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Abstract The thermodynamics and covariant kinetic the-
ory are elaborately investigated in a non-extensive environ-
ment considering the non-extensive generalization of Bose–
Einstein (BE) and Fermi–Dirac (FD) statistics. Starting with
Tsallis’ entropy formula, the fundamental principles of ther-
mostatistics are established for a grand canonical system hav-
ing q-generalized BE/FD degrees of freedom. Many particle
kinetic theory is set up in terms of the relativistic transport
equation with q-generalized Uehling–Uhlenbeck collision
term. The conservation laws are realized in terms of appropri-
ate moments of the transport equation. The thermodynamic
quantities are obtained in a weak non-extensive environment
for a massive pion–nucleon and a massless quark–gluon sys-
tem with non-zero baryon chemical potential. In order to
get an estimate of the impact of non-extensivity on the sys-
tem dynamics, the q-modified Debye mass and hence the q-
modified effective coupling are estimated for a quark–gluon
system.

1 Introduction

Boltzmann–Gibbs (B–G) statistics has long been serving
as the founding structure of a wide range of physical sys-
tems, especially the ones containing a large number of par-
ticles, in the presence of short-range correlations (exponen-
tially decaying). Any understanding beyond such correla-
tions, where the memory effects are significant and non-
Markovian processes are likely to occur, requires theoretical
modeling of the system under consideration in terms of a
generalized statistical approach, such that in an appropriate
limit case it yields the usual B–G statistics. In this context,
the Tsallis approach, which is the non-extensive generaliza-
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tion of B–G statistics [1–12], could serve the development of
a description of such systems with long-range correlations.

In the context of high-energy collisions, the observables
(such as particle spectra and transverse momentum fluctua-
tions) in certain situations could be quantitatively explained
better in terms of non-extensive statistics producing power-
law distributions. In high-energy experiments, the momen-
tum distribution provided by B–G statistics, being expo-
nential in nature, gives a sensible description of particle
production data only at low transverse momentum (below
pT ∼ 1 GeV). However, for higher pT ranges, the particle
spectrum is observed to follow a power-law type tail. In the
current literature, the requirement of a generalized statistics,
leading to a power-law kind of distribution of emitted parti-
cles in high-energy collisions, has been extensively studied
[13–20]. This could be a hint towards the presence of long-
range correlations among the particles within the system. In
particular, for hot QCD systems produced at relativistic heavy
ion collision experiments, this condition looks more feasible.
In experimental facilities like RHIC (Relativistic Heavy Ion
Collider at BNL, USA) and LHC (Large hadron Collider at
CERN, Geneva), due to large momentum transfer, the inter-
action strength among the quarks and gluons becomes weaker
by the virtue of asymptotic freedom, which can only be real-
ized at temperatures much beyond the transition temperature
(Tc) from a hadron to a quark–gluon plasma (QGP) phase.
Around Tc the interaction is considerably large, giving rise to
a strongly coupled QGP where the partonic degrees of free-
dom could be deconfined just beyond their nucleonic vol-
ume. This phenomenon leads to long-range entanglements
and consequently the memory effects of microscopic inter-
actions are significant.

The two-particle, long-range correlations in the systems
created in collider experiments already have been iden-
tified in recent work where the correlation is quantified
by the “ridge structure”, observed in particle multiplic-
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ity distributions as a function of relative pseudo-rapidity
[21–25]. Clearly the B–G statistics, which works won-
derfully well for systems having close spatial connections
and short-ranged time connections, fails to describe such
exotic systems at a quantitative level. Further the “hypoth-
esis of molecular chaos” from Boltzmann kinetic theory,
assuming the interacting particles to be uncorrelated, does
not hold in such a situation and non-Markovian processes
become relevant where the consequences of particle colli-
sions are no more independent of the past interaction mem-
ory. In Refs. [26,27], the ridge phenomenon in the pp col-
lision at 7 TeV center of mass energy has been interpreted
using a Tsallis distribution indicating a power-law behav-
ior at large transverse momenta rather than an exponential
one. The non-Markovian processes with long-range corre-
lations have been precisely studied within the frame work
of the Tsallis statistics in [28]. The complexity of the sys-
tem where the space-time and consequently the phase space
are non-fractal, proves to be beyond the scope of stan-
dard B–G statistics and hence for a non-trivial system like
QGP the non-extensive generalization becomes quite rele-
vant.

In the context of describing the strongly interacting sys-
tem created in heavy ion collisions, Tsallis statistics has been
applied to the observation of various phenomena. Apart from
describing the transverse momentum spectra as already men-
tioned, a large number of observables and system properties
have been analyzed in the light of non-extensive dynam-
ics. The relativistic equation of state of hadronic matter and
quark–gluon plasma at finite temperature and baryon den-
sity have been investigated in the framework of the non-
extensive statistical mechanics in [29–31]. The non-extensive
statistical effects in the hadron to quark–gluon phase transi-
tion have been studied in Refs. [32,33]. Strangeness produc-
tion has been mentioned under the same statistical set up in
[34]. Local deconfinement in relativistic systems including
strong coupling diffusion and memory effects have been dis-
cussed in [35,36]. The kinetic freeze-out temperature and
radial flow velocity have been extracted from an improved
Tsallis distribution in [37]. A modified Hagedorn formula
and also a limit temperature concept of a parton gas with
power-law tailed distribution presented, respectively, in [38]
and [39]. In [40–42], the effects of non-extensive statistics
have been manifested in terms of the fluctuation of sys-
tem variables such as temperature and chemical fluctuations
in high-energy nuclear collisions. A non-extensive Boltz-
mann equation and associated hadronization of quark mat-
ter have been discussed in [43]. Recently a considerable
amount of work has been carried out regarding the bulk
observables of ultra-relativistic heavy ion collisions, such
as the transverse momentum distribution, radial flow, evo-
lution of fluctuation, nuclear modification factor, speed of

sound etc. under the Tsallis generalization of B–G statistics
[44–53,62,63].

In view of the facts mentioned above, the Tsallis statis-
tics has a vast applicability in strongly interacting systems
related to heavy ion physics. Thus, one needs to set up
a complete model involving relativistic kinetic theory and
fluid dynamics under this generalized statistical scheme. In
this context, there are a few attempts which provide macro-
scopic thermodynamic quantities such as particle number
density, energy density, pressure, equation of state and trans-
port parameters, starting from a relativistic microscopic the-
ory [54–57]. In most of these studies the non-extensive
generalization has been made over the Boltzmann distribu-
tion function while describing the single particle momen-
tum distribution, but the quantum statistical effects of the
Bose–Einstein (BE) and Fermi–Dirac (FD) distributions are
missing. The quantum statistical factors (Bose enhancement
for BE and Pauli blocking for FD systems, respectively)
essential to describe a QCD (quantum chromodynamics) sys-
tem, are not being included in the phase space integral of
the collision term while setting up the relativistic transport
equation. This fact sets the motivation for the present inves-
tigations.

In this work a complete thermostatistical model for a
grand canonical system under non-extensive environment
and hence a relativistic kinetic theory for a many particle
system including B–E and F–D distributions for individual
species of particles have been formulated in detail. Referring
to earlier work, in [58,59] the q-generalized Fermi–Dirac
distribution have been discussed and in [60] a non-extensive
quantum H-theorem has been studied. In the current work the
quantum statistical factors in the momentum distribution of
final state particles, introduced by Uehling and Uhlenbeck in
semiclassical transport theory, have been carefully included
while developing the q-generalized theory. In the constructed
formalism the thermodynamic macroscopic state variables
and effective coupling for hot QCD system in non-extensive
environment have been estimated.

The manuscript is organized as follows. Section 2 deals
with the formalism, where firstly the non-extensive ther-
mostatistics for a grand canonical ensemble and then the
non-extensive relativistic kinetic theory with quantum sta-
tistical effects are discussed in Sects. 2.1 and 2.2, respec-
tively. In Sect. 2.3 the analytical expressions of the thermo-
dynamic quantities are obtained and finally Sect. 2.4 esti-
mates the effective coupling for a q-generalized QCD sys-
tem. Section 3 contains the results displaying the tempera-
ture dependence of the evaluated quantities with finite baryon
chemical potential, and the relevant discussions as well. The
manuscript has been completed incorporating the conclud-
ing remarks and possible outlooks of the present work in
Sect. 4.

