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Abstract It is well known that certain special classes
of self-gravitating point-like defects, such as global (non
gauged) monopoles, give rise to non-asymptotically flat
space–times characterized by solid angle deficits, whose size
depends on the details of the underlying microscopic mod-
els. The scattering of electrically neutral particles on such
space–times is described by amplitudes that exhibit resonant
behaviour when thescattering and deficit angles coincide.
This, in turn, leads to ring-like structures where the cross
sections are formally divergent (“singular lensing”). In this
work, we revisit this particular phenomenon, with the twofold
purpose of placing it in a contemporary and more general
context, in view of renewed interest in the theory and gen-
eral phenomenology of such defects, and, more importantly,
of addressing certain subtleties that appear in the particular
computation that leads to the aforementioned effect. In par-
ticular, by adopting a specific regularization procedure for
the formally infinite Legendre series encountered, we man-
age to ensure the recovery of the Minkowski space–time, and
thus the disappearance of the lensing phenomenon, in the no-
defect limit, and the validity of the optical theorem for the
elastic total cross section. In addition, the singular nature
of the phenomenon is confirmed by means of an alternative
calculation, which, unlike the original approach, makes no
use of the generating function of the Legendre polynomials,
but rather exploits the asymptotic properties of the Fresnel
integrals.

1 Introduction

The presence of space–time defects in a physical system
always presents interesting but also challenging aspects from
both physical and technical points of view. By “defects”
we mean field theoretic entities, either point-like or with
(solitonic) structure, which exhibit singularities at a given
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point in space–time. Scattering of other particles on such
backgrounds leads to interesting and non-trivial effects, both
at the classical and the quantum level. Magnetic Dirac
monopoles [1] are a prototypical example of such defects [2],
namely point-like objects characterized by singular electro-
magnetic potentials at their origin, which induce singular
(gauge invariant) magnetic fields. The intensities of these lat-
ter fields are proportional to the magnetic charge, which, due
to Dirac’s quantization condition, is a half-integer multiple
of the inverse of the electric charge. For curved space times,
black holes are singularities of the gravitational field, lead-
ing to singularities in curvature invariants, which constitute,
in some sense, the analogue of the infinite gauge invariant
magnetic field intensity of the magnetic monopole case. The
embedding of monopoles in curved space–times results in
interesting and highly non trivial circumstances, e.g., black
hole horizons enveloping the monopole [3,4].

Scattering of particles off magnetic monopoles and/or
black holes is well studied by now. It is worth mentioning
that, as far as magnetic monopoles are concerned, both clas-
sical and quantum scattering have revealed interesting fea-
tures on the motion of a particle, which dates back to the
work of Poincarè [5]. In an attempt to understand the focusing
motion of electrons in a cathodic tube in the Birkeland exper-
iment [6–8] in the presence of an external electromagnet,
Poincarè used the notion of a magnetic “monopole”, by inter-
preting the electromagnet as the source of a singular magnetic
field (isolated “north magnetic pole”). Poincaré discovered
that the classical trajectory of an electron moving towards the
magnetic pole follows the geodesics on a cone, whose appex
is located in the position of the isolated magnetic pole, and
whose generatrix is the axis of the angular momentum �J . The
angle of the cone is given by cotθ = eg/| �J |, where g is the
magnetic charge, and e the charge of the electron. If a ring of
such electrons is considered, then Poincaré’s work demon-
strated that their trajectories will focus towards the monopole,
up to a minimum distance, before scattered away, thereby
providing an “explanation” of the results of the experiment
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of Birkeland [6–8], who had also conjectured that the elec-
trons in his experiment somehow were following the mag-
netic field lines. Dirac introduced the concept and our modern
understanding of a magnetic monopole explicitly some thirty
years later [1]. Subsequently, ‘t Hooft and Polyakov [9,10]
put the monopole in the context of spontaneously broken
non-abelian gauge theories, but this monopole has (solitonic)
structure, in contrast to the point-like Dirac one. The quan-
tum scattering of particles off such magnetic monopoles were
discussed in a plethora of works so far.1

Another kind of defect is the one proposed in [14], aris-
ing in spontaneously broken SO(3) internal isospin global
symmetry, which, in contrast to the ordinary monopoles
(e.g., ‘t Hooft-Polyakov [9,10]), when embedded in a curved
space–time induces a conical singularity, in the sense of an
angular deficit proportional to the relevant vacuum expecta-
tion value responsible for the breaking of the symmetry. A
string-inspired extension of the model of [14], in which the
global monopole can induce a magnetic monopole, has also
been discussed in [15]. In addition, space–times with angu-
lar deficits appear in models of three-spatial-dimensional
Dirichlet brane Universes, moving in higher-dimensional
bulk spaces. The latter contain populations of quantum fluc-
tuating point-like D0-brane defects (D-foam), which can be
bounded on the brane worlds, thus providing a “medium” in
which quantum matter propagates [16–18]. The recoil fluc-
tuations of such defects result in asymptotic space times with
angular surpluses [19].

In Ref. [20], the quantum scattering of neutral scalar mass-
less particles off global monopoles [14] has been considered.
Given that the main interest of that work was the asymptotic
features of the elastic collision, far away from the position of
the defect, the study was restricted only in flat space–times
but with the angular deficit induced by the defect; the latter
was the only trace of the underlying complicated microscopic
dynamics. The characteristic effect found was a ring-like
angular region (in the forward direction) where the scattering
amplitude and, hence, the elastic cross section, become very
large (formally divergent). In what follows we shall refer to
this phenomenon as “lensing”.

The analysis of [20] is fairly generic and does not depend
on the particular kind of defect that causes the conical singu-
larity of space–time; in fact, the results are expected to hold
also for the other kind of defects we mentioned above, namely
the D-particle foam, which may have interesting implica-
tions in dark matter searches, in view of the rôle of the D-
particles as dark matter candidates [21]. Generalizations of
the results of [20] to fermions have been presented in [22],
and charged massive particles (with the charge appearing
only in self-interaction potential) in [23,24]. The compari-
son with the case of scattering off cosmic strings [25] has

1 See, e.g.: [11,12] and references therein. [13] and references therein.

been given in [26]. In this work we revisit the scalar mass-
less case of [20]. Our purpose is twofold. First, to put it in a
contemporary and more general context, in view of renewed
interest in the general phenomenology of such defects, rang-
ing from cosmological and astrophysical observations [27]
to specific (magnetic monopole) searches in current col-
lider experiments [28–30].2 Second, and most important, to
address certain subtle and physically crucial issues, which
appeared in the particular computation that leads to the afore-
mentioned effect. Specifically, our current study reveals that
the aforementioned effect of [20] was not an artefact of the
formal manipulations employed, but persists our more rigor-
ous treatment involving proper regularization of the pertinent
Legendre polynomial series. Moreover, this novel procedure
guarantees a smooth recovery of the vanishing of the effect
in the no-defect limit (i.e. flat Minkowski space–time). This
was one of the important missing ingredients in all previous
analyses of the subject, where such a limit could not be recov-
ered. In addition, the validity of the optical theorem, which
is a direct consequence of unitarity (assumed to hold in the
asymptotic region far away from the defect), is established
through a non-trivial regularization procedure, whereby cut-
off dependent quantities are judiciously employed.3 Last but
not least, we present an alternative mathematical procedure
for the evaluation of the scattering amplitude, which does
not rely on the use of the generating function of the Leg-
endre polynomials, but makes instead extensive use of the
asymptotic properties of the Fresnel integrals. This particu-
lar construction confirms, in an independent and technically
distinct way, the singular nature of the lensing phenomenon.

