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Abstract In this paper, we discuss the thermodynamical
analysis for gravitationally induced particle creation scenario
in the framework of DGP braneworld model. For this pur-
pose, we consider apparent horizon as the boundary of the
universe. We take three types of entropy such as Bakenstein
entropy, logarithmic corrected entropy and power law cor-
rected entropy with ordinary creation rate �. We analyze
the first law and generalized second law of thermodynamics
analytically for these entropies which hold under some con-
straints. The behavior of total entropy in each case is also
discussed which implies the validity of generalized second
law of thermodynamics. Also, we check the thermodynami-
cal equilibrium condition for two phases of creation rate, that
is constant and variable � and found its vitality in all cases
of entropy.

1 Introduction

It is believed that the universe undergoes an accelerated
expansion due to mysterious form of force called dark energy
(DE) which was firstly predicted by two independent teams of
cosmologists [1,2]. Both of them used distant type Ia super-
nova as standard candles to measure the expansion of the
universe. This discovery was unexpected, because before this
invention, cosmologists just think that the expansion of the
universe would be decelerating because of the gravitational
attraction of the matter in the universe. In the accelerated
expansion of the universe, DE plays major role but its nature
is still unknown. The simplest candidate of DE is the cos-
mological constant, but its composition and mechanism are
unknown. More generally, the detail of its equation of state
(EoS) and relationship with the standard model of particle
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physics continue to be investigated both through observa-
tionally and theoretically [3]. In order to explain this cosmic
acceleration, various DE models and modified theories of
gravity have been developed such as f (R) theory, f (T ) the-
ory, Brans-Dicke theory, dynamical Chern-Simons modified
gravity, DGP Braneworld model, etc.

The concept of thermodynamics in cosmological system
originates through black hole physics. It was suggested [4]
that the temperature of Hawking radiations emitting from
black holes is proportional to their corresponding surface
gravity on the event horizon. Jacobson [5] found a relation
between thermodynamics and the Einstein field equations.
He derived this relation on the basis of entropy-horizon area
proportionality relation along with first law of thermody-
namics (also called Clausius relation) dQ = TdS, where
dQ, T and dS indicate the exchange in energy, temperature
and entropy change for a given system. It was shown that
the field equations for any spherically symmetric spacetime
can be expressed as TdS = dE + PdV (E, P and V repre-
sent the internal energy, pressure and volume of the spherical
system) for any horizon [6].

The generalized second law of thermodynamics (GSLT)
has been studied extensively in the scenario of expanding
behavior of the universe. The GSLT states that the entropy of
matter inside the horizon plus entropy of the horizon remains
positive and increaseswith the passage of time [7]. In order to
discuss GSLT, horizon entropy of the universe can be taken as
one quarter of its horizon area [8] or power law corrected [9–
11] or logarithmic corrected [12] forms. Many people have
explored the validity of GSLT of different systems includ-
ing interaction of two fluid components like DE and dark
matter [13–16], as well as interaction of three components
of fluid [17–19] in the FRW universe by using simple hori-
zon entropy of the universe. The thermodynamical analysis
widely performed in modified theories of gravity [20–25].

The gravitationally induced particle creation is another
well-known mechanism which was firstly introduced by
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Schrodinger [26] on microscopic level. This mechanism was
further extended by Parker et al. towards quantum field theory
in curved spacetimes [27–31]. The macroscopic description
of particle creation mechanism induced by gravitational field
was presented by Prigogine et al. [32]. Later on, the covari-
ant description of this mechanism was developed [33,34] as
well as the physical difference between particle creation and
bulk viscosity was also given [35]. The particle creation pro-
cess can be described with the inclusion of backreaction term
in the Einstein field equations whose negative pressure may
help in explaining the cosmic acceleration. In this way, vari-
ous phenomenological models of particle creation have been
presented [36–41]. It is also shown that phenomenological
particle production [42–45] help in explaining the cosmic
acceleration and paved the alternative way to the concor-
dance �CDM model.

The fact that we resides in a three-dimensional space
embedded in an extra-dimensional world and five-
dimensional models in which universe would be a hypersur-
face has attain a great attention. The four-dimensional Ein-
steins equations projected onto the brane have been explored
by Shiromizu et al. [46]. The approaches which made on
the basis of brane-world in the early-time cosmology favor
a particular model of cosmic evolution featured by quadratic
relations between the energy density and the Hubble param-
eter, dubbed quadratic cosmology [47,48].