123



Eur. Phys. J. C (2018) 78 :66 Page 3 of 15 66

2 Formalisms

Here, the salient features of the non-extensive thermostatis-
tics for a grand canonical ensemble and the relativistic kinetic
theory for a multi-component system with constituents obey-
ing BE/FD distributions have been discussed. The entropy
maximization technique in the first case using the method
of Lagrange’s undetermined multipliers and in the second
case by applying the laws of summation invariants have been
shown to obtain the identical expressions of single particle
BE/FD distribution function in a non-extensive environment.
This consistency provides the ground for the microscopic
definitions of the generalized entropy and collision integral
including the quantum statistical effects of Bose enhance-
ment and Pauli blocking. Afterwards, the distribution func-
tions are employed to obtain a number of the thermodynamic
quantities essential to specify the macroscopic properties of
a system. In the present work these quantities have been esti-
mated for a massive pion–nucleon and a massless quark–
gluon system with finite baryon chemical potentials. Finally,
the modification of QCD coupling describing the interaction
dynamics of the system under the effects of non-extensivity
has also been estimated in order to include the long-range
interaction measures.

2.1 Non-extensive thermostatistics for a grand canonical
ensemble

To start with, non-extensive generalization of the entropy
proposed by Tsallis [1–8] is given now:

Sq = k
1 − ∑W

i=1 pqi
q − 1

, [q ∈ R]. (1)

Here k is a positive constant. pi is the probability associated
with the i th state and W ∈ N is the total number of possible
microscopic configurations of the system following the norm
condition:

W∑

i=1

pi = 1. (2)

It is quite straightforward to realize for the limiting condi-
tion of the entropic index q → 1, and Eq. (1) reduces to the
well-known form of the Boltzmann–Gibbs entropy, namely
limq→1 Sq = −k

∑W
i=1 pi lnpi . Equation (1) can alterna-

tively also be defined with the help of a generalized differ-
ential operator as

Sq = −k

{

Dq

W∑

i=1

pα
i

}

α=1
, (3)

following the definition of the operator Dq f (x) ≡
f (qx)− f (x)

qx−x , which for q → 1 reduces to d f (x)
dx . One impor-

tant signature of the entropy definition given in (1) is the
pseudo-additive rule for a combined system consisting of
two individual systems A and B,

Sq(A + B)

k
= Sq(A)

k
+ Sq(B)

k
+ (1−q)

Sq(A)

k

Sq(B)

k
. (4)

Now in order to obtain an equilibrium probability distri-
bution in a grand canonical system, we need to extremize Sq
in the presence of a set of appropriate constraints regarding
the choice of internal energy and particle number [61]. So
along with the entropy definition from (1) and norm con-
straint from (2), the choice of internal energy and particle
number is addressed from the Tsallis original third choice
of energy constraint for a canonical system [2], extending
currently for a grand canonical one by the two following
equations:
∑W

i=1 pqi εi
∑W

i=1 pqi
= Ē, (5)

∑W
i=1 pqi ni

∑W
i=1 pqi

= N̄ . (6)

Here i labels the possible quantum states of the whole system
where Ē and N̄ are the average energy and average number
of particles of the same. The best known way to get a solution
of this variational problem is using the method of Lagrange’s
undetermined multipliers, for which the following expression
needs to be extremized:

Q = Sq
k

+ α

W∑

i=1

pi − β

∑W
i=1 pqi εi

∑W
i=1 pqi

− γ

∑W
i=1 pqi ni

∑W
i=1 pqi

, (7)

where α, β and γ are the Lagrange undetermined multipli-
ers. After extremization and following the standard thermo-
dynamic definitions, such as β = 1

kT and γ = −βμ with T
the temperature of the system and μ the chemical potential
for each particle, we finally achieve the probability distri-
bution of a grand canonical system in terms of fundamental
thermodynamic quantities,

pi = 1

Zq

[

1 − (1 − q)
{ 1
T (εi − Ē) − μ

T (ni − N̄ )}
{∑W

i= pqi }
] 1

1−q

, (8)

with

Zq =
W∑

i=1

[

1−(1−q)
{ 1
T (εi − Ē) − μ

T (ni − N̄ )}
{∑W

i= pqi }
] 1

1−q

, (9)
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as the q-generalized grand canonical partition function. From
Eqs. (8) and (9) a very useful identity can be achieved which
is given below,

Z1−q
q =

W∑

i=1

pqi . (10)

To get the expressions compactified it is now the time to
define the q-generalized exponential and logarithmic func-
tions,

expq(x) = {1 + (1 − q)x} 1
1−q , (11)

lnq x = x1−q − 1

1 − q
, (12)

which reduces to the conventional exponentials and loga-
rithms as q → 1. With the help of the q-exponential function
the probability distribution as well as the partition function
from Eqs. (8) and (9) can be redefined as

pi = 1

Zq
expq

[−{ 1
T (εi − Ē) − μ̃(ni − N̄ )

}

{∑W
i=1 pqi

}

]

, (13)

Zq =
W∑

i=1

expq

[−{ 1
T (εi − Ē) − μ̃(ni − N̄ )

}

{∑W
i=1 pqi

}

]

, (14)

with μ̃ = μ/T . The definition of the temperature and chem-
ical potential can be derived in terms of the macroscopic
quantities as the following:

∂Sq
∂ Ē

= 1

T
, (15)

∂Sq
∂ N̄

= −μ

T
(16)

which is consistent with situation for q = 1.
Now the choice of energy and particle number constraints

from Eqs. (5) and (6), respectively, needs some discussions
offered below. There are a number of reasons that this choice
is an unique one which is free from the unfamiliar conse-
quences with respect to the other choices proposed [2]. First,
its invariance under the uniform translation of energy and
particle number spectrum ({εi } and {ni }, respectively) makes
the thermostatistical quantities independent of the choice of
origin of energy and particle number densities. Secondly, the
normalization condition is carefully preserved in this choice

(� 1 �q= 1, where � Oi �q≡
∑W

i=1 pqi Oi
∑W

i=1 pqi
). Finally, the

most important one is that it preserves the additive property
of generalized internal energy (Ē(A+B) = Ē(A)+ Ē(B)) in
the exact same form of standard thermodynamics (q = 1). In
other words, the microscopic energy conservation is retained
macroscopically as well. This is an extremely crucial prop-
erty as regards describing the dynamics of the system.

Next, it can be trivially shown that Eqs. (13) and (14)
can be presented by a set of simpler expressions in terms of
renormalized temperature and chemical potential as follows:

pi = 1

Zq
expq

[

−
{

εi

T ′ − μ̃′ni
}]

, (17)

Zq =
W∑

i=1

expq

[

−
{

εi

T ′ − μ̃′ni
}]

, (18)

with

T ′ = T Z1−q
q + (1 − q)Ē − μ(1 − q)N̄ , (19)

μ̃′ = μ̃
1

Z1−q
q + 1

T (1 − q)Ē − μ̃(1 − q)N̄
. (20)

Systems using some arbitrary finite temperature rather than
specific temperature dependence of the involved thermosta-
tistical quantities (and so including the chemical potential),
can conveniently use the definitions provided by Eqs. (17)
and (18). The redefined expressions of the temperature (T ′)
and chemical potential (μ′) will be denoted by the arbitrary
temperature (T ) and chemical potential (μ) hereafter.

We will now proceed to obtain the single particle dis-
tribution functions for the bosons and fermions. The quan-
tum mechanical state of an entire system is uniquely speci-
fied only when the occupation numbers of the single particle
states are explicitly provided. Thus the total energy and par-
ticle number of the system when it is in the state i , with n1

number of particles in state k = 1, n2 number of particles in
state k = 2 and so on, is given by

εi =
∑

k

nkek, ni =
∑

k

nk . (21)

The sum extends over all the possible states of a particle
and ek is the energy of a particle in a single particle state k.
Hence in terms of the single particle occupation states the
expression for partition function from (18) becomes [61]

Zq =
∞∏

k=1

∞∑

nk=0

[
1 − (1 − q)

1

T
(ek − μ)nk

] 1
1−q (22)

From Eq. (22) it is trivial to obtain from the standard tech-
nology of statistical mechanics, the single particle distribu-
tion function for Bose–Einstein and Fermi–Dirac systems,
respectively, as the follows:

fq = 1
[

1 − (1 − q){ e
T − μ

T }
] 1

q−1

∓ 1

. (23)

Here e and μ denote the single particle energy and chemical
potential along with T as the bulk temperature of the system
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under consideration. Equation (23) gives us the expression
for q-generalized Bose–Einstein (BE) and Fermi–Dirac (FD)
single particle distribution function in a non-extensive envi-
ronment.