The structure of the article is as follows. In Sect. 2 we
review certain representative microscopic models that give
rise to space–times with angular defects (deficit or surplus).
In the following Sect. 3 we compute in detail the scattering
amplitude of scalar massless particles on such defects and
demonstrate the phenomenon of lensing. In Sect. 4 we discuss
the transition to the no-deficit limit, by employing properly
regularized Legenrde polynomial series, and an appropriate
representation of the Dirac δ-function distribution at the ori-
gin. In Sect. 5 we derive the lensing phenomenon at the level
of the differential cross section. This is followed, in Sect.
6, by a demonstration of the validity of the optical theorem
within our regularization approach. Finally, in Sect. 7 we
present our conclusions and discuss potential phenomeno-
logical applications, both cosmic and at particle colliders.

2 For a review of updated recent results and prospects see, eg. [31].
3 The validity of the optical theorem in this context has been questioned
in [32], on the ground of the curved nature of the space time in the
presence of global defects.
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2 Microscopic systems inducing space–time defects

In this section we discuss certain microscopic models that
may give rise to space–time defects.

2.1 Global monopoles

In [14], the case of a self-gravitating global monopole has
been considered. The system consists of a triplet of Higgs-
like scalar fields, χa , a = 1, 2, 3, which spontaneously break
SO(3) symmetry to a globalU (1), through a vacuum expecta-
tion value (v.e.v.) η; however, the scalar fields do not couple
to a gauge field, hence the difference from the standard ‘t
Hooft-Polyakov monopoles [9,10]. The Lagrangian of the
system, when placed in a curved space time with metric ten-
sor gμν and Ricci scalar curvature R reads

L = (−g)1/2
{

1

2
∂μχa∂μχa − λ

4

(
χaχa − η2

)2 − R

}
,

(2.1)

where g = det
(
gμν

)
is the metric determinant, and λ > 0 is

the Higgs-like-field self-interaction coupling.
As a consequence of Goldstone’s theorem, such monopoles

have massless Goldstone modes associated with them, which
have energy densities that scale like 1/r2 with the radial
distance from the monopole core. This results in a linear
divergence of the monopole total energy (mass), which is a
characteristic feature of such solutions, in a way similar to
the linearly divergent energy of a cosmic string. In the orig-
inal work of [14] only estimates of the total monopole mass
have been given, by considering the solution in the exterior
of the monopole core, whose size in flat space time has been
estimated to be of order

δ ∼ λ−1/2 η−1 , (2.2)

leading to a heuristic mass estimate of order

Mcore ∼ δ3 λ η4 = λ−1η . (2.3)

The presence of the monopole curves the space–time exterior,
and these estimates, even the concept of the mass of the global
monopole, have to be rethought. The main argument of [14]
was that gravitational effects are weak for η � MP, the
Planck mass; this is certainly the case when η is of order of
a few TeV, the scale of relevance for new physics searches
at LHC (however it should be noted that the scalar triplet
field χa, a = 1, . . . 3 does not represent the Higgs field of
the Standard Model. It signifies new physics, an issue we
shall come back to it later on in the article). In this sense, the
authors of [14] argued that the flat space–time estimates for
the core mass might still be valid, as an order of magnitude

estimate. Outside the monopole core, they used approximate
asymptotic analysis of the Einstein equations,

Rμν − 1

2
gμνR = 8πGN T χ

μν , (2.4)

where T χ
μν is the matter stress tensor derived from the

Lagrangian (2.1) and the equations of motion for the scalar
fields χa , a = 1, 2, 3. The scalar field configuration for a
global monopole is [14]

χa = η f (r)
xa

r
, a = 1, 2, 3 (2.5)

where xa are spatial Cartesian coordinates, r = √
xaxa is the

radial distance, and f (r) → 1 for r � δ. So at such large
distances, the amplitude squared of the scalar field triplet
approaches the square of the vacuum expectation value η,
χaχa → η2. In fact, the reader may recognize the similarity
between the expression (2.5) and the corresponding one for
the ‘t Hooft-Polyakov monopole, although, as we explained
above, the underlying physics between the two problems is
entirely different.

As was argued in [14], due to the symmetry breaking
and the linearly divergent energy of the global monopole,
the space–time differs from the standard, asymptotically flat
Schwarzschild metric corresponding to a massive object with
mass Mcore (assuming that all the mass of the monopole is
concentrated in the core’s interior) when r � δ; specifically,

ds2 = −
(

1 − 8π GNη2 − 2GN Mcore

r

)
dt2

− dr2

1 + 8π GNη2 − 2GN Mcore
r

+ r2
(
dθ2 + sin2θ dφ2

)
, (2.6)

where the signature (−,+,+,+) was adopted for the metric,
and (r, θ, φ) denote the spherical coordinates.

In the asymptotic limit r → ∞, upon appropriate rescal-
ing of the time t → (1 − 8π GNη2)−1/2 t ′, and radial coor-
dinate r , r → (1 − 8π GNη2)1/2 r ′, the space–time (3.28)
becomes

ds2 = −dt ′2 + dr ′2

+
(

1 − 8π GNη2
)
r ′2 (

dθ2 + sin2θ dφ2
)

, r � δ,

(2.7)

that is, it would formally resemble a Minkowski space–time
but with a conical deficit solid angle

�� = 8πGN η2 . (2.8)

The existence of the deficit (2.8) implies that the space–time
(2.7) (or, equivalently, (3.28)) is not flat, since the scalar cur-
vature behaves, on account of (2.4) and (2.1), as
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R ∝ 16π GN η2

r2 . (2.9)

The reader should note that in the unbroken phase η = 0,
where the defect is massless, in view of (2.3), the space–
time (2.7) (or (3.28)) becomes the ordinary flat Minkowski
space–time.4

The presence of a monopole-induced deficit solid angle
can have important physical consequences for scattering pro-
cesses in such space–times. Indeed, as shown first in [20],
for scalar neutral particles, and was generalised to fermions
in [22] and charged particles in [23,24], the quantum mechan-
ical amplitude describing the scattering of the particle off the
defect in the space–time (2.7) is very large for regions of
the (forward) scattering angle of order of the deficit angle
(or equivalently the squared ratio of the monopole mass to
the Planck mass). In this sense the defect acts as a focusing
object for the scattering of particles off it.

We mention at this stage that a discussion of the phe-
nomenon for scalar particles was also presented in [26], inde-
pendently of the earlier work of [20]. In that work, the addi-
tional feature of moving defects (at ultra-galactic speeds) has
been considered. Moreover, a regularization of some of the
singular results of [20], in the limit where the defect is absent,
has been attempted in [26], but as pointed out in [32], there
were some algebraic errors which rendered some of those
results inconsistent. It is the purpose of the current work
to address carefully such issues, before discussing the phe-
nomenology of the effect in a modern context, where defects
that can induce the asymptotically non-flat space times (2.7)
are in principle producible at current colliders, such as the
Large Hadron Collider (LHC, CERN), within the framework
of new physics models, provided their masses of are of the
order of a few TeV.

