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Abstract We study third order Lovelock Gravity in D =
7 at the critical point which three (A)dS vacua degenerate
into one. We see there is not propagating graviton at the
critical point. And also we compute the butterfly velocity
for this theory at the critical point by considering the shock
wave solutions near horizon, this is important to note that
although there is no propagating graviton at the critical point,
due to boundary gravitons the butterfly velocity is non-zero.
Finally we observe that the butterfly velocity for third order
Lovelock Gravity at the critical point in D = 7 is less than
the butterfly velocity for Einstein–Gauss–Bonnet Gravity at
the critical point in D = 7 which is less than the butterfly
velocity in D = 7 for Einstein Gravity, vE .H

B > vE .G.B
B >

v3rd Lovelock
B . Maybe we can conclude that by adding higher

order curvature corrections to Einstein Gravity the butterfly
velocity decreases.

1 Introduction

Introducing higher-derivative terms to Einstein Gravity has
some advantages. Stelle had shown that extension of Ein-
stein Gravity with higher order curvature invariants in four
dimensions can be renormalizable [1,2], however, the the-
ory contains ghost-like massive spin-2 modes. When there
is a cosmological constant there exists a critical point in the
parameter space of the coupling constants [3,4] for which
the ghost-like massive graviton becomes a logarithmic mode
[5–10].

In higher dimensions, there are some higher order curva-
ture extensions for which equations of motion involve only
two derivatives, and hence ghost excitations can be absent.
These are Gauss–Bonnet or Lovelock Gravities [11]. In gen-
eral, there are two (A)dS vacua in Einstein–Gauss–Bonnet
Gravity. At the critical point, the two (A)dS vacua degener-
ate into one and the effective coupling for the kinetic term
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vanishes [19]. The theory at the critical point does not have
propagators therefore the linear modes are not gravitons and
we have a theory of gravity without graviton.

In general, there are three (A)dS vacua in third order Love-
lock Gravity, at the critical point all (A)dS vacua degenerate
into one. In Sect. 3 we study linearized gravity and find that
the effective coupling for the kinetic term vanishes at the crit-
ical point, therefore the theory does not have propagators at
the critical point, in other words in this point there is a theory
of gravity without graviton.

In Sect. 4 we study wave solutions and we find that equa-
tions of motion is automatically satisfied by plugging the
wave ansatz at the critical point. Therefore we see it is equal
to the absence of gravitons at the critical point since the ansatz
of wave solution is in the light cone gauge and solutions are
satisfied for both linear and non-linear level [7]. In Sect. 5
we study the butterfly effect for 7-dimensional third order
Lovelock Gravity at the critical point. It has been shown
[21–24] that chaos in thermal CFT may be described by
shock wave near the horizon of an AdS black hole. In other
words the propagation of the shock wave on the horizon pro-
vides a description of the butterfly effect in the dual field
theory.

For computing the butterfly velocity in third order Love-
lock Gravity at the critical point we consider the shock wave
ansatz in Kruskal coordinate and finally we find a second
order differential equation for perturbations near the horizon,
thus we can read the butterfly velocity at the critical point.
It is important to note that although at the critical point the
theory does not have propagating gravitons, due to bound-
ary gravitons, the butterfly velocity is non-zero. Finally, we
observe that the butterfly velocity of third order Lovelock
Gravity at the critical point in D = 7 is less than the butter-
fly velocity of Einstein–Gauss–Bonnet Gravity at the critical
point in D = 7 which is less than the butterfly velocity of
Einstein Gravity in D = 7. Maybe we can conclude that by
adding higher order curvature corrections to Einstein Gravity
the butterfly velocity decreases.
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2 Third order lovelock gravity

In this section, we consider Third Order Lovelock Grav-
ity [12–18] without matter fields. The Lagrangian density
is given by

L = 1

16πGN

√−g
[
R − 2�0 + α2L2 + α3L3

]
, (2.1)

where �0 is the bare cosmological constant. α2 and α3 are
coefficients of Gauss–Bonnet term L2 and third order Love-
lock term L3 respectively and GN is Newton’s constant. The
expression of L2 and L3 are