2.2 Non-extensive relativistic kinetic theory with quantum
statistical effects

In this section, the basic macroscopic thermodynamic vari-
ables will be defined in the frame work of a relativistic kinetic
theory in a non-extensive environment. For this purpose we
first need to provide the microscopic definition for the q-
generalized entropy and then set up a kinetic or transport
equation describing the space-time behavior of one particle
distribution function.

In terms of the single particle distribution function the
entropy 4-current is defined in the following integral form for
a multicomponent system with N number of species [62,63]:

Sμ
q (x, q) = −

N∑

k=1

∫
d3 pk

(2π)3 p0
k

pμ
k

×
{
(
f kq

)q lnq f
k
q + 1

z

(
1 − z f kq

)q lnq
(
1 − z f kq

)
}

, (24)

with z = 1 for FD and z = −1 for BE case. For z → 0,
Eq. (24) reduces to q-generalized Boltzmann entropy, Sμ

q

(x, q) = −∑N
k=1

∫ d3 pk
(2π)3 p0

k
pμ
k

(
f kq

)q{lnq f kq − 1
}
. f kq (x,

pk, q) is the notation for the single particle distribution func-
tion belonging to the kth species in a non-extensive environ-
ment depending upon the particle 4-momentum pμ

k , space-
time coordinate x and the entropic index q. The qth power
over particle distribution function defining the thermody-
namic quantities is justified from the discussions of the last
section.

Next the relativistic transport equation for a non-extensive
system is presented where the distribution function belong-
ing to each component of the system satisfy the equation of
motion in the following manner:

pμ
k ∂μ( f kq )q =

N∑

l=1

Ckl
q [k = 1, . . . , N ]. (25)

Here I introduce the microscopic collision integral for
a BE–FD system under the non-extensive environment in
terms of single particle momentum distributions and the
entropic index-q, generalizing the definition used in [55,57].
The detailed q-generalized collision term Ckl

q including the
quantum statistical effects (Uehling–Uhlenbeck terms [65]),
describing the binary collision k + l → i + j , is presented
now:

Ckl
q = 1

2

N∑

i, j=1

∫
d3 pl

(2π)3 p0
l

∫
d3 pi

(2π)3 p0
i

∫
d3 p j

(2π)3 p0
j

×
{

hq
[
f iq , f j

q , (1 ± f kq ), (1 ± f lq)
]
Wi, j |k,l

−hq
[
f kq , f lq , (1 ± f iq ), (1 ± f j

q )
]
Wk,l|i, j

}

, (26)

where the hq factors are defined in terms of the particle dis-
tribution functions in the following manner:

hq
[
f kq , f lq , (1 ± f iq ), (1 ± f jq )

]

= expq

[

lnq f kq + lnq f lq

+ (1 ± f iq )q−1

( f iq )q−1
lnq (1 ± f iq ) + (1 ± f jq )q−1

( f jq )q−1
lnq (1 ± f jq )

]

.

(27)

Here Wk,l|i, j is the interaction rate for the binary collision
process k + l → i + j . The 1/2 factor in the right hand side
of Eq. (26) takes care of the indistinguishability of the final
state particles if their momenta are exchanged from pi , p j to
p j , pi . In Boltzmann limit, the collision integral (26) repro-
duces the q-generalized Boltzmann collision term as given
in [55,57]. As q → 1 Eq. (26) simply reduces to the usual
Uehling–Uhlenbeck collision term.

Now an important remark has to be made at this point.
In the standard Boltzmann transport equation, the “Hypothe-
sis of molecular chaos” or “Stosszahlansatz” postulates that
in binary collisions the colliding particles are uncorrelated.
This means any correlation present in an early time must be
ignored. Thus in Boltzmann transport equation the statistical
assumption as regards the number of binary collisions occur-
ring is proportional to the simple product of the distribution
functions of colliding particles along the quantum correc-
tions of the final state distribution functions multiplied with
the interaction rate [64]. However, with systems where long-
range correlations are present, the memory effects are sig-
nificant which lead to non-Markovian processes. Thus the q-
generalized complex looking behavior of the transport equa-
tion expressed by Eqs. (25), (26) and (27) is explained in the
present case.

From the expression for entropy 4-current (24), we can
obtain the expression for local entropy production as follows:

σ(x, q) = ∂μS
μ
q (x, q), (28)

which for the present case turns out to be

σ = −
N∑

k=1

∫
d3 pk

(2π)3 p0
k

pμ
k ∂μ

(
f kq

)q{
	k

q

}
, (29)

with
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	k
q = lnq f

k
q −

{
1 ± f kq

f kq

}q−1

lnq(1 ± f kq ). (30)

Substituting Eq. (25) into (29), we achieve the entropy
production in terms of the collision term,

σ = −
N∑

k,l=1

∫
d3 pk

(2π)3 p0
k

Ckl
q

{
	k

q

}

= −1

2

N∑

k,l,i, j=1

∫

d
kd
ld
id
 j
{
	k

q

}

×
{

hq
[
f iq , f j

q , (1 ± f kq ), (1 ± f lq)
]
Wi, j |k,l

−hq
[
f kq , f lq , (1 ± f iq ), (1 ± f j

q )
]
Wk,l|i, j

}

, (31)

with the phase space factors now on denoted by d
i =
d3 pi

(2π)3 p0
i

. Interchanging the initial and final integration vari-

ables in the last term of Eq. (31) and noting the transition rate
to be symmetric under the exchange of index pair (k, l) and
(i, j), the expression for entropy production finally reduces
to

σ = −1

4

N∑

k,l,i, j=1

∫

d
kd
ld
id
 j

×{
	k

q + 	l
q − 	 i

q − 	
j
q
}

×
{

hq
[
f iq , f j

q , (1 ± f kq ), (1 ± f lq)
]
Wi, j |k,l

}

. (32)

From the bilateral normalization property of the transition
rate we have

N∑

i, j=1

∫

d
id
iWk,l|i, j =
N∑

i, j=1

∫

d
id
iWi, j |k,l . (33)

Multiplying both sides of Eq. (33) by hq
[
f kq , f lq , (1 ±

f iq ), (1 ± f j
q )

]
and integrating over d
k and d
l and then

interchanging (k, i) and (l, j) in the left hand side after sum-
ming over k and l, we end with the following relation:

N∑

k,l,i, j=1

∫

d
kd
ld
id
 j

{
hq

[
f kq , f lq , (1 ± f iq ), (1 ± f jq )

]

hq
[
f iq , f jq , (1 ± f kq ), (1 ± f lq )

]

− 1

}

hq
[
f iq , f jq , (1 ± f kq ), (1 ± f lq )

]
Wi, j |k,l = 0. (34)

Multiplying Eq. (34) with 1/4 and adding it to the right hand
side of Eq. (32), we are left with the final expression for
entropy production:

σ = 1

4

N∑

i, j,k,l=1

∫

d
kd
ld
id
 j
[
A − lnq A − 1

]

×hq
[
f iq , f j

q , (1 ± f kq ), (1 ± f lq)
]
Wi, j |k,l , (35)

with

A = hq
[
f kq , f lq , (1 ± f iq ), (1 ± f j

q )
]

hq
[
f iq , f j

q , (1 ± f kq ), (1 ± f lq)
]

= expq
[
	k

q + 	l
q − 	 i

q − 	
j
q
]
. (36)

The function A − lnq A − 1 is always positive for positive A
and positive q. It vanishes if and only if A is equal to 1, i.e.,
production rate of q-generalized entropy is always positive.
So at equilibrium, σ = 0, using A = 1 we obtain lnq A = 0,

i.e., 	k
q + 	l

q = 	 i
q + 	

j
q . This clearly reveals 	q is a sum-

mation invariant. Now following the basic definition of the
summation invariant, 	q is constructed as a linear combi-
nation of a constant and the 4-momenta pμ

k . This condition
provides the structural equation defining space-time depen-
dence of distribution function in the following way:

lnq f
k
q −

{
1 ± f kq

f kq

}q−1

lnq(1 ± f kq ) = ak(x) + bμ(x)pμ
k .