It should be stressed that the above property of the defect
acting as a lens of scattered particles is independent of the
details of the self-gravitating monopole solutions, and is due
only to the existence of the deficit angle in the space–time
(2.7). In this respect we mention that, subsequent to the work
of [14], more detailed analysis of the gravitational back reac-
tion effects of such defects has been performed in [43], by
requiring a matching of the solutions of the non-linear cou-
pled system of gravitational and matter equations at the core
radius.5

4 In the current work we do not comment on the stability of the global
monopole configuration. A debate on this issue is still ongoing. For a
partial list of references on the (still open) issue of the stability of the
global monopole, see: [33]; In the original suggestion of Goldhaber that
global monopoles are not stable against “angular” collapse, there is an
ongoing debate on this issue; for a partial list of references see: [34–42].
5 The motivation for using the above matching comes from the obser-
vation that, at the origin (r → 0), the Higgs potential for the scalars
leads to a cosmological constant ∝ η4, since any “matter” scalar fields

In this way the latter can be determined dynamically,
rather than heuristically from flat space–time arguments as in
[14]. Indeed, in [43], the core radius rc = 2 λ−1/2 η−1 for the
self-gravitating solution was found by matching an exterior
Schwarzschild-like metric

ds2 = −
(

1 − 8πGN η2 − 2 GN M

r

)
dt2

+
(

1 − 8πGN η2 + 2 GN M

r

)−1

dr2 − r2 d�2,

(2.10)

to an interior local de Sitter metric

ds2 = −(1 − H2 r2)dt2 + (1 − H2 r2)−1dr2 + r2 d�2,

(2.11)

where M denotes the monopole mass and H2 = 8πGN λ η4

12
the de Sitter parameter.6

Unfortunately, such a matching yields a negative mass for
the monopole, M ∼ −6πλ−1/2η < 0. The interpretation
of this sign in [43] is based on the repulsive nature of grav-
ity induced by the vacuum-energy H2 provided by the global
monopole. Moreover, it has been argued in [43] that this inter-
pretation is consistent with the monopole being an entity with
complicated structure rather than an elementary particle-like
excitation. Even though a monopole with a negative mass is
of no relevance to collider physics, the scattering of particles
in the resulting space–times (2.10),(2.11) would still exhibit
the lensing phenomenon of [20], as a result of the existence
of the solid deficit angle (2.8) in the asymptotic form of the
metric (2.10) far away from the monopole core. In view of
the cosmological relevance of the space–time (2.10), (2.11),
the phenomenon suggested in [20] may be useful in setting
bounds for these defects in a cosmological context.

2.2 Magnetic monopoles in models with antisymmetric
tensor fields

In [15], an extension of the global monopole model was
preented, inspired from string theory, with dilaton 
 and
antisymmetric tensor (spin 1) fields Bμν = −Bνμ present,
which are known to characterize the massless gravitational
multiplet of strings. The model has also an electromagnetic

go to zero. However, if a black hole or other geometric singularity is
present as r → 0, the space–time is different for small r (r → 0), and
the arguments leading to negative mass would then not hold.
6 In fact, in [44], the authors presented a classification of space–times
arising from self-gravitating global monopoles in field theories with
only a triplet of Higgs-type scalar fields and Ricci scalar curvature. The
conclusion is that, under the requirement of regularity at the centre of
the monopole, as in [43], and independently of the shape of the Higgs
potential, the metric can contain at most one horizon, and, in case there
is an horizon, the global space–time structure is that of a de Sitter space–
time.
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field, fμν , whose Maxwell tensor couples to the rest of the
terms via appropriate dilaton terms

L = (−g)1/2
{1

2
∂μχa∂μχa − λ

4

(
χaχa − η2

)2 − R

+ 1

2
∂μ
∂μ
 − V (
)

− 1

12
e−2γ
 HρμνH

�μν − 1

4
e−γ
 fμν f

μν
}

, (2.12)

where γ is a real constant, which in specific string theory
models takes on the value −1, and the antisymmetric tensor
field strength Hρμν = ∂[ρ Bμν], where the brackets [. . . ]
denote total antisymmetrization of the respective indices.

As shown in [15], one may obtain monopole solutions with
non-zero magnetic charge, due to the coupling of fμν with
the antisymmetric tensor field strength Hμνρ , described by
the dilaton equation of motion. In this case, the metric is that
of Reissner-Nordström (RN) geometry due to the antisym-
metric tensor and electromagnetic fields, with the rôle of the
RN charge played by the magnetic charge of the monopole.
The singular nature of the solution at r → 0 invalidates the
arguments of [43,44], and one can obtain a positive mass for
the magnetic monopole. The latter has been estimated in [15]
to be finite, for strong coupling, λ � 1, and assuming a kind
of “bag” model for the monopole, where the bulk of its mass
comes from a thin shell of thickness α L , 0 < α � 1 near
the core radius L ,

M ∼
∫

shell thickness
(1 − α)L

√−g d3x

[
2 W 2

B r2 + (b′)2

4 BA

+ η2
(

f 2

Br2 + ( f ′)2

2BA

)
+ λ η4

4B
( f 2 − 1)2

]

� 1

α
(1 − α)

(
9πζ 2 + 4π

λ

) 1

L
+ 4π η2 (1 − α) L ,

(2.13)

where the various functions depend only on the radial coor-
dinate r . In the expression above, A(r) and B(r) are space–
time metric functions, parametrizing components of the met-
ric in the Schwarzschild system of coordinates (t, r, θ, φ),
with t the time and r, θ, φ spherical coordinates, as follows:
g00 = −B(r), grr = A(r), gθθ = r2, gφφ = r2sin2 θ in
our signature convention; W (r) is a function associated with
the solution for the Maxwell gauge field strength fμν , such
that its θφ-component reads fθφ = 2r θ sinθ W (r); b(r)
is a pseudoscalar field linked with the antisymmetric ten-
sor field strength, which, in four space–time dimensions, can
be expressed uniquely as Hμνρ = εμνρσ ∂σb(x), and the
“prime” denotes derivative with respect to r . The monopole

solution of [15] is characterized by b′ (r) = ζ

r2

√
A(r)
B(r) , where√

2 ζ is its magnetic charge; finally, f (r) characterizes the
global-monopole scalar field Ansatz χa = η f (r) xa

r , a =

1, 2, 3, with xa Cartesian spatial coordinates, which are such
that lim

r→0
f (r) = 0 and lim

r→∞ f (r) = 1.

Minimization of (2.13) with respect to L = Lmin leads to
a core size Lmin ≡ Lc of order Lc = 3|ζ |/2ηα1/2, and thus
to an estimate of the (positive) monopole mass, [15]

M ∼ 12π α−1/2 (1 − α) |ζ | η = (1 − α) 8π η2 Lc > 0,

(2.14)

where α � 1 is a number that must be determined from
phenomenology.

The asymptotic r → ∞ space–time induced by the self-
gravitating global monopole, assumes the RN form [15]:

ds2 = −
(

1 − 8πGN η2 − 2 GN M

r
+ p0

r2

)
dt2

+
(

1 − 8πGN η2 + 2 GN M

r
+ p0

r2

)−1
dr2

+ r2 d�2, (2.15)

where p0 := 2ζ 2 − 1/λ.
The asymptotic space–time in (2.15) has the angular

deficit of the standard global solution (2.8), but now the
monopole is a highly ionising particle, on account of its
magnetic charge. For sufficiently low v.e.v. η, such that
the mass of the monopole (2.14) is of order TeV, such
objects can be produced at current colliders, but in monopole
anti-monopole pairs. It should be remarked at this point
that, if the monopole solutions have structure, such as the
global-monopole-inspired solutions we are discussing in this
work [14,15,43], or a ‘t Hooft-Polyakov monopole [9,9],
then their production at colliders at zero or very low temper-
atures is expected to be extremely suppressed [45]. However,
abundant production of such objects may be expected [46] in
environments with high magnetic fields or high temperatures
(such as neutron starts or in heavy ion collisions at colliders,
such as the LHC), as a result of a Schwinger-like [47] ther-
mal pair production mechanism from the vacuum, provided
of course that the external conditions, e.g. temperature, are
such that one is in the broken phase of the SO(3) symmetry,
so that η 
= 0 (e.g. the temperature is lower than the critical
temperature for symmetry restoration).

