF])
- ¥ o
- 1o N
(@1 emaned, 1 n’
a (a1+...+an) ~AMSSM 2
: <ﬁ) 2 (pY)
p pzzmi
n
T, (B.10)
m=1
where an n-tuple of non negative integers (ay, ..., a,) is an
elementof 7,,if 1 -a1 +2-ar+---+n-a, =n.
The zeroth order correction
MHO =m3 (B.11)

serves as starting point of the recursion.
We split Alozgs into a leading, a next-to-leading and a next-

to-next-to-leading logarithm piece,

Alozgs _ A;Ii + AI}\E‘L + AII\B\ILL 4+ ... (B.12)

p
In FeynHiggs, the full momentum dependence by default
is taken into account only at the one-loop level. At the two-
loop level, the external momentum is set to zero (see [56,57]
for a discussion of the momentum dependence at the two-
loop level). We can therefore split up the non-SM contribu-
tions to the Higgs self-energy into a one- and a two-loop
piece,

SponSM 2y — SnenSMD 2y | gaonSM.2) ) (B.13)

To shorten the expressions for the individual contribu-
tions, we first introduce abbreviations. We write the non-SM
contributions to the Higgs self-energy as

@ Springer

SronSMD 2y — (cflLX e La+ CflLs + 61,0) ;
(B.14)

where k = (47)~2 is used to keep track of the loop order
and

M: M? M2
Ly=ln—%, Ly=lh—4, Ly=l—=5Y  (B.16)
m; m; m;

Here it should be noted that in this work we set
My=M =M, =pn and M, = My = Msusy. (B.17)

In this appendix, however, we keep them independent to be
able to use the expressions also for more general cases.

The subscript of a coefficient ¢, ; indicates that it is
the prefactor of the term kaLb (L = Ly,La,Lg). The
corresponding superscript marks the origin of the respec-
tive term (from EWinos x, from heavy Higgses A or from
sfermions f). These superscripts are used only at the one-
loop level to be able to differentiate between the differ-
ent types of appearing logarithms (L, L and Lg). In the
DR scheme, the appearing coefficients up to & (v?/ Mﬁeavy)
(Mheavy = My, M s, Msysy) are given by (for the remainder
of this section we drop the subscript “Gr”, i.e. we use the
shorthand v = vg,.)

i 3 1 5
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21 = —20%y! [8g3 (4- 1282+ f(;‘)
3 .
—57 (20— 12X,2+X§‘)], (B.23)

where all appearing couplings are SM MS couplings evalu-
ated at Q = M, (g, g’ are the electroweak gauge couplings,
and X ¢ = X;/Msusy). We write the derivative of the non-
SM contributions to the Higgs self-energy as

2;2nSM’(1)/(mi) —k (0/1,1Lx + C/I,O)’ (B.24)

with the primes denoting that the corresponding coefficient
appears in the derivative of the self-energy. We again drop
contributions of &(v?/ Mgeavy). The coefficient multiplying
L, originates purely from EWino graphs and reads

1
¢ =—508"+¢%. (B.25)

The non-logarithmic coefficient has contributions from
EWinos as well as from stops (neglecting all other Yukawa
couplings),

1
o= =V xz——<3g + &) (sp +cp)?.

(B.26)
2
stop contr. EWino contr.

All higher derivatives of EA;;ZHSM (p?) are suppressed, i.e. of

ﬁ(pz/ heavy)
The SM contributions are written in a similar way,

9 ESMD 2
<3p2> @

where the superscript ’n’ denotes the nth derivative of

= ké",
pZ:m%

(B.27)

ZAJE}I:/I M Here, we only give explicit expressions for the
pure top Yukawa contributions to the first five derivatives
of £SM.(D
hh ’
1
~(1
c% ) = —Eylzvo, (B.28)
~2 3.0
& = =3 “y02, (B.29)
3 _ 9 24
1 =50 ) (B.30)
~(4 2 4
& = =35 v 4y, (B.31)
4
~(5 —6 —
& = =3 6478, (B.32)

Equation (B.10) allows now to successively derive all cor-
rections induced by the momentum dependence of the non-
SM contributions to the k4 self-energy. The generated lead-
ing logarithms can be resummed easily, since higher deriva-
tives of Z:‘,‘l‘z“SM are always suppressed, as noted before. The
resummed expression is given in terms of the ¢ coefficients
by

/
ciily

ALL _ 42
1+kc’],1LX

[efiLe+efiba+el Ls+keaatd].  (B33)
A similar expression can be derived at the NLL level. We
obtain

NLL _ ;2 1
r? (14 ke (Ly)?

X 7 A/ f / /
'[Cl,lcl,OLX +epciola ey ols +crocy 1Ly
/ 212 / / 2
+k (q,o(cl,l) Ly +caacy LyLs + Cz,zcl,oLs)

+k262’1(c/1’1)2L§(L5]. (B.34)
At the NLL level however, additional terms proportional to
derivatives of the light self-energy exist. Since these deriva-
tives are not suppressed by a heavy mass, it seems not to be
possible to resum the corresponding logarithms. Neverthe-
less, including terms up to the 7-loop order we find a good
convergence behavior and an induced shift of (2 GeV?)
to M, 2 in the parameter region M; < Mheayy < 20 TeV. The
respectlve shiftin My, is of (50 MeV). We therefore neglect
this contribution completely.

At the NNLL level, we take into account only terms pro-
portional to the strong gauge coupling and the top-Yukawa
coupling (terms proportional to electroweak gauge couplings
are negligible). We find that at this level all terms include
derivatives of the SM self-energy. We also find that this con-
tribution to M}% is not negligible, ¢(20 GeV?). Therefore,
we include terms up to the 7-loop order, which are given by

AII\B\]LL = k3LSC’L0 [62,1 - C{IE’I]
1 (1
—k*L3cl o [62 2ot 28— 3 (C{l) & )}
~<%>}
—c22 ( ) 553)

1 “\* 3
+— (c{1> ci)]——k7LSc10[cz2 cllci)

+OL3el o [C{1522C1 ‘(

1
+5KLic o [(02 2

12
—aa () @+ 55 (L) ~(5)}+ Ow).

(B.35)

where all terms in the ¢ coefficients proportional to g or g’
are set to zero. Correspondingly, the derivatives of the light
self-energy only include terms proportional to y,. These are
listed in Egs. (B.28)—(B.32). This loop expansion quickly
converges such that we can safely drop higher-order contri-
butions (8-loop and beyond).

@ Springer
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We find the electroweak contributions at the NNLL level
and even higher-order logarithms (N"L with n > 2) to
be completely negligible. Similar expressions can easily be
obtained for the non-logarithmic terms of the same origin
(see Eq. (30)).
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