(37)

Here ak and bμ are space-time dependent arbitrary quantities
except the constraint that the function ak(x) must be addi-
tively conserved, i.e., ak(x) + al(x) = ai (x) + a j (x). The
4-momentum conservation is always implied pμ

k + pμ
l =

pμ
i + pμ

j . Equation (37) after a few steps of simplification
gives the expression for a q-generalized BE–FD single parti-
cle distribution function belonging to kth species for a mul-
ticomponent relativistic system by the following equation:

f kq = 1
[
1 + (q − 1)

{ pμ
k uqμ

Tq
− μkq

Tq

}] 1
q−1 ∓ 1

, (38)

where we can make the identification

ak = μkq

Tq
, bμ = −uμ

q

Tq
, (39)

with μkq is the chemical potential for each particle of the
kth species, Tq(x, q) is the bulk temperature and uμ

q (x, q) is
the hydrodynamic 4-velocity of the fluid system under non-
extensive environment. Hence Tq , uμ

q and μkq are the intrin-
sic parameters of a q-equilibrated thermodynamic system.
One can readily notice Eq. (38) invariably leads to Eq. (23)
with particle species k for a co-moving frame of the fluid
(uμ

q (x) = (1, 0, 0, 0)). This identification provides the nec-
essary conformation about the form of entropy and collision
integral defined within the scope of covariant kinetic theory.
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Hence Eq. (26) can be prescribed as the explicit definition of
the collision term for a q-generalized system including the
necessary quantum corrections.

On the foundation of the formalism developed so far it
is the time to define the basic macroscopic variables in the
language of relativistic kinetic theory. For this purpose we
start with the transport equation (25) itself. First Eq. (25) is

integrated over d3 pk
(2π)3 p0

k
and then summed over k = 0, N .

By virtue of summation invariance the zeroth moment of the
collision term vanishes on the right hand side while the left
hand side gives the conservation law as

∂μN
μ
q (x, q) = 0, (40)

where

Nμ
q =

N∑

k=1

gk

∫
d3 pk

(2π)3 p0
k

pμ
k

{
f kq (x, pk, q)

}q
, (41)

is defined as the q-generalized total particle 4-flow with gk
as the degeneracy number. The particle 4-flow Nμ

q must be
proportional to the hydrodynamic 4-velocity uμ

q since the
equilibrium distribution function f kq singles out this particu-
lar direction in space-time. Thus the macroscopic definition
of particle 4-flow is given by

Nμ
q (x, q) = nqu

μ
q . (42)

The proportionality factor is the q-generalized particle num-
ber density which can be expressed as

nq(x, q) = Nμ
q uqμ

=
N∑

k=1

gk

∫
d3 pk

(2π)3 p0
k

pμ
k uqμ

(
f kq

)q
. (43)

Applying the conservation law (40) to the expression (42) we
finally obtain the equation of continuity for a q-equilibrated
system as follows:

Dnq = −nq∂μu
μ
q , (44)

with D = uμ
q ∂μ as the covariant time derivative in the local

rest frame.
Next, the same interaction and summation is taken for

Eq. (25) but after multiplying with particle 4-momentum pμ
k ,

which again reduces the right hand side to zero since the
first moment of the collision term vanishes as well under the
principle of summation invariance. The resulting equation
gives the energy-momentum conservation law in the follow-
ing manner:

∂μT
μν
q (x, q) = 0, (45)

where

Tμν
q =

N∑

k=1

gk

∫
d3 pk

(2π)3 p0
k

pμ
k p

ν
k

{
f kq (x, pk, q)

}q
, (46)

is defined as the q-generalized energy-momentum tensor.
Noting it is a rank-2 tensor, its macroscopic definition is
expressed in terms of the available rank-2 tensors at our dis-
posal, i.e., uμ

q uν
q and gμν in the following way:

Tμν
q = εqu

μ
q u

ν
q − Pq�

μν
q , (47)

with �
μν
q = gμν − uμ

q uν
q as the projection operator.

The metric gμν of the system is defined here as gμν =
(1,−1,−1,−1). The q-generalized energy density εq and
pressure Pq are defined as

εq = Tμν
q uqμuqν

=
N∑

k=1

gk

∫
d3 pk

(2π)3 p0
k

{
pμ
k uqμ

}2(
f kq

)q
, (48)

Pq = −1

3
Tμν
q �qμν

= −1

3

N∑

k=1

gk

∫
d3 pk

(2π)3 p0
k

pμ
k p

ν
k�qμν

(
f kq

)q
. (49)

Applying the conservation law (45) to the expression (47) and
then contracting with uμ

q and �
μν
q from the left we finally find

the result of the equation of energy and equation of motion,
respectively, as follows:

Deq = − Pq
nq

∂μu
μ
q , (50)

Duμ
q = 1

nqhq
∇μP

μ
q , (51)

where eq = εq
nq

and hq = eq + pq
nq

are the total energy
and total enthalpy per particle, respectively. For a multi-
component system they are defined as eq = ∑N

k=1 xkqekq
and hq = ∑N

k=1 xkqhkq , where ekq and hkq are the same
for kth species along with xkq = nkq

nq
as the particle frac-

tion for the kth species. Finally, putting the expression of
q-distribution function from (38) into the entropy expres-
sion (24) and contracting with uμ

q , we obtain definition of
the entropy density in terms of macroscopic thermodynamic
quantities defined so far,

Sq = Sμ
q uqμ

= εq + Pq
Tq

− nqμq

Tq
, (52)
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with μq = ∑N
k=1 xkqμkq as the total chemical potential per

particle of the system. It is interesting that similar conserva-
tion laws and equations of motion have also been observed
in [55,57] discussing the non-extensive hydrodynamics for
relativistic systems in Boltzmann generalization.

2.3 Thermodynamics quantities in q-generalized BE and
FD system

The very basic technique of determining the thermodynamic
quantities given in Eqs. (43), (48) and (49), lies in perform-

ing the moment integral
∫ d3 pk

(2π)3 p0
k
pμ
k · · · { f kq

}q over the qth

power of the non-extensive distribution function (38). To
obtain a convenient way to execute it, here an useful identity
is being provided. First Eq. (38) can be simply expressed in
the following way:

f kq = 1

exp
[ 1

(q−1)
ln{1 + (q − 1)yk}

] ∓ 1
, (53)

denoting yk = pk ·uq−μkq
Tq

. Equation (53) readily leads to its
derivative in the following form:

∂ f kq
∂yk

= − f kq
(
1 ± f kq

) 1

{1 + (q − 1)yk} . (54)

Again from (53), the argument can be extracted in the fol-
lowing way:

{
f kq

1 ± f kq

}(1−q)

= {1 + (q − 1)yk}. (55)

Comparing Eqs. (54) and (55), we obtain the following iden-
tity:

{
f kq

}q = ∓ ∂

∂yk

{
(1 ± f kq )q−1

(q − 1)

}

. (56)

Now the
(
1 ± f kq

)q−1 term can be expressed in an infinite
series for small (q − 1) values, (such that quadratic terms
∼ (q − 1)2 are being neglected) in the following manner:

(
1 ± f kq

)q−1 = 1 + (q − 1)

∞∑

l=1

(±)l

{
Fkexp(−yk)

}l

l
, (57)

with Fk = 1 − 1
2 (1 − q)y2

k . Upon taking the derivative of
Eq. (57) and with the virtue of identity (56), for a constant
value of μkq we obtain { f kq }q in an infinite series as follows:

{
f kq

}q =
∞∑

l=1

(±)l−1elμ̃k e−lτk + (q − 1)

×
∞∑

l=1

(±)l−1elμ̃k e−lτk
{
l

2
μ̃k

2 + μ̃k − lμ̃kτk − τk + l

2
τ2
k

}

.