2.3 “Foam” models: brane universe with ensembles of
D0-brane defects

Another field-theoretic context where an asymptotic space–
time with the form (2.7) emerges is that of the so-called
D-particle “foam”. In this scenario, the Universe is mod-
elled by a brane world propagating in a higher dimensional
bulk space–time, punctured by stochastically fluctuating D0-
branes (or D-particles) [16–18] (cf. Fig. 1). In the case of
a four-dimensional brane world, fundamental (F-) strings
propagate on the brane, representing matter and/or radiation
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D−brane stack

D−brane stack

D3−branes

F−strings

F−strings

D3−branes

D−particles

R2R1

R0

Fig. 1 Schematic representation of a prototype D-particle space–time
foam model [16–18], consisting of two stacks of higher-dimensional D-
branes, attached to orientifold planes, which, due to their special reflec-
tive properties, provide a natural compactification of the bulk dimen-
sion. The bulk is punctured by D0-branes (D-particles). Our “world” is
one of the brane Universes, after appropriate compactification to three
large spatial dimensions (D3 branes). Open fundamental (F-)strings live
on the D3-brane world, representing matter excitations of the Standard
Model. Matter can interact topologically with the D-particle defects in
the foam, e.g., through capture and splitting of the open string by the
defect, re-emission of the open string, and recoil of the D-particle. In
each such process there are distortions of the neighboring space–time

excitations of the observable Universe (e.g. Standard Model
(SM) fields). These strings may be captured by the defect,
causing the attachment of at least one of its ends to the D-
particle. Subsequently, the open string is re-emitted, and the
D-particle recoils, a process which involves the creation of
fundamental strings stretched between the D-particle and the
brane Universe. In the presence of an ensemble of quantum
fluctuating D-particles (D-foam) such a process is repeated
several times, and one essentially has to average over statis-
tically significant populations of the D-particles in order to
describe, at an effective (low-energy) field theory level, the
propagation of an open string excitation in such a “medium”.
The recoil of the D-particle defect implies a distortion of the
neighbouring space–time by an amount proportional to the
momentum transfer exchanged in the process.

Assuming a locally flat space–time, the corresponding
metric distortion in the rest frame of the D-particle can be
calculated by noting [19] the similarity of the problem with

that of an open string (representing SM excitations on the
brane world) in an external “electric” field [48] of intensity
ui = �pi

Ms
gs , where ui is the recoil velocity of the D-particle

on the D3-brane world, along its i-th spatial large dimension,
as seen by a cosmic observer who is at rest with respect to the
brane universe, and �pi is the momentum transfer of the mat-
ter excitation in that frame, with Ms/gs the D-particle mass,
Ms the string mass scale, and gs < 1 the string coupling. In
this frame, the distorted metric “felt” by the open string is then
given by (in spherical polar coordinates, assuming - without
loss of generality- recoil along the radial direction) [19]

gμν =
[
(1 − |ur |2) ημν, μ, ν = 0, r
ημν, μ, ν = θ, φ

(2.16)

with ημν the Minkowski metric with signature (−,+,+,+).
It should be noted that there is an underlyingnon-commutative
geometry between temporal and spatial coordinates in this
case [19,48],[
t, xi

]
= i

ui
1 − |ui |2 , (2.17)

and hence the effects of D-particle recoil are expected to lead
to physically non-trivial results, such as a refractive index for
photons propagating in this background [49], or, as we dis-
cuss next, an angular surplus (negative deficit) in the space–
time felt by SM particles.

Indeed, upon averaging over ensembles of D-particles,
using the stochastic relations

� ui �= 0, � ui u j uk �= 0,

� ui u j �= σ 2 δi j , i, j = 1, 2, 3 , σ 2 � 1 , (2.18)

it is then straightforward to write the induced metric element
(2.16) as

� ds2 �= −(1 − σ 2)dt2 + (1 − σ 2)dr2

+r2(dθ2 + sin2θ dφ2) , σ 2 � 1 , (2.19)

which, upon a trivial rescaling of the time coordinate by the
factor (1 − σ 2) implies a metric of the type (2.7),

� ds2 � = −dt ′ 2 + dr ′ 2+ 1

1 − σ 2 r ′ 2(dθ2+sin2θ dφ2)

� −dt ′ 2 + dr ′ 2 + (1 + σ 2) r ′ 2(dθ2

+ sin2θ dφ2), σ 2 � 1 , (2.20)

where the corresponding surplus (negative deficit in this case)
angle (2.8) is given by the stochastic D-particle recoil veloc-
ities variance σ 2 � 1, which is a characteristic property of
the foam. Experimentally, for a dilute foam (which is the
physically expected situation) it may be possible in princi-
ple (depending on the magnitude of σ 2) to falsify the phe-
nomenon, given that there should be enhanced scattering pat-
terns in a small angular region in the forward directions,
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where the scattering (of photons in this case) from a dis-
tant astrophysical object will be enhanced compared to the
one expected in the absence of D-foam. The phenomenon
would manifest itself as an excess of photons compared to
the expected flux in the absence of the foam. Such phe-
nomena could be combined with the induced anisotropies
in superheavy dark matter scattering by the D-foam, exam-
ined in [50]. Disentangling such phenomena in cosmological
searches from standard dark matter searches is an open issue,
which will not be the subject of the current article.

In all the above situations, the scattering of standard model
particles off such defects will exhibit the scattering lensing
phenomenon described above, which we now proceed to ana-
lyze in the following sections.

3 Quantum scattering on space–time defects

In this section we review in detail the analysis of [20] for
the case of massless scalar neutral particles, in a space–time
with an angular deficit (2.8) of the form (2.7).

To that end, we employ the notation of [20], which has
the advantage of being general and not specific to the details
of the underlying microscopic model, and rewrite the space–
time element as 7

ds2 = −dt2 + dr2 + b2 r2
(
dθ2 + sin2θ dφ2

)
,

b2 ≤ 1 , b ∈ R. (3.1)

The only point we make about the deficit parameter b
is that it is close to 1, so that appropriate perturbative
expansions are valid. In the static space–time (3.1), one
can parametrize the wave corresponding to the scalar field

(�x, t) = eiωt �(r, θ, φ), where ω is the energy of the mass-
less field, ω = |�k| ≡ k, with k the spatial momentum. The
(Klein-Gordon) equation of motion gμν∇μ ∂ν 
 = 0 (with
∇ a gravitational covariant derivative), then, reduces to a
Helmholtz-type equation for �(r, θ, φ) [20]

�� = ω2 � , � ≡ − 1

r2

∂

∂ r

(
r2 ∂

∂ r

)
− L2

b2 r2 (3.2)

with L the Laplacian of a unit sphere, corresponding to the
“angular momentum” operator.

The spherical symmetry of the problem allows one to
employ as an orthonormal basis the Legendre polynomials
P�(cosθ), � = 0, 1, 2, . . . , which satisfy [51,52]

L2 P�(cosθ) = �(� + 1) P�(cosθ), � ∈ N0 . (3.3)

7 For definiteness, we restrict ourselves below to the deficit angle case,
for which 0 < b ≤ 1. For the case of surplus angular defect, as hap-
pens in the example of D-foam (2.20), the parameter b > 1, but, apart
from this, our subsequent analysis and conclusions on the physical phe-
nomenon of lensing hold in that case as well.