L2 = R2 − 4RμνR
μν + Rμνρσ R

μνρσ ,

L3 = 2Rμνσκ Rσκρτ R
ρτ

μν + 8Rμν
σρR

σκ
ντ R

ρτ
μκ

+ 24Rμνσκ RσκνρR
ρ

μ

+ 3RRμνσκ Rμνσκ + 24Rμνσκ RσμRκν

+ 16RμνRνσ R
σ

μ − 12RRμνRμν + R3. (2.2)

Varying the action with respect to metric, the equation of
motion is:

Eμν = Rμν − 1

2
Rgμν + �0gμν + α2G

(2)
μν + α3G

(3)
μν = 0,

(2.3)

where G(2)
μν and G(3)

μν are the Gauss–Bonnet and third order
Lovelock tensors respectively:

G(2)
μν = 2

(
Rμσκτ Rν

σκτ − 2Rμρνσ R
ρσ − 2Rμσ R

σ
ν

+ RRμν

) − 1

2
L2gμν,

G(3)
μν = 3RμνR − 12RRμσ R

σ
ν − 12RμνRαβ R

αβ

+ 24Rμ
αRα

β Rβν − 24Rμ
αRβσ Rαβσν

+ 3RμνRαβσκ R
αβσκ − 12RμαRνβσκ R

αβσκ

− 12RRμσνκ R
σκ + 6RRμαβσ Rν

αβσ

+ 24Rμανβ Rσ
αRσβ + 24Rμαβσ Rν

β Rασ

+ 24Rμανβ Rσκ R
ασβκ − 12Rμαβσ R

καβσ Rκν

− 12Rμαβσ R
ακ Rνκ

βσ + 24Rμ
αβσ Rβ

κ Rσκνα

− 12Rμανβ R
α

σκρR
βσκρ

− 6Rμ
αβσ Rβσ

κρRκραν

− 24Rμα
βσ RβρνλRσ

λαρ − 1

2
L3gμν. (2.4)

If we put (A)dS space-time values for curvatures(maxima-
lly symmetric relations for curvatures) in terms of metric in
D-dimensions:

Rμνλσ = 2�

(D − 1)(D − 2)

(
gμλgνσ − gμσ gνλ

)
,

Rμν = 2�

D − 2
gμν, R = 2D�

D − 2
, (2.5)

the effective cosmological constant � satisfies a cubic alge-
braic equation:

1

2
(� − �0) + (D − 3)(D − 4)

(D − 1)(D − 2)
α2�

2

+ 2
(D − 3)(D − 4)(D − 5)(D − 6)

(D − 1)2(D − 2)2 α3�
3 = 0. (2.6)

Here we consider specially D = 7, The above equation for
effective cosmological constant � in D = 7 becomes:

75(� − �0) + 60α2�
2 + 8α3�

3 = 0. (2.7)

One can see for D = 7, all three solutions of the above
equation degenerate into one for α3 = 2α2

2, we call this point
the critical point [20], in this point all solutions degenerate
into � = − 5

4α2
and �0 = − 5

12α2
or � = 3�0, H. Lu et.al

studied the critical point for Einstein–Gauss–Bonnet Gravity
[19] and they find � = 2�0 for critical point. If we assume
AdS space-time for solution in D = 7, when they degenerate
into one at the critical point we have:

� = 3�0 = −15

l2
, α2 = l2

12
, α3 = 2α2

2 = l4

72
,

(2.8)

where l is the AdS radius.