(58)

Here, τk = pk ·uq
Tq

. From now on wards we will denote Tq
and μkq simply by T and μk for convenience. Details of
the derivations are given in the appendix. For the mathemat-
ical properties of q-logarithm and q-exponential functions
Ref. [66] has been essentially helpful. So one can see Eq. (58)
contains a series term contributing in the usual BE–FD inte-
grals and another series term proportional to (q − 1), which
contributes in the non-extensivity while determining the ther-
modynamic quantities. In the Boltzmann limit Eq. (56) sim-
ply becomes

{
f kq

}q
B = − ∂

∂yk

{
f kq

}
B, (59)

which finally can be expressed as

{
f kq

}q
B = eμ̃k e−τk

+(q − 1)

[
1

2
μ̃k

2 + μ̃k − μ̃kτk − τk + 1

2
τ 2
k

]

,

(60)

with the q-generalized Boltzmann distribution function as

{
f kq

}
B = expq(−(τk − μ̃k)),

= {
1 + (q − 1)(τk − μ̃k)

}
. (61)

Now one can readily note that Eq. (58) reduces to Eq. (60),
if the series truncates at the leading term (l = 1) only. How-
ever, the higher order terms resulting from the quantum cor-
relations will be observed to have significant effect (at least
at quantitative level) on the thermodynamic variables in the
next section.

Hence putting the form of
{
f kq

}q from Eq. (58) into the
momentum integral (43), (48) and (49), the expressions for
particle number density, energy density and pressure can be
achieved. While for massive hadron gas the integrals reduced
to infinite series over modified Bessel function of second
kind, for a massless quark–gluon gas it reduces to PolyLog
functions. The complete analytical expressions for the two
cases are given below.
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2.3.1 Massive hadron gas with non-zero baryon chemical
potential

For this case first the infinite series has been defined for the
BE and FD case respectively as follows:

Sα
kn =

∞∑

l=1

(±)l−1exp(lμ̃k)
1

lα
Kn(lzk), (62)

with zk = mk
Tq

, mk being the mass of the kth hadron and
Kn(lzk) is the modified Bessel function of the second kind
with order n and argument lzk defined as

Kn(z) = 2nn!
(2n)!

1

zn

∫ ∞

z
dτ(τ 2 − z2)n− 1

2 exp(−τ). (63)

The ± signs in Eq. (62), respectively, indicate bosonic and
fermionic hadrons. Following these notations, the analytical
results for macroscopic thermodynamic quantities of a mas-
sive hadron gas in a non-extensive environment have been
given.

The expression for the particle number density is

nq

{ T 3

2π2 }
=

∞∑

k=1

gk

[
(
z2
k S

1
k2

)

+ (q − 1)

{

μ̃2
k

(1

2
z2
k S

0
k2

) − μ̃k
(
2z2

k S
1
k2 + z3

k S
0
k1

)

+
(

3z2
k S

2
k2 + 3

2
z3
k S

1
k1 + 1

2
z4
k S

0
k0

)}]

. (64)

The expression for the energy density is

εq

{ T 4

2π2 }
=

∞∑

k=1

gk

[(

3z2
k S

2
k2 + z3

k S
1
k1

)

+ (q − 1)

{

μ̃2
k

(
3

2
z2
k S

1
k2 + 1

2
z3
k S

0
k1

)

+ μ̃k

(

− 9z2
k S

2
k2 − 4z3

k S
1
k1 − z4

k S
0
k0

)

+
(

18z2
k S

3
k2 + 15

2
z3
k S

2
k1 + 3

2
z4
k S

1
k0

+ 1

2
z4
k S

1
k2 + 1

2
z5
k S

0
k1

)}]

. (65)

The expression for the pressure is

Pq

{ T 4

2π2 }
=

∞∑

k=1

gk

[(

z2
k S

2
k2

)

+ (q − 1)

{

μ̃2
k

(
1

2
z2
k S

1
k2

)

− μ̃k

(

3z2
k S

2
k2 + z3

k S
1
k1

)

+
(

6z2
k S

3
k2 + 5

2
z3
k S

2
k1 + 1

2
z4
k S

1
k0

)}]

. (66)

2.3.2 Massless QGP with non-zero quark chemical
potential

For this case first the PolyLog function is defined as follows:

∞∑

k=1

(±)k−1 e
±kμ̃

ka
= ± PolyLog[a,± e±μ̃]. (67)

Furthermore, for small quark chemical potential μ, keeping
only terms up to the order of μ̃2, the PolyLogs satisfy the
following identity:

PolyLog[a,−e±μ̃] = PolyLog[a,−1]
± μ̃ PolyLog[(a − 1),−1]
+ μ̃2

2
PolyLog[(a − 2),−1]. (68)

With the help of Eqs. (67) and (68), for a system with massless
quarks, antiquarks and gluons, the macroscopic thermody-
namic quantities for a non-extensive environment are given
in this section.

The expression for the particle number density is

nq

{ T 3

2π2 }
= 2

[

ggζ(3) − gq
{
2PolyLog[3,−1] − μ̃2 ln 2

}
]

+ (q − 1)

[

6
{
ggζ(4) − 2gqPolyLog[4,−1]}

+ 8μ̃gqPolyLog[3,−1]−8μ̃2gqPolyLog[2,−1]
]

.

(69)

The expression for the energy density and pressure is

εq

{ T 4

2π2 }
= 3Pq

{ T 4

2π2 }
=6

[

ggζ(4)−gq
{
2PolyLog[4,-1]+μ̃2PolyLog[2,−1]}

]

+ (q − 1)

[

36
{
ggζ(5) − 2gqPolyLog[5,−1]}

+ 36μ̃gqPolyLog[4,−1] − 42μ̃2gqPolyLog[3,−1]
]

.

(70)

ζ(n) are the Riemann zeta functions defined as ζ(n) =
PolyLog[n, 1] = ∑∞

k=1
1
kn , and PolyLog[1,−1] = − ln 2.

The gluon and quark/antiquark degeneracies are respectively
given by gg = 16 and gq = 2NcN f , where Nc = 3 is the
color and N f = 2 is the flavor degrees of freedom for the
quarks.
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2.4 Effective coupling in q generalized hot QCD system

After defining all the required thermodynamic state variables
in a non-extensive environment, it is instructive to look for
the Debye mass and the effective coupling of the system
under the same. Previously the Debye shielding has been
discussed with the non-extensive effects for an electron–ion
plasma in [67,68]. Here the effects of non-extensivity are
being observed on the Debye mass and the effective coupling
for an interacting quark–gluon plasma system.

Following the definition of the Debye mass from semi-
classical transport theory [69–72] the same has been defined
for a non-extensive system as follows:

m2
D|q = −4παs(T, μ)

N∑

k=1

2Ck

∫
d3 pk
(2π)3

∂

∂| �pk | { f
k
q }q , (71)

withCk = Nc for gluons andCk = N f for quark/antiquarks.
Applying Eq. (58) into (71), we obtain the q-generalized
Debye mass value by the following expression:

m2
D |q = 4παs

T 2

π2

[

2Ncζ(2) − 2N f PolyLog[2, −1] + N f

2
μ̃2

+(q − 1)

{

2Ncζ(3) − 2N f PolyLog[3, −1]
}]

.

(72)

The first part of Eq. (72) is simply the leading order HTL
estimation of the Debye mas/s,

m2
D|q→1 = 4παsT

2
[{

Nc

3
+ N f

6

}

+ μ̃2 N f

2π2

]

. (73)

From Eqs. (72) and (73), it is instructive to obtain the q-
generalized effective coupling for a non-extensive system by
the following expression:

αq(T, μ, q) = αs(T, μ)

×
[

1 + (q − 1)

{ 2Nc
π2 ζ(3) − 2N f

π2 PolyLog[3,−1]}
{ Nc

3 + N f
6

} + μ̃2
{ N f

2π2

}

]

.

(74)

Here αs(T, μ) is the QCD running coupling constant at finite
temperature and quark chemical potential. Here its value has
been set from the 2-loop QCD gauge coupling calculation at
finite temperature from Ref. ([73]).