In terms of this basis, the function �(r, θ, φ) can be expanded
as [20]

�(r, θ, φ) =
∞∑

�=0

c� R�(r) P�(cosθ) (3.4)

Before proceeding, we consider it instructive to list some
properties of the Legendre polynomials, which we shall use
in our analysis below. A particular property of the Legendre
polynomials is the relationship of a special sum of them to
the Dirac delta function [52]

δ(y − x) =
∞∑

�=0

(
� + 1

2

)
P�(y) P�(x),−1 ≤ y ≤ 1,

1 ≤ x ≤ 1. (3.5)

Another useful quantity is their generating function

1√
1 − 2x t + t2

=
∞∑

�=0

t� P�(x) , (3.6)

where the variable t can be complexified, t → w ∈ C,
through analytic continuation. From (3.6) we also obtain, by
Taylor expanding the left hand side, that P0(x) = 1, P1(x) =
x . The following “normalization” of the Legendre polyno-
mials will be adopted

P�(1) = 1 , � ∈ N0 , (3.7)

which can be achieved by an appropriate scaling, since both
the orthogonality property and the differential equation defin-
ing the Legendre polynomials [52] are independent of scal-
ing. The result (3.7), when used in conjunction with (3.5),
implies for y = 1, x = cosθ (cf. (3.4)),

δ(1 − cosθ) =
∞∑

�=0

(
� + 1

2

)
P�(cosθ) , (3.8)

Returning to the expansion (3.4), and using (3.2) and (3.3),
we obtain

R′′
� + 2

r
R′

� +
(

ω2 − �(� + 1)

b2 r2

)
R� = 0 . (3.9)

On writing R�(r) = r−1/2 G�(r), and noticing that in (3.9)
one can scale ωr → y, and treat y as the differential equation
variable, one finally obtains from (3.9) the following second
order differential equation

r2 G′′
� + r G′

� +
(
r2 ω2 −

[
�(� + 1)

b2 + 1

4

])
G� = 0 . (3.10)
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The above equation admits as solution [20] spherical Bessel
functions of the first kind Jν(�), of order ν(�) [52],

G�(r) = Jν(�)(ω r) ,

ν(�) = b−1

[(
� + 1

2

)2

− 1 − b2

4

]1/2

=
[
�(� + 1)

b2 + 1

4

]1/2

= � + 1

2
− 2

π
δ�, δ� := π

2

⎡
⎣ (

� + 1

2

)

− b−1

√(
� + 1

2

)2

− 1 − b2

4

⎤
⎦ , (3.11)

where we restricted ourselves to the finite solution as r →
0, which is the one with physical significance in our case,
providing a smooth connection with the no-defect limit.8 As
we will see, the quantity δ� will be identified with the phase
shift caused by the scattering of the particle off the defect.

To discuss (quantum) scattering, we now write the func-
tion �(r) in (3.4) as a sum of an incoming (�in) and a scat-
tered (�sc) wave,

� = �in + �sc, (3.12)

with

�in = eiω r cosθ , (3.13)

assuming, for concreteness, propagation of the incident wave
along the z axis, and the scattering solution at r → ∞

�sc(r → ∞) ∼ 1

r
f (θ)eiω r , (3.14)

where f (θ) is the scattering amplitude in our quantum
mechanical formulation [51]. We also impose that �sc → 0
when b → 1, which specifies uniquely f (θ) [20].

From (3.14) and (3.4) we obtain in the asymptotic region
r → ∞
R�(r → ∞) = lim

r→∞ r−1/2G�(r)

= lim
r→∞ r−1/2 Jν(�)(ω r)

�
√

2

πω
r−1 cos

(
ω r − π ν(�)

2
− π

4

)
,

(3.15)

where in the last equality we have used for r → ∞ the
asymptotic form of the Bessel function Jν(�)(ω r), which

8 For other boundary conditions, see [53].

is regular at the origin. Using (3.11) we can express the
argument of the cosine function in (3.15) in terms of the
phase shift δ�, thus finally obtaining for the function �(r →
0, θ, φ) in (3.4)

�(r → ∞, θ, φ)

� 1

r

∞∑
�=0

c�

√
2

πω
cos

(
ω r − π (� + 1)

2
+ δ�

)
P�(cosθ)

= 1

r

∞∑
�=0

c�

√
1

2 πω

(
ei(ω r− π (�+1)

2 +δ�)

+ e−i(ω r− π (�+1)
2 +δ�)

)
P�(cosθ) . (3.16)

We now express the exponential eiωrcosθ in terms of appro-
priate sums of the Bessel functions Jn(x) as [52]

eiω r cosθ = √
2 π

∞∑
�=0

(
� + 1

2

)
i�

J�+ 1
2
(ω r)

(ω r)1/2 P�(cosθ)

r→∞� 1

ω r

∞∑
�=0

(
� + 1

2

)
i�

(
ei(ω r− π (�+1)

2 )

+ e−i(ω r− π (�+1)
2 )

)
P�(cosθ) , (3.17)

where again in the last line we used the asymptotic form of
the Bessel function Jn(x) for x → ∞.

Substituting (3.17) into (3.12), taking into account (3.13),
(3.14), equating (3.12) with (3.16) for r → ∞, and finally
equating the respective coefficients of e± iω r , we obtain the
expressions for the coefficients c� in (3.16) and the scattering
amplitude f (θ)

c� =
√

2 π

ω

(
� + 1

2

)
i� eiδ� , (3.18)

and

f (θ) = − i

ω

∞∑
�=0

(
� + 1

2

) (
e2iδ� − 1

)
P�(cosθ) , (3.19)

or, equivalently,

f (θ) = 1

ω

∞∑
�=0

(2 � + 1) ei δ� sinδ� P�(cosθ) , (3.20)

where δ� is given in (3.11).
We next proceed to expand δ� as a power series of the

small variable 1−b2 � 2 α, b → 1− (i.e. small deficit angle
(2.8)), which is relevant for our physically interesting cases
discussed in the previous section. In particular, keeping only
the leading order approximation, and setting α := 1−b−1 →
0, we obtain

δ�

b→1−
� π

2
α

(
� + 1

2

)
+ π (1 − b2)

16 b
(
� + 1

2

) . (3.21)
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We observe from (3.19) and (3.21) that f (θ) → 0 as
b → 1, since in that case δ� → 0, in agreement with our
boundary condition �sc → 0 when b → 1. Using (3.8) we
may write the scattering amplitude (3.19) as

f (θ) = − i

ω

∞∑
�=0

(
� + 1

2

)
e2iδ� P�(cosθ)+ i

ω
δ(1−cosθ) .

(3.22)

The presence of the δ-function on the right-hand side of
(3.22), which was omitted in the initial analysis of [20], is
crucial for ensuring that in the absence of the deficit, i.e.
b → 1 and δ� → 0 in (3.21), the amplitude f (θ) → 0,
and, therefore, any potential phenomenon disappears as the
Minkowski space–time is recovered.

To discuss further the consequence of the deficit b 
= 1 in
the scattering off a defect, one might be tempted to expand
the eiδ� in powers of a small α → 0 (3.21), which is the
case of physical interest, keeping only leading terms in the
expansion. However, this is not correct, given that α� can be
much greater than unity for sufficiently large �. Hence it is
appropriate to only partially expand the exponent in e2iδ� by
writing

e2i δ�
α�1� e

i π α
(
�+ 1

2

) [
1 + i

π (1 − b2)

8 b
(
� + 1

2

)
]

, (3.23)

which implies that the amplitude (3.22) can be written as

f (θ) = − i

ω

∞∑
�=0

(
� + 1

2

)
(eiπ α)�+

1
2 P�(cosθ)

+ π (1 − b2)

8 bω

∞∑
�=0

(eiπ α)�+
1
2 P�(cosθ)

+ i

ω
δ(1 − cosθ) . (3.24)

Writing

∑
�

(
� + 1

2

)
(eiπ α)�+

1
2 P�(cosθ)

= − i

π

d

d α

∑
�

(eiπ α)�+
1
2 P�(cosθ) , (3.25)

and making use of the generating function of the Legendre
polynomials (3.6), with x = cosθ and t = eiπ α , implying
that

∞∑
�=0

(eiπ α)�+
1
2 P�(cosθ) = 1√

2
(

cosπα − cosθ
) , (3.26)

one readily obtains from (3.24)

f (θ) = − 1

2
√

2 ω

sinπα(
cosπα − cosθ

) 3
2

+ 1

ω

π(1 − b2)

8
√

2 b

1(
cosπα − cosθ

) 1
2

+ i

ω
δ(1 − cosθ).