3 Linearized gravity

In this section we like to study the spectrum of perturba-
tion around (A)dS vacua in third order Lovelock Gravity in
D = 7, at the critical point equation (2.8). To do this, let us
parametrize the perturbation as below:

gμν = ḡμν + hμν, (3.1)

where ḡμν means the (A)dS vacua for general parameters. By
using the linearized Einstein tensor around (A)dS vacuum in
D = 7

GL
μν = RL

μν − 1

2
ḡμνR

L − 2�

5
hμν, (3.2)

where the linearized Ricci tensor RL
μν and Ricci scalar RL in

D = 7 are respectively

RL
μν = 1

2

(
∇̄σ ∇̄μhνσ + ∇̄σ ∇̄νhμσ − �̄hμν − ∇̄μ∇̄νh

)
,

RL = −�̄h + ∇̄σ ∇̄μhμσ − 2�

5
h (3.3)

We obtain the linearized equations of motion for this model

κe f f GL
μν = 0, κe f f = 25 + 40α2� + 8α3�

2. (3.4)

With the effective cosmological constant being 3�0 at the
critical point in above equation (3.2) we have κe f f = 0 and
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hence the linearized equations of motion are automatically
satisfied.

At the critical point the linearized equations of motion in
the above section are automatically satisfied. And also there is
no kinetic term for the fluctuation hμν at the quadratic order,
therefore the theory does not have any propagator, and hence
it is no longer proper to take hμν as usual graviton modes. We
have thus a theory of gravity without graviton! We arrived at
the above critical point by studying the linearized equations
of the third order Lovelock Gravity. It happens that at the
critical point the theory also admits only one AdS vacuum.

4 Critical point and wave solutions

In last section we observed that third order Lovelock Gravity
at the critical point equation (2.8) does’nt contain any propa-
gating mode at the linearized level. The interesting question
which one can ask is that this model at the critical point admit
propagating modes at non-perturbative level.

To answer this question, one can study the wave solutions,
we can write the ansatz for AdS wave solutions as follows
[7]:

gμν = ḡμν + F(r, u)kμkν, (4.1)

where kμ is a null vector field(kμkμ = 0) with respect to
the background metric ḡμν , which is AdS7 metric, then the
solutions are satisfied for both linear and non-linear level.

Note that F is independent of the integral parameter along
kμ therefore one can write the ansatz as follows [7]:

ds2 = L2

r2

[ − F(u, r)du2 − 2dudv + dr2 + dxidx
i ],

i = x, y, z, w. (4.2)

If we plug the above ansatz in the equations of motion (Eq.
2.3) from uv, rr, xx, yy, zz, ww components we find:

75(� − �0) + 60α2�
2 + 8α3�

3 = 0. (4.3)

That is exactly the equation for effective cosmological con-
stant � in D = 7 Eq. (2.7), The other non-vanishing com-
ponent of equations of motion which is uu component is:

−10
(
75(� − �0) + 60α2�

2 + 8α3�
3)F(u, r)

+�
(
25 + 40α2� + 8α3�

2)

×
(
r2 ∂2F(u, r)

∂r2 − 5r
∂F(u, r)

∂r

)
= 0. (4.4)

The last equation by using Eq. (4.3) simplified as:

�
(
25 + 40α2� + 8α3�

2)
(
r2 ∂2F(u, r)

∂r2 − 5r
∂F(u, r)

∂r

)
= 0.

(4.5)

For � �= 0 and 25 + 40α2� + 8α3�
2 �= 0 the solution is:

F(u, r) = c1(u)

6
r6 + c2(u). (4.6)

But we know from Eq. (3.4), at the critical point therefore
the overall factor of the differential equation (4.5) is zero
therefore equations of motion are automatically satisfied by
plugging the wave ansatz. Note that for the above ansatz
of wave solution which is in light cone gauge the solutions
are satisfied for both linear and non-linear level. Therefore
the above result about equations of motion at the critical
point which are automatically satisfied by plugging the wave
ansatz, is equal to absence of graviton at the critical point in
third order Lovelock Gravity.

5 Shock wave in third order Lovelock Gravity at the
critical point

In this section, we study butterfly effect in 7-dimensional
third order Lovelock Gravity at the critical point. Indeed it
was shown [21–24] the propagation of the shock wave on
the horizon of an AdS black hole provides a description of
butterfly effect in the dual field theory.