However, Eq. (74) presents only an indicative way of
obtaining the effective coupling of a q-generalized system
and is not derived from the interaction dynamics of the sys-
tem in a field theoretical approach. More fundamental studies
are required to obtain an estimation of the QCD coupling that
obeys Tsallis statistics for a relativistic system of quantum
fields. All that can be concluded is that Eq. (74) provides an

effective way to observe the effect of the Tsallis distribution
on the coupling constant of the system, employing semiclas-
sical transport theory.

3 Results and discussions

In this section, we proceed to analyze the quantitative impact
of non-extensivity in small (q − 1) limit along with the
quantum corrections in terms of BE/FD statistics on various
thermodynamic quantities, compared with the same under a
Boltzmann generalization. The results for massive and mass-
less systems are presented in two separate subsections.

Before proceeding for providing the results, it is essential
to specify the value of the entropic parameter q for systems
likely to be created in relativistic heavy ion collisions. We
must stick to the small (q − 1) limit in order to neglect the
quadratic terms ∼ (q−1)2. In the literature the value of q has
been attempted to obtain from the fluctuation of the system
parameters like temperature or number concentration [17,
18,40,74,75]. In [75] this value has been reported by a range
1.0 < q < 1.5 for high-energy nuclear collisions. In [46],
an upper limit for q is given by q < 4

3 in order to get a non-
divergent particle momentum distribution E dN

d3 p
. Apart from

that, in the literature the q parameter has been extracted by
fitting the transverse momentum spectra of final state hadrons
with the experimental data from ALICE, ATLAS and CMS
[44,45,62,63]. Theses fitted values of the q parameter ranges
from 1.110± 0.218 to 1.158± 0.142. In the light of the above
observations, the q parameter has been set at q = 1.15 and
q = 1.3 as an intermediate and an extremal value, apart from
q = 1, which corresponds to the ideal BE/FD case.

Results of massive pion–nucleon system with non-zero
baryon chemical potential

In this section, first the effects of non-extensivity on the
macroscopic thermodynamic quantities have been shown
for a massive pion–nucleon gas with chemical potential for
nucleons μN = 0.1 GeV. The temperature dependence of
(nq − n1)/n1, (εq − ε1)/ε1 and (Pq − P1)/P1 have been
plotted for q = 1.15 and q = 1.3 in three separate panels
in Fig. 1 as obtained from Eqs. (64), (65) and (66). Clearly
Aq(A ≡ n, ε, P) being the q generalized thermodynamic
quantities (with quantum corrections) and A1 are the same
as with q = 1, i.e., the ideal BE/FD quantities; the plotted
ratios express the relative significance of the non-extensive
generalization of macroscopic quantities (with BE/FD dis-
tributions) with respect to the ideal ones. From Fig. 1 the
q-corrections appear to be comparable with the quantities
with ideal BE/FD distributions, which further increase with
increasing q values. These corrections are observed to be
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Fig. 1 Relative ratios of the non-extensive correction to the q = 1
values of the thermodynamic quantities

more pronounced for energy density and pressure than the
particle number density. Hence the effect of non-extensive
generalization of single particle Bose–Einstein and Fermi–
Dirac distributions, is observed to produce significant effect
while determining the thermodynamic quantities in a multi-
component system, which is a massive pion–nucleon gas in
the present case.

Next, in order to visualize the impact of non-extensivity
on the quantum corrections, the non-extensive corrections
(Aq − A1) of particle number density, energy density and
pressure obtained by generalizing the BE/FD distribution,
relative to the same by generalizing Boltzmann distribu-
tion have been given in Fig. 2. δAQC denotes the terms
proportional to (q − 1) in Eqs. (64), (65) and (66) and
δAB denotes the same with q-generalized Boltzmann dis-
tribution given in Eq. (61). The relative ratio shows the
quantum correction taken in the non-extensive terms of
the thermodynamic quantities, makes how much differ-
ence compared to the ones without the quantum correc-
tions. The relative change is 2–3% for energy density and
pressure, which displays maximum impetus for a parti-
cle number density up to 6% for the massive π–N sys-
tem.

Finally, both the significance of the non-extensivity (for
q = 1.15 and q = 1.3) and the quantum corrections of the
entropy density for the π–N system following from Eq. (52)
are depicted in Fig. 3 in two separate panels. The effect of
non-extensive terms in the entropy appears to be of the same
order of the leading term itself. The quantum correction in
the non-extensive terms shows ∼ 3% increment compared
with the Boltzmann generalization.

After discussing the basic thermodynamic quantities, the
square of sound velocity (c2

s ) has been plotted as a function
of temperature for a massive pion–nucleon gas in a non-
extensive environment along with the quantum corrections,
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Fig. 2 Relative correction of non-extensive part using BE/FD distri-
bution over Boltzmann statistics
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Fig. 3 The non-extensive correction and the quantum correction over
non-extensivity of the entropy of the system

for q = 1, q = 1.15 and q = 1.3 in Fig. 4. For a sys-
tem composed of massless particles the value of c2

s simply
becomes 1/3 (which is the Stefan–Boltzmann (SB) limit)
irrespective of the value of q, which is depicted by the dot-
ted straight line. For a massive pion–nucleon gas, c2

s shows
the usual increasing trend with increasing temperature for all
values of q, which tends to approach the SB limit at consid-
erably high temperatures. With higher q values the speed of
sound appears to become larger which is in accordance with
Ref. [56] and faster approaches the SB limit. This increment
is much expected due to the significant increase in the system
pressure in a non-extensive environment with respect to the
ideal (q = 1) one. The kink in the temperature dependence
of c2

s (the minimum most point) below 0.2 GeV agrees with
the lattice results, where with increasing q values the shift
of the kink towards lower temperatures (0.145–0.150 GeV)
indicates the fact that the minimum of the speed of sound lies
on the low temperature side of the crossover region [76–79].
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Fig. 5 Relative ratios of the non-extensive correction to the q = 1
values of the thermodynamic quantities

Results of massless quark–gluon system with non-zero
quark chemical potential

After having presented the results for the massive system,
now we turn to the same for a massless quark–gluon system
with quark flavor N f = 2 and quark chemical potential μ =
0.1 GeV. Figure 5 depicts the effect of q-parameters on the
thermodynamic quantities (particle number density, energy
density and entropy as given in Eqs. (69), (70) and (52))
estimated by generalizing BE/FD distributions under a non-
extensive environment. The q corrections are comparable to
the leading terms in this case as well, however, the increments
are little less compared to that of the massive case. Clearly
the effect of a finite mass introduces larger contributions to
the terms proportional to (q − 1) for q = 1.15 and q = 1.3.
However, for the massless quark–gluon case the change in
the thermodynamic quantities is quite significant as observed
from Fig. 5 and hence the effect of non-extensivity is proved
to be quite relevant in the quark–gluon sector as well.
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Fig. 6 Relative correction of non-extensive part using BE/FD distri-
bution over Boltzmann statistics

Secondly, the significance of the quantum corrections
taken in the terms proportional to (q − 1) (other than q = 1)
while determining the thermodynamic quantities has been
shown in Fig. 6. The relative change in non-extensive terms,
taking the quantum corrections, as compared to the same
by a Boltzmann q-generalization is depicted by these ratios.
However, the quantum corrections in the high temperature,
massless case is observed to be significantly smaller than the
massive case. This is quite anticipated because of the fact that
at sufficiently high temperature and low density, the quan-
tum statistics reaches its classical limit and consequently the
quantum distribution laws, whether BE or FD, reduce to the
Boltzmann distribution. Hence the reduction in the amount
of change created by the quantum correction in the massless
case, where the temperature is well above 0.2 GeV, is jus-
tified by the high temperature behavior of BE/FD statistics
where they scale down to Boltzmann statistics.