(3.27)

It is clear from the above expression that the scattering ampli-
tude diverges for the special value of the scattering angle
θ = θ� = |πα|. This is the essence of the lensing phe-
nomenon discussed in [20]. In view of the singular behaviour
of (3.27) we coin this phenomenon singular lensing.

The fact that the dominant contribution to the scattering
amplitude occurs when θ = ±πα may also be understood by
noting that, for large �, the asymptotic form of the Legendre
polynomials is given by [51]

P�(cosθ)
��1�

√
2

π � sinθ

(
1 − 1

8�θ
cos

[(
� + 1

2

)
θ

+π

4

] )
sin

[(
� + 1

2

)
θ + π

4

]
(3.28)

Substituting the above expression into (3.19), we obtain for
the scattering amplitude for large � and θ 
= 0, such that
� θ � 1:

f (θ)
�θ�1� − 1

2 ω

∑ √
2�

π sinθ
e2iδ�

(
ei(�+

1
2 )θ−i π

4

−e−i(�+ 1
2 )θ+i π

4

)
, (3.29)

from which we observe that, due to the oscillatory behaviour
of the exponentials with �θ , the dominant contributions in
(3.29) come from those � for which the exponents 2δ� ± �θ

do not vary much with �, that is [51]

2
dδ�

d �
± θ � 0 ⇒ δ� = ±1

2
� θ . (3.30)

In our case, to leading order in large �, we have that δ�

��1�
1
2�πα, from which it follows immediately that a dominant
contribution to the amplitude should come when θ is in the
vicinity of ± α, in agreement with (3.27). However, notice
that in our case this contribution is formally divergent, as can
also be seen by replacing the large-� summation in (3.29)
by a continuous integral over �. Indeed, expanding e2iδ� =
cos(2δ�) + i sin(2δ�) in (3.29), with 2δ� ∼ πα as � → ∞,
leads to integral structures of the form (up to irrelevant �-
independent factors that do not affect our arguments)
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f (θ)
�→∞∝ I1 + iI2,

I1 =
∫

�→∞
d�

√
� cos(πα �) sin(θ �)

� 1

2

[√
π

2

FrC(
√

�z−)

φ
3/2
−

+ FrC(
√

�z+)

φ
3/2
+

−2
√

�
θ cos(θ�) cos(πα �) + πα sin(θ �) sin(πα �)

φ+φ−

]

�→∞� O
(√

� sin(� φ±)
)

,

I2 =
∫

�→∞
d�

√
� sin(πα �) sin(θ �)

� 1

2

[
−

√
π

2

FrS(
√

�z−)

φ
3/2
−

+ FrS(
√

�z+)

φ
3/2
+

+√
�

(
sinφ−
φ−

− sinφ+
φ+

)]

�→∞� O
(√

� sin(� φ±)
)

, (3.31)

where φ± := θ ± πα, z± := (2/π)φ±, and FrS(x) =∫ x
0 dt sin(t2), FrC(x) = ∫ x

0 dt cos(t2) denote the Fres-
nel integrals [52], which, in the limit x → ∞, behave as

FrS(x) = FrC(x)
x→∞�

√
π
2

(
sign(x)

2 + O( 1
x )

)
. The integra-

tions in the above limit have been performed with Mathe-
matica.

In the limit θ = πα 
= 0 we obtain for the above integrals

I1
�→∞, πα=θ� − 4π(πα)2

√
� cos(2 πα �) + O

(√
1

�

)
,

I2
�→∞, πα=θ� 1

3
� 3/2 + O

(√
1

�

)
, (3.32)

The reader should compare the distinct ways the integrals
diverge as � → ∞ between the two cases (3.31), (3.32). In
the case (3.32), where πα = θ , the leading divergence in
f (θ) is of order �3/2, which is much stronger than that in
the case (3.31) θ 
= πα, where it is suppressed by infinitely
rapidly oscillating trigonometric functions, being of the form√

� sin(� (θ±πα)). In fact, the latter terms can be resummed,
when the full series for all � is considered, yielding (3.27),
which is finite for 0 < θ 
= −πα (the δ-function term van-
ishes for θ 
= 0). This is, once again, the singular lensing
phenomenon found earlier.

For completeness we note [32] that, upon assuming a non-
zero πα 
= 0, the amplitude acquires different values for the
cases θ < πα and θ > πα:

f (θ)

∣∣∣
θ<πα

= − i

2
√

2 ω

1

(cosθ − cos πα)
1
2

[
sin πα

cosθ − cos πα

+π(1 − b2)

4 b

]
+ i

ω
δ(1 − cosθ) ,

f (θ)

∣∣∣
θ>πα

= 1

2
√

2 ω

1

(cosπα − cosθ)
1
2

[
− sinπα

cosπα − cosθ

+π(1 − b2)

4 b

]
, (3.33)

where we took into account that the δ-function vanishes in
the case θ > πα 
= 0.

For future use we remark that, for πα 
= 0, the relations
(3.33) imply

Im f (θ = 0) = − 1

2
√

2 ω

1

(1 − cosπα)
1
2

[
sinπα

(1 − cosπα)

+π(1 − b2)

4 b

]
+ 1

ω
δ(0) , (3.34)

where δ(0) should be understood as a term in need of proper
regularization, to be discussed below.

4 Recovering the “no-defect” limit

The subject of this section is related with a consistency check
of our approach, namely with demonstrating that the f (θ) in
(3.27) satisfies the boundary condition f (θ) → 0, as b →
1, which was imposed on �sc (3.14), and ought to specify
uniquely f (θ), as already mentioned. The transition to the
“no-defect” limit yields automatically the correct (vanishin)
result when one defines f (θ) by means of summation over
Legendre polynomials, (3.19), from which follows trivially
that when b → 1, and thus δ� → 0 (3.21) for each partial
wave � , then f (θ) → 0. It is instructive, however, to verify
this explicitly at the level of (3.27), as the latter involved
several algebraic manipulations of the various infinite sums
entering in (3.19).

The first subtlety in (3.27) is the range of θ . For any finite
θ 
= 0, the δ-function term δ(1−cosθ) → 0, and in this case,
we observe from (3.19) that, for b → 1 (hence, α → 0 as
well), the condition f (θ 
= 0, b → 1) is satisfied. The subtle
point is the limit θ → 0, for which the δ-function lim

θ→0
δ(1 −

cosθ) → δ(0) is formally infinite and needs regularization.
Setting formally θ = 0 in the first of (3.33), and defining

the approach of πα → 0 by replacing

π α → πα + ε → 0, ε → 0+, ε � |πα| as α → 0−,

(4.1)

with ε an always positive quantity independent of πα, we
have for the leading divergent term of the first line (3.33)
(the first one on the right-hand-side) as b → 1:

f (θ = 0)
b→1� − i

ω

πα + ε(
(πα)2 + ε2

)3/2

+ i

ω
δ(0) + · · · 0←|πα|�ε→0+

� − i

ω

ε

(ε)3 + i

ω
δ(0) + · · ·
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0←|πα|�ε→0+
� − i

ω

1

ε2

+ i

ω
δ(0) + · · · , ε → 0+, α → 0−, ε � |πα|,

(4.2)

with the ellipses indicating subleading finite terms, stemming
from the (1 − b2)-terms in (3.33) as b → 1−

[
f (θ = 0)

]
Finite Parts

b→1−= − i sign(πα + ε)

4 ω

= − i ε

4 ω
, ε → 0+, πα = 0, (4.3)

given that π (1−b2)/b
b→1−
� − 2πα → − 2πα −2ε in the

non-defect limit, due to our prescription (4.1).
It should be stressed that the prescription (4.1) guarantees

that, in the no-defect limit θ = |πα| → 0+, one can always
cancel the singular and negative ε-dependent terms in (4.2) by
the non-negative term involving the δ-function distribution,
in a way independent of the sign of the deficit πα, namely,
by defining the regularized singular limit δ(0) such that it
cancels both the leading divergent and finite ((4.3)) terms in
(4.2) as b → 1−, ε → 0+,