In field theory side butterfly effect may be diagnosed by
out of time order four point function between pairs of local
operators

〈Vx (0)Wy(t)Vx (0)Wy(t)〉β, (5.1)

where β is inverse of the temperature. The butterfly effect
may be seen by a sudden decay after the scrambling time, t∗,

〈Vx (0)Wy(t)Vx (0)Wy(t)〉β
〈Vx (0)Vx (0)〉β〈Wy(t)Wy(t)〉β ∼ 1 − e

λL

(
t−t∗− |x−y|

vB

)
,

(5.2)

where λL is the Lyapunov exponent and vB is the butter-
fly velocity. The Lyapunov exponent is, λL = 2π

β
, where β

is inverse of Hawking temperature. And also the butterfly
velocity should be identified by the velocity of shock wave
by which the perturbation spreads in the space.

To study the butterfly effect, we consider the black brane
solution. The equations of motion of third order Lovelock
Gravity at the critical point admit this asymptotically AdS
black brane solution

ds2 = − f (r)dt2 + dr2

f (r)
+ r2

l2
d 	x2,

f (r) = r2

l2

(
1 − r2

h

r2

)
, (5.3)

where rh is the radius of horizon.
Now the aim is to study shock wave of this model when

the above black hole solution of this theory is perturbed by
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injection of a small amount of energy. For this aim, it is better
to rewrite the solution in Kruskal coordinate

u = exp

[
2π

β
(r∗ − t)

]
, v = −exp

[
2π

β
(r∗ + t)

]
, (5.4)

where β = 4π

f ′
(r)

is the inverse of temperature and dr∗ = dr
f (r)

is the tortoise coordinate.
By making use of this coordinate system, the metric

becomes into this form [21,25]:

ds2 = 2A(uv)dudv + B(uv)d 	x2. (5.5)

Here A(uv) and B(uv) are two functions, given by f (r),
whose near horizon expansions are

A(x) = −2cl2
(

1 − 2cx + 3c2x2 − 4c3x3 + · · ·
)

,

B(x) = r2
h

l2

(
1 − 4cx + 8c2x2 − 12c3x3 + · · ·

)
, (5.6)

where c is an integration constant. Now we must study the
shock wave, for this aim let us consider an injection of a
small mount of energy from boundary toward the horizon
at time −tw. This will cross the t = 0 time slice while it
is red shifted. Therefore the equations of motion should be
deformed as

Eμν = κT s
μν, (5.7)

where κ = 8πGN , the energy-momentum tensor has only
uu component due to energy injection:

T S
uu = l E

(
exp

(2π tw
β

)
δ(u)δ5(	x)

)
. (5.8)

For solving the equations of motion near horizon to find the
shock wave solution, we consider this ansatz for back-reacted
geometry

ds2 = 2A(UV )dUdV + B(UV )d 	x2

−2A(UV )h(	x)δ(U )dU 2, (5.9)

where the new coordinate U and V are

U ≡ u, V ≡ v + h(	x)�(u). (5.10)

Plugging the ansatz into the equations of motion, near hori-
zon at the leading order one finds a second order differential
equation for h(	x)
(
l2

r2
h

∂i∂
i − 5

l2

)
h(xi ) = − 1

2cl2
[
κl Ee2π tw/β

]
δ5(xi ),

(5.11)

we can reduce the equation of motion into:

(∂i∂
i − a2)h(xi ) = bδ5(xi ), a2 = 5r2

h

l4
,

b = − r2
h

2cl4
[
κl Ee2π tw/β

]
, (5.12)

By making use from planar symmetry of xi coordinate
directions we can choose one direction for solving the
above differential. For this aim we assume injecting energy
along one direction x , then the energy-momentum is T S

uu =
l E

(
exp( 2π tw

β
)δ(u)δ(x)

)
therefore the differential equation

reduces to
(
∂i∂

i − a2)h(x) = bδ(x), (5.13)

whose solution is

h(x) = − b

2a
e−a|x | (5.14)