Finally, it is interesting to understand the impact of q-
generalization on the hot QCD coupling in the quark–gluon
system and phenomenon such as Debye screening there.
To that end, we proceed to investigate the QCD effective
coupling in a non-extensive QGP environment. Following
Eq. (74) the effective coupling αq has been plotted as a func-
tion of the temperature in the upper panel of Fig. 7 for three
values of q. The q = 1 case simply gives the running cou-
pling constant αs , while q = 1.15 and q = 1.3 are showing
the effects of non-extensivity which enhances the temper-
ature dependence of αq . This enhancement is most promi-
nent around the phase transition temperature (0.17–0.2 GeV)
while in high temperature regions it tends to have reduced
effects. In the lower panel of Fig. 7 the relative increment of
αq with respect to αs has been shown, which shows 7–25%
increment in the QCD coupling due to non-extensive effects.
This significant increment is expected to improve the quan-
titative estimates of the thermodynamic quantities, which
include the dynamical interactions and hence the coupling
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Fig. 7 The QCD coupling in a non-extensive environment as a function
of the temperature and its increment with respect to running coupling

as the computational inputs, such as transport parameters of
the system. Therefore we can conclude that this dynamical
modification due to non-extensivity has far reaching effects
on the viscosities and conductivities of the system and also
on their application in hydrodynamic simulations, in order
to describe the space-time evolution of the system.

4 Conclusion and outlook

In the present work, the relativistic kinetic theory and the ther-
modynamic properties have been obtained in detail by gen-
eralizing the Bose–Einstein and Fermi–Dirac distributions
in an non-extensive environment following the prescription
introduced by Tsallis. Following the non-extensive definition
of the entropy provided by Tsallis, first, the q-generalized
BE/FD distribution functions have been achieved from a
grand canonical ensemble employing a number of con-
straints, namely, norm constraint and constraints of internal
energy and particle number, using the method of Lagrange’s
undetermined multipliers.

Next, the relativistic kinetic theory for a multi-component
system has been explored under the non-extensive dynam-
ics. Setting up the microscopic definition of q-entropy in
terms of the single particle distribution function for a BE/FD
system and defining a proper collision term under the same
conditions, we finally achieve again the expression for the q-
generalized BE/FD distribution functions by using the tech-
niques of the entropy maximization and summation invari-
ants. In a co-moving frame with the hydrodynamic velocity
of the system, the obtained expression of the q-generalized
BE/FD distribution function from relativistic kinetic theory
reduces to the same obtained for grand canonical thermo-
statistics, proving the congruity of the microscopic defini-
tions of the entropy and the collision term that have been

employed here. Hence the definition of the proposed colli-
sion term is justified, which is the key finding of the current
investigation.

After setting up the theoretical framework, the macro-
scopic state variables such as particle number density, energy
density, pressure, entropy density and the velocity of sound,
have been determined with these single particle distribu-
tion functions for a massive pion–nucleon and a massless
quark–gluon system with non-zero baryon chemical poten-
tial in small (q − 1) limit. Furthermore, the Debye mass
and the effective coupling for an interacting QCD system
have been estimated indicating the dynamical behavior of the
system under the non-extensive generalization. The macro-
scopic thermodynamic quantities show significant increment
due to the inclusion of non-extensive term for both systems,
which seems to be more dominant in the massive case. The
relative change in the non-extensive terms due the BE/FD
generalization over the Boltzmann distribution ranges from
2–6% in hadronic system, which reduces to less than 1%
for a quark–gluon system at higher temperature. For larger
q values c2

s enhances, subsequently reaching the SB limit
faster. Due to the non-extensive generalization, the tempera-
ture dependence of QCD coupling is observed to enhance sig-
nificantly over the running coupling constant, which becomes
ever larger for higher q values.

The present work opens up a number of possible hori-
zons to be explored under the non-extensive generalization
of the system properties concerning heavy ion physics. One
immediate future project to be investigated, is the trans-
port parameters of the system using the current formalism.
Transport coefficients being crucial inputs in the hydrody-
namic equations describing system’s space-time evolution,
their response to a non-extensive medium where long-range
correlations and memory effects are significant, is a highly
interesting topic to venture in the near future. Anticipating
the non-extensive formalism to provide a closer look to the
systems created in heavy ion collisions, setting up the hydro-
dynamics equations under this construction and their solution
to obtain the space-time behavior of the temperature of the
system and hydrodynamic velocity are also extremely essen-
tial. A few studies in this regard have been done in [56,57].
More extensive studies including the proper dynamics is an
essential future task in this line of work.

Finally, an extended study concerning the microscopic
dynamics of the system under the application of non-
extensivity from a first principles approach is extremely nec-
essary. In [80] an effective field theory has been discussed to
describe the nuclear and quark matter at high temperature by
extending the Boltzmann–Gibbs canonical view to the Tsal-
lis approach. A perturbation treatment of relativistic quantum
field systems within the framework of Tsallis statistics have
been studied in [81]. Following this line of work a complete
study of the relativistic field theory under the non-extensive
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framework, in order to describe the dynamical properties of
QGP at finite temperature and baryon chemical potential, is
the next urgent thing to look for. In [82] an effective the-
ory has been modeled describing the interplay between the
non-extensivity and the QCD strong interaction dynamics
in terms of a quasi-particle model. So developing the com-
plete generalization of the hot QCD medium including long-
range interactions is most promising. Inspired by that, such
a generalization with proper equations of state encoding the
finite temperature medium effects from latest perturbative
HTL calculations and lattice simulations are the immediate
projects to be explored in the near future.
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Appendix A: Details of the
{
f kq

}q derivation

Following the definition of f kq from (38) first we obtain

(1 ± f kq )q−1 = [
1 ∓ {

1 + (q − 1)yk
} 1

1−q
]1−q

= exp

[

(1 − q)ln
[
1 ∓ Xk

]
]

, (A1)

with

Xk = [
1 + (q − 1)yk

] 1
1−q

× exp
[ 1

1 − q
ln{1 + (q − 1)yk}

]
. (A2)

Expanding the logarithm and exponential up to linear order
of (q − 1) and ignoring terms ∼ [(q − 1)2], Xk becomes

Xk = exp(−yk)Fk, (A3)

with Fk = 1 − 1
2 (1 − q)y2

k . Putting (A3) into (A1) and again
expanding the logarithm in an infinite power series we get

(1 ± f kq )q−1 = exp

[

(q − 1)

∞∑

l=1

(±)l
1

l
e−lyk Fl

k

]

. (A4)

By further expansion of the exponential term, up to linearity
in (q − 1), we get Eq. (57).

Taking its derivative and again keeping terms up to order
of (q − 1) in Fl

k , we obtain the final expression of
{
f kq

}q

given by Eq. (58).

References

1. C. Tsallis, J. Stat. Phys. 52(1/2), 479–487 (1988)
2. C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261, 534554

(1998)
3. E.M.F. Curado, C. Tsallis, J. Phys. A Math. Gen. 24, L69–L72

(1991)
4. C. Tsallis, Eur. Phys. J. A 40, 257266 (2009)
5. C. Tsallis, Braz. J. Phys. 29, 1–35 (1999)
6. C. Tsallis, Braz. J. Phys. 39(2A), 337–356 (2009)
7. A.R. Plastinot, A. Plastinot, C. Tsallis, J. Phys. A Math. Gen. 27,

5707–5714 (1994)
8. C. Tsallis, F. Baldovin, R. Cerbino, P. Pierobon.

arXiv:cond-mat/0309093
9. S. Abe, Physica A 368, 430 (2006)

10. S. Abe, Physica A 300, 417 (2001)
11. S. Martinez, F. Nicolas, F. Pennini, A. Plastino, Physica A 286, 489

(2000)
12. S. Martnez, F. Pennini, A. Plastino, Phys. Lett. A 278, 47 (2000)
13. V. Khachatryan et al. [CMS Collaboration], Phys. Rev. Lett. 105,

022002 (2010)
14. W.M. Alberico, A. Lavagno, P. Quarati, Nucl. Phys. A 680, 94

(2000)
15. W.M. Alberico, A. Lavagno, P. Quarati, Eur. Phys. J. C 12, 499

(2000)
16. W.M. Alberico, A. Lavagno, Eur. Phys. J. A 40, 313 (2009)
17. G. Wilk, Z. Wlodarczyk, Chaos Solitons Fractals 13, 581 (2002)
18. M. Biyajima, M. Kaneyama, T. Mizoguchi, G. Wilk, Eur. Phys. J.