δ(0)
b→1−
=: 1

ε2 + 1

4
, ε → 0+, πα = 0. (4.4)

This is a self-consistent prescription, in agreement with the
boundary condition that f (θ) → 0, as b → 1, which is
respected in (3.19). The prescription (4.4), to leading order as
ε → 0+, can also be viewed as the following regularization
of the δ(0)

δ(0) =
∞∑

�=0

(
� + 1

2

)
eiε(�+

1
2 ) , ε → 0+ , (4.5)

with ε → 0+ defined as in (4.1), which makes manifest the
vanishing of the scattering amplitude f (θ) (3.24) in the no-
defect limit. In fact, for a generic scattering problem with a
phase shift δ�, we may define a regularized version of (3.22),
using (4.5), as follows

f (θ) = − i

ω

∞∑
�=0

(
� + 1

2

) (
e2iδ�+i ε(�+ 1

2 ) P�(cosθ) − ei ε(�+ 1
2 )

)
,

ε → 0+. (4.6)

This definition was missed in the previous literature, where
the behaviour of the scattering amplitude in the no-defect
limit was incompletely addressed.

5 Differential cross section and lensing

In this section we proceed to discuss some phenomenological
aspects of the production at particle colliders of defects that
lead to space–times with a conical deficit solid angle.

The differential cross section of the scattering of massless
scalar fields off the defect is given by

dσ

d�
= | f (θ)|2 , d� = sinθ dθ dφ , (5.1)

where � is the three-dimensional solid angle, expressed in
spherical coordinates. From (3.27) one observes that, for
θ = 0 and b 
= 1 (α 
= 0), the differential cross section (5.1)
is singular due to the δ-function term. This is an important
aspect of the presence of the defect, yielding a focus point
of the scattered particles in the forward direction. In addition
to the θ = 0 case, one also has a formal divergence of the
amplitude (3.22), and hence of the differential cross section
(5.1), for the case |πα| = θ 
= 0, which was the effect dis-
cussed in [20], and reproduced in various other occasions in
[22–24,26,32]. In that case, we obtain from (5.1) and (3.33):

dσ

d�

θ≥−πα= 1

8 ω2

sin2πα

(cosπα − cosθ)3

×
[

1 − π (1 − b2)

4 b

(cosπα − cosθ)

sinπα

]2

= 1

64 ω2

sin2πα(
sin(�

2 ) sin(�
2 + |πα|))3

×
[

1 − π (1 − b2)

2 b

(
sin(�

2 ) sin(�
2 + |πα|))

sinπα

]2

,

(5.2)

where in the second line we have expressed the result in terms
of the (non-negative) parameter [32] � ≡ θ − |πα| ≥ 0,
using the simple trigonometric relation cosπα − cosθ =
2

(
sin(�

2 ) sin(�
2 + |πα|)

)
. This allows the physical effects

of the limit θ → |πα| 
= 0 (i.e. when 0 < � � |πα|) to be
more easily visualised. The differential cross section (5.2) is
plotted in Fig. 2.

Indeed, the leading behaviour of the differential cross sec-
tion (5.2), as θ → |πα| 
= 0 (0 < � � |πα|), is

dσ

d�

θ→|πα|
=0� sin2πα

8 ω2
(

cosπα − cosθ
)3

0<��|πα|� 1

64 ω2 |sinπα| sin3(�
2 )

. (5.3)

which diverges for � → 0, giving rise is the lensing phe-
nomenon [20].

Of course, in practice, this divergence will be regulated
by the experimental angular resolution θres, which imposes a
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Fig. 2 Three dimensional plots of the differential cross section (5.2),
as a function of either � = θ −|πα| > 0 and πα (upper panel), or θ and
πα (lower panel), for the case θ ≥ |πα| 
= 0. The lensing of particles
when θ → |πα| 
= 0 is evident. We deliberately kept both signs of
πα (although in the concrete cases studied in this section α ≤ 0), to
demonstrate a branch cut at πα = 0, which defines the no deficit limit,
for which the cross section vanishes

natural cut-off � ≥ θres in the above expressions. This would
tame the apparent divergence in the value of the differential
cross section in Fig. 2; the maximum value attained will be
dσ
d�

|max = dσ(�=θres)
d�

. In fact, θres acts as a regulator also of
the formally singular quantity δ(0), as discussed at the end
of the next section.

We next remark that by considering the case πα � 1,
which is of physical interest as becomes clear from our dis-
cussion in Sect. 2, then in the region of scattering angles such
that πα � �, we have from (5.2) a suppressed differential
cross section

dσ

d�

|πα|��, |πα|�1� (πα)2

64 ω2 sin6(�
2 )

[
1 + sin2

(
�

2

)]2

,

(5.4)

where we took into account that in the case |πα| � 1 we
can employ the approximation π(1 − b2)/2b � −πα > 0.

6 The optical theorem

In this section we address certain subtleties related with the
way that the optical theorem is realized in the case of the
process considered above.

In its text-book formulation, the optical theorem relates
the total (elastic) cross-section with the imaginary part of the
forward scattering amplitude, as

σtot = 4π

ω
Im f (0) , (6.1)

where, in our case, f (0) is given by fθ<πα(0) in (3.27) for
πα 
= 0, and its imaginary part is given in (3.34). According
to the standard lore, the validity of the theorem follows from
unitarity of the scattering matrix, or, equivalently, from the
conservation of probability at the level of the wave function.
Even though in the presence of gravitational interactions the
notion of unitarity may be tricky, for the problem at hand,
namely for scattering far away from the defect core, unitarity
in the standard sense is expected to be valid, and hence, the
optical theorem should hold.

Formally the validity of the theorem follows from the
expression (3.20) for the scattering amplitude as an infinite
sum of partial waves, and the integral of the differential cross
section (5.1) over the solid angle d� in three-space (below,
the ∗ denotes complex conjugation and we set from now on
x ≡ cosθ ):

σtot =
∫ 2π

0
dφ

∫ π

0
sinθ dθ f (cosθ) f ∗(cosθ)

= 2π

∫ 1

−1
dx | f (x)|2

= 2π

∫ 1

−1
dx

1

ω2

∑
�,m

(2� + 1) (2m + 1) sinδ� sinδm P�(x) Pm(x)

= 4π

ω2

∑
�

(2� + 1)sin2δ� (6.2)

where in the last equality we used the orthogonality relation
of the Legendre polynomials [52]:

∫ 1

−1
dx P�(x) Pm(x) = 2

2m + 1
δ�m (6.3)

with δ�m the Kronecker delta. Then, the optical theorem (6.1)
follows immediately from (6.2) on account of (3.20), upon
recalling the normalization (3.7) of the Legendre polynomi-
als.

As a non-trivial consistency check of our approximations,
we derive next the total cross section by explicitly integrating
the approximate differential cross section (5.1) over the above
range of (θ, φ); evidently, the validity of the optical theorem
(6.1) should not be taken for granted when dealing with this
truncated expression. The integrated version of (5.1) is given
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by

σtot =
∫

d�| f (θ)|2 = 2π
( ∫ cosπα

−1
dx | fθ>|πα|(x)|2

+
∫ 1

cosπα

dx | fθ<|πα|(x)|2
)

, (6.4)

where we have carried out the trivial integration over the
azimuthal angle φ, and the amplitudes in the integrands are
given by (3.27). The problem is that the above integration
involves singular limits, which have to be carefully regular-
ized. In doing so, we will postulate the validity of the optical
theorem (6.1), which will serve as our guiding principle in
determining the exact regularization procedure.