By replacing the values of a and b, one can see h(x) ∝
e

2π
β

[
(tw−t∗)−|x |/vB

]
, where the scrambling time is t∗ =

β
2π

log( l
5

κ
), with κ = 8πGN and GN is Newton’s constant in

D = 7, therefore from the above relation Eq. (5.14) we have
a = 2π

β
1
vB

[23,25], then one can read the value of butterfly
velocity at the critical point:

vB = 2π

βa
=

√
1

5
,

2π

β
= f

′
(r)

2
= rh

l2
. (5.15)

It has worth to note that in this case although at the crit-
ical point the theory has not propagating gravitons, due
to boundary gravitons the butterfly velocity is non-zero.
And also if we compare this velocity with butterfly veloc-
ity for Eeistein–Gauss–Bonnet Gravity at critical point in

D = 7 [23,25] , vE .G.B
B =

√
3

10 (in D-dimension at critical

point vE .G.B
B =

√
D−1

4(D−2)
), we observe butterfly velocity for

Einstein–Gauss–Bonnet Gravity at critical point is larger than
butterfly velocity for third order Lovelock Gravity at critical
point. In addition butterfly velocity for Einstein Gravity [21],

in D = 7 is vE .H
B =

√
3
5 (in D-dimension vE .H

B =
√

D−1
2(D−2)

),

which is larger than butterfly velocity for Einstein–Gauss–
Bonnet Gravity at critical point in D = 7,

vE .H
B > vE .G.B

B > v3rd Lovelock
B . (5.16)

Maybe we can conclude that by adding higher order cur-
vature corrections to Einstein Gravity the butterfly velocity
decreases. In other word if we add more higher order curva-
ture corrections to Einstein Gravity the butterfly velocity is
less than butterfly velocity of lower order curvature one.

6 Conclusions

In this paper we studied third order Lovelock Gravity at the
critical point which all three (A)dS vacua degenerate into
one. We observed that there is no propagating graviton at the
critical point, in other words, in this point there is a theory of
gravity without graviton. And also we studied wave solutions
for this model and observed that the equations of motion
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are automatically satisfied and we know that for the wave
solution ansatz in light cone gauge the solutions are satisfied
for both linear and non-linear level, therefore it is equal to
the absence of graviton at the critical point.

In following we studied the butterfly effect for third order
Lovelock Gravity at the critical point by considering the
shock wave near horizon and we computed the butterfly
velocity for this theory at the critical point in D = 7. It is
important to note that although at the critical point the theory
has no propagating gravitons, due to boundary gravitons the
butterfly velocity is non-zero. This is similar to what happens
in three dimensional Einstein Gravity.

Finally we observe that the butterfly velocity of third order
Lovelock Gravity at the critical point in D = 7 is less than
the butterfly velocity of Einstein–Gauss–Bonnet Gravity at
the critical point in D = 7 which is less than the Butter-
fly velocity of Einstein Gravity in D = 7. Maybe we can
conclude that with adding higher order curvature corrections
to Einstein Gravity the butterfly velocity decreases. Maybe
decreasing the butterfly velocity by adding higher order cur-
vatures to Einstein Gravity is related to changing the effective
cosmological constant at the critical point by adding higher
order curvatures, we know that the effective cosmological
constant for third order Lovelock Gravity in D = 7 at the
critical point is � = 3�0 and the effective cosmological
constant for Einstein–Gauss–Bonnet Gravity in D = 7 at
critical point is � = 2�0 [19] and for Einstein Gravity we
have � = �0. We see by adding higher order curvatures,
the effective cosmological constant, �, increase in terms of
the bare cosmological constant, �0. Maybe we can conclude
that with increasing the effective cosmological constant in
terms of bare cosmological constant, the butterfly velocity
decreases. In other words maybe increasing the effective cos-
mological constant in terms of the bare cosmological constant
means increasing an effective mass which causes the butter-
fly velocity to decrease. Recently people have done some
investigations about the butterfly effect [27–34], actually it
needs more investigations and also calculations in this model
and other higher derivative gravity models to access a deeper
understanding of this natural phenomena.
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