C 40, 243 (2005)
19. C. Beck, Eur. Phys. J. A 40, 267 (2009)
20. T.S. Biro, G. Gyorgyi, A. Jakovac, G. Purcsel.

arXiv:hep-ph/0409157
21. S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 718, 795

(2013)
22. M. Sharma, [CMS Collaboration], Nucl. Phys. A 931, 1034 (2014)
23. V. Khachatryan et al. [CMS Collaboration], JHEP 1009, 091 (2010)
24. A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 111

(no.21), 212301 (2013)
25. W. Li, Mod. Phys. Lett. A 27, 1230018 (2012)
26. P. Bozek, Eur. Phys. J. C 71, 1530 (2011)
27. R.C. Hwa, C.B. Yang, Phys. Rev. C 83, 024911 (2011)
28. M.O. Caceres, Braz. J. Phys. 29(1), 125–135 (1999)
29. G. Gervino, A. Lavagno, D. Pigato, Cent. Eur. J. Phys. 10(3), 594

(2012)
30. F.I.M. Pereira, R. SIlva, J.S. Alcaniz, Phys. Rev. C 76, 015201

(2007)
31. A. Drago, A. Lavagno, P. Quarati, Physica A 344, 472 (2004)
32. A. Lavagno, D. Pigato, P. Quarati, J. Phys. G 37(11), 115102 (2010)
33. A. Lavagno, D. Pigato, Physica A 392, 5164 (2013)
34. A. Lavagno, D. Pigato, J. Phys. G Nucl. Part. Phys. 39, 125106

(2012)
35. G. Wolschin, Nucl. Phys. A 752, 484 (2005)
36. G. Wolschin, Phys. Rev. C 69, 024906 (2004)
37. H.L. Lao, F.H. Liu, R.A. Lacey, Eur. Phys. J. A 53(3), 44 (2017)
38. M. Biyajima, T. Mizoguchi, N. Nakajima, N. Suzuki, G. Wilk, Eur.

Phys. J. C 48, 597 (2006)
39. T.S. Biro, A. Peshier, Phys. Lett. B 632, 247 (2006)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/cond-mat/0309093
http://arxiv.org/abs/hep-ph/0409157


Eur. Phys. J. C (2018) 78 :66 Page 15 of 15 66

40. G. Wilk, Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000)
41. O.V. Utyuzh, G. Wilk, Z. Wlodarczyk, J. Phys. G 26, L39 (2000)
42. A.N. Tawfik, Proceeding of Sciences, ECTP-2016-07, WLCAPP-

2016-07, arXiv:1701.05423 [nucl-th]
43. T.S. Biro, G. Purcsel, Phys. Rev. Lett. 95, 162302 (2005)
44. J. Cleymans, M.D. Azmi, J. Phys. Conf. Ser. 668(1), 012050 (2016)
45. J. Cleymans, G.I. Lykasov, A.S. Parvan, A.S. Sorin, O.V. Teryaev,

D. Worku, Phys. Lett. B 723, 351 (2013)
46. J. Cleymans, J. Phys. Conf. Ser. 779(1), 012079 (2017)
47. T. Bhattacharyya, J. Cleymans, A. Khuntia, P. Pareek, R. Sahoo,

Eur. Phys. J. A 52(2), 30 (2016)
48. T. Bhattacharyya, P. Garg, R. Sahoo, P. Samantray, Eur. Phys. J. A

52(9), 283 (2016)
49. S. Tripathy, T. Bhattacharyya, P. Garg, P. Kumar, R. Sahoo, J. Cley-

mans, Eur. Phys. J. A 52(9), 289 (2016)
50. T. Bhattacharyya, J. Cleymans, P. Garg, P. Kumar, S. Mogliacci,

R. Sahoo, S. Tripathy, J. Phys. Conf. Ser. 878(1), 012016 (2017)
51. A.S. Parvan, Eur. Phys. J. A 53, 53 (2017)
52. A. Khuntia, S. Tripathy, R. Sahoo, J. Cleymans, Eur. Phys. J. A

53(5), 103 (2017)
53. A. Khuntia, P. Sahoo, P. Garg, R. Sahoo, J. Cleymans, Eur. Phys.

J. A 52(9), 292 (2016)
54. A. Lavagno, Phys. Lett. A 301, 13 (2002)
55. T.S. Bir, E. Molnr, Eur. Phys. J. A 48, 172 (2012)
56. T.S. Biro, E. Molnar, Phys. Rev. C 85, 024905 (2012)
57. T. Osada, G. Wilk, Phys. Rev. C 77, 044903 (2008)
58. J.M. Conroy, H.G. Miller, A.R. Plastino, Phys. Lett. A 374, 4581

(2010)
59. A.M. Teweldeberhan, A.R. Plastino, H.G. Miller, Phys. Lett. A

343, 71 (2004)
60. R. Silva, D.H.A.L. Anselmo, J.S. Alcaniz, EPL 89(5), 59902

(2010)

61. F. Biiyiikkd, D. Demirhan, A. Giileq, Phys. Lett. A 197, 209–220
(1995)

62. J. Cleymans, D. Worku, J. Phys. G Nucl. Part. Phys. 39(12), 1–12
(2012)

63. J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012)
64. W.A. Van Leeuwen, P.H. Polak, S.R. De Groot, Physica 66, 455

(1973)
65. E.A. Uehling, G.E. Uhlenbeck, Phys. Rev. 43, 552 (1933)
66. T. Yamano, Physica A 305, 486 (2002)
67. O. Bouzit, L.A. Gougam, M. Tribeche, Phys. Plasmas 22, 052112

(2015)
68. L.A. Gougam, M. Tribeche, Phys. Plasmas 18, 062102 (2011)
69. D.F. Litim, C. Manuel, Phys. Rep. 364, 451 (2002)
70. P.F. Kelly, Q. Liu, C. Lucchesi, C. Manuel, Phys. Rev. Lett. 72,

3461 (1994)
71. P.F. Kelly, Q. Liu, C. Lucchesi, C. Manuel, Phys. Rev. D 50, 4209

(1994)
72. J.P. Blaizot, E. Iancu, Phys. Rep. 359, 355 (2002)
73. M. Laine, Y. Schroder, JHEP 0503, 067 (2005)
74. T.S. Biro, G.G. Barnafldi, P. Van, Physica 417, 215 (2015)
75. Bíró, G., Barnaföldi, G.G, Biró, T.S, Ürmössy, K., Takács, A.,

Entropy 19(3), 88 (2017)
76. A. Bazavov et al. [HotQCD Collaboration], Phys. Rev. D 90,

094503 (2014)
77. A. Bazavov et al., Phys. Rev. D 80, 014504 (2009)
78. S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K.

Szabo, Phys. Lett. B 730, 99 (2014)
79. S. Borsanyi, G. Endrodi, Z. Fodor, S.D. Katz, S. Krieg, C. Ratti,

K.K. Szabo, JHEP 1208, 053 (2012)
80. T.S. Biro, A. Jakovac, Z. Schram, Eur. Phys. J. A 53, 52 (2017)
81. H. Kohyama, A. Niegawa, Prog. Theor. Phys. 115, 73 (2006)
82. J. Rozynek, G. Wilk, Eur. Phys. J. A 52(9), 294 (2016)

123

http://arxiv.org/abs/1701.05423

	Thermodynamics and relativistic kinetic theory for q-generalized Bose–Einstein and Fermi–Dirac systems
	Abstract 
	1 Introduction
	2 Formalisms
	2.1 Non-extensive thermostatistics for a grand canonical ensemble
	2.2 Non-extensive relativistic kinetic theory with quantum statistical effects
	2.3 Thermodynamics quantities in q-generalized BE and FD system
	2.3.1 Massive hadron gas with non-zero baryon chemical potential
	2.3.2 Massless QGP with non-zero quark chemical potential

	2.4 Effective coupling in q generalized hot QCD system

	3 Results and discussions
	Results of massive pion–nucleon system with non-zero baryon chemical potential
	Results of massless quark–gluon system with non-zero quark chemical potential

	4 Conclusion and outlook
	Acknowledgements
	Appendix A: Details of the {to.fqk}to.q derivation
	References