The pertinent integrals have the structure (after appropri-
ate change of integration variable x → x/cosπα)

I1 =
∫ 1

− 1
cosπα

dy
(
1 − y)−d , d = 1, 2 ;

I2 =
∫ 1

cosπα

1
dy

(
y − 1)−d , d = 1, 2, 3, (6.5)

and the divergences in question are associated with the upper
(lower) integration limit in the first (second) integral. There-
fore, a careful cutting-off procedure is required, with a cut-off
ε̃ → 0+, that we proceed to discuss next. The regularization
should also be such that, for α → 0 (no defects), the cross
section should vanish identically, as discussed earlier.

We next mention some additional points that will be essen-
tial for the computation of (6.4). In our analysis we encounter
terms involving the square of the Dirac δ-function, of the form

A ≡ 2π

ω2

( ∫ 1

cosπα

dx δ2(1 − x)
)

= 2π

ω2

∫ 1

−1
dx δ2(1 − x) ,

(6.6)

where in the last equality we extended the integration by
adding an identically zero term (as the Dirac δ-function van-
ishes in the region −cosπα < x < cosπα for πα 
= 0 we
are considering here). Making use of (3.8), (6.3), and (3.7),
we can write (6.6) as

A = 2π

ω2

∫ 1

−1
dx

∑
�,m

(
� + 1

2

) (
m + 1

2

)
P�(x) Pm(x)

= 2π

ω2

∑
�

(
� + 1

2

)
= 2π

ω2 δ(0) . (6.7)

We also encounter integrals of the form
∫ 1

cosπα

dx δ(1 − x)
1

(x − cosπα)c

=
( 1

1 − cosπα

)c
�(0) , c ∈ R. (6.8)

with the convention for the Heaviside�(x) function at x = 0,

�(0) = 1, (6.9)

for the problem at hand, where the functions involved are
right-continuous, in view of (3.33). Then, after some ele-
mentary integrations, we easily derive from (6.4)

σtot = π tan2πα

4 ω2

1

ε̃2 − π (1 + cos2πα)

4 ω2 sin2πα

+π3 (1 − b2)2

64 b2 ω2 ln
(1 − cosπα

1 + cosπα

)

−π2 (1 − b2)

4 bω2

cosπα

sinπα

+4π

ω2

(
− 1

2
√

2

1

(1 − cosπα)
1
2

[
sinπα

(1 − cosπα)

+ π(1 − b2)

4 b

]
+ 1

2
δ(0)

)
, (6.10)

with the cut-off ε̃ → 0+ has been introduced. As a con-
sistency check, we note that the right-hand-side of (6.10) is
positive definite.

The reader should notice that the last line of (6.10) would
constitute the part of the total cross section if the coefficient
of the singular term δ(0) were unity. In other words, adding
and subtracting 2π

ω2 δ(0), we obtain from (6.10)

σtot = 4π

ω
Im f (0) + π

ω2 E (6.11)

where

E := tan2πα

4 ε̃2 − (1 + cos2πα)

4 sin2πα

+π2 (1 − b2)2

64 b2 ln
(1 − cosπα

1 + cosπα

)

−π (1 − b2)

4 b

cosπα

sinπα
− 2 δ(0) . (6.12)

To restore this, we should postulate a choice of the cut-off
ε̃ → 0+ such that E = 0 for any πα 
= 0. This can be easily
enforced by absorbing the πα-dependent terms in (6.12) in
the definition of the cutoff. In doing so we employ the α-
independent regularization of δ(0) = 1

ε2 + 1
4 , ε → 0+,

given in (4.4).
This regularization guarantees the optical theorem (6.1)

and is consistent with the vanishing of the cross section (and
the amplitude f (θ)) in the no-defect limit πα → 0, as it
is compatible with the regulated δ(0) (4.4). In fact, in that
limit, one should consider the replacement πα → πα + ε

(cf. (4.1)), as πα → 0−, with |πα| � ε → 0+. In such a
case we have:
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1

ε̃2 ∼ 10

ε4 + · · · → ∞, as ε → 0+, 0+ ← |πα| � ε,

(6.13)

where the ellipses indicate (irrelevant) subleading terms.
We finally point out that the infinities in the differen-

tial cross section discussed above are the result of consider-
ing quantum-mechanical instead of quantum-field-theoretic
scattering, including gravitons; the latter would include
effects of back reaction onto the (curved) spacetime, ignored
in the current analysis, which are expected to smoothen out
the singularities in (5.3), while preserving the characteristic
enhancement in angular regions where θ ∼ πα.

A final, but important comment is due at this point. In prac-
tice, the δ(0) appearing in (6.10) or (6.1) is replaced by the
value of a δ-function distribution at the experimental angu-
lar resolution θres, which is considered to be small. In order
to have a phenomenon, one must have |θres| < |πα|, which
prompts one to use the analogue of (4.4) for representing
“experimentally” the quantity δ(0),

δ(0) → δexpt(θ
2
res) � 1

θ2
res

+ 1

4
, θres < |πα| , (6.14)

given that f (θ) should vanish when θ < θres. This is because,
for scattering angles 0 < θ ≤ θres, one cannot distin-
guish experimentally the forward scattered particles from the
unscattered incident beam. The relation (6.14) should be used
when discussing the potential phenomenology related to this
effect, which was done in Sect. 5.

This completes our discussion on the regularized cross
sections, which, as we have seen, is a subtle and delicate
issue.

7 Conclusions and outlook

In the present work we have revisited the problem of particle
scattering off a global defect, which is known to induce a
space–time with an angular deficit or surplus. For concrete-
ness we have focused on the deficit case, but our results may
be straightforwardly extended to a space–time with an angu-
lar surplus, such as those found in the D-foam systems. Our
analysis demonstrates that the effect of particle lensing is
mathematically robust, surviving a proper regularization of
the Legendre polynomial series. Within this framework, we
have verified the disappearance of the effect in the no-defect
limit, and the validity of the optical theorem for the total elas-
tic cross-section. Even though we explicitly studied the spin
0 case, the generalization to fermions [22] and gauge-bosons
may be carried out in a similar manner.

The phenomenon has potentially wide applications due
to the variety of physical systems that may produce it.

The important point to notice is that our analysis has been
restricted to electrically neutral particles, because in the pres-
ence of electromagnetic (Coulomb) interactions of charged
matter, the effect, which is essentially gravitational in origin,
would be strongly suppressed. Should global defects be pro-
duced in colliders, only neutral particles will be lensed due
to this effect. Such a lensing may manifest itself through the
excess of photons (either primarily produced or stemming
from the decays of other neutral particles) in regions of the
detectors corresponding to the ring-like structures associated
with the phenomenon.

We now remark that, if the defects are solitonic in nature,
as in [14,15], their production in colliders is expected to be
strongly suppressed [45]. Nonetheless, as already mentioned
at the end of Sect. 2.2, enhanced production of structured
defects may be foreseen in the presence of strong magnetic
fields and/or at high temperatures, as happens in the envi-
ronment of a neutron star or in heavy ion collisions. This is
the result of a thermal analogue of Schwinger pair produc-
tion [46], provided of course that the deficit is present in such
situations, in the sense that the temperature has not restored
the broken symmetry.

Cosmological applications of this phenomenon are also
very interesting [20], since in this case it will manifest itself
as ring-like structures of cosmic photons (predominantly cos-
mic microwave radiation) in the sky. In models of space–time
D-foam [16–19,50], which can be used as alternatives to dark
matter [21], such structures may provide a natural explana-
tion for potentially observed photon excesses, which would
be conventionally interpreted as being due to the annihilation
of dark matter particles. Moreover, in view of the similarity of
the global monopole space–time with that of cosmic strings,
searches for the lensing phenomenon can be included in the
current efforts [27] to locate such defects in the Universe.
Let us finally note that cosmic neutrinos will also exhibit
the lensing effect, which may in principle lead to enhanced
signals in detectors.
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