Recently, by assuming the gravitationally induced particle
scenario with constant specific entropy and arbitrary particle
creation rate (�), thermodynamics on the apparent horizon
for FRW universe has been discussed [49]. They have inves-
tigated the first law, GSLT and thermodynamical equilib-
rium by assuming the EoS for perfect fluid and put forward
various constraints on � for which thermodynamical laws
hold. Our aim is to discuss the thermodynamical analysis
on the apparent horizon for gravitationally induced particle
creation scenario with ordinary creation rate � by assuming
entropies (Bakenstein entropy or usual entropy, logarithmic
corrected entropy and power law corrected entropy) in DGP
braneworld model. The scheme of the paper is as follows: In
the next section, we will present the basic equations of DGP
brane-world, particle creation rate and cosmological parame-
ters. Sections 3, 4, 5 contain the discussion of thermodynamic
quantities as well as its laws corresponding to usual, loga-
rithmic and power law corrected entropies, respectively. The
last section comprises of concluding remarks on our results.

2 Basic equations

A most particular version was proposed by Dvali et al.
[50,51], in which the four dimensional FRW universe is
enclosed in a five dimensional Minkoski bulk with infinite
size. The gravitational laws were obtained by adding an

Einstein-Hilbert term to the action of brane computed with
the brane’s intrinsic curvature. The presence of such a term
in the action is generically induced by quantum corrections
coming from the bulk gravity and its coupling with matter
living on the brane and must be included for a large class
of theories for self-consistency [52,53]. Here, we consider
3-brane embedded in a 5D space-time with an intrinsic cur-
vature term included in the brane whose action can be written
as

S(5) = − 1

2κ2

∫
d5X

√−g̃ R̃ +
∫

d5X
√−g̃Lm, (1)

where Lm is the brane curvature term, given by

Lm = − 1

2μ2

∫
d4x

√−gR, (2)

and κ2 = 8πG(5) = M−3
(5) , μ2 = 8πG(4) = M−2

(4) . The
Eq. (1) represents the Einstein-Hilbert action in five dimen-
sions for a five-dimensional metric g̃AB (bulk metric) of
Ricci scalar R̃. Similarly, Eq. (2) indicates the Einstein-
Hilbert action for the induced metric g̃cd on the brane with
R appeared as its scalar curvature. From Eq. (1), we can get
modified Friedmann equation as [54]

H2 + k

a2 =
(√

ρ

3M2
p

+ 1

4r2
c

+ ε

2rc

)2

, (3)

where H = ȧ
a is Hubble parameter with a(t) is the scale

factor. Also, ρ = ρm +ρD , the subscripts m and D represent
the energy densities corresponding to dark matter and DE
respectively, rc is the crossover length which represents the
scale that has length away from which gravity starts opening
into the bulk [54]. Moreover it is the distance scale follow
the comparison among 4D and 5D effects of gravity and can
be written as [54]

rc = M2
p

2M3
5

, (4)

where M2
5 stands for the 5D Planck mass and M2

p is the 4D
Planck mass.

For the spatially flat DGP braneworld (k = 0), Eq. (3)
reduces to

H2 − ε

rc
H = ρ

3M2
p
. (5)

There exist two different branches for the DGP model
depending on the sign of ε. These are as follows:

• For ε = +1, there is a de Sitter solution for Eq. (5)
with constant Hubble parameter, i.e., H = 1

rc
⇒ a(t) =

a0e
t
rc in the absence of any kind of energy or matter field
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on the brane (i.e., ρ = 0). However, this branch faces
some problems like ghost instabilities [55].

• For ε = −1, the accelerated expansion of the universe
can only be explained through the inclusion of DE com-
ponent in the DGP scenario.

We consider the latter case in the present work. The equation
of continuity for this model will become

ρ̇ + �
(
ρ + P + 	

) = 0, (6)

where 	 is a particle creation pressure which represents
the gravitationally induced process of particle creation and
� = 3H is the fluid expansion. Differentiating Eq. (5) and
replacing the value of ρ̇ using Eq. (6), we obtain

Ḣ = −H
(
ρ + p + 	

)
M2

p

(
2H − ε

rc

) . (7)

The respective EoS for this model is giving by p = (
γ −1

)
ρ

with 2
3 ≤ γ ≤ 2. The non-conservation of the total rate

of change of number of particles, N = na3 with comoving
volume a3 and n is the number density of particle production
in an open thermodynamical system yields

ṅ + �n = n�, (8)

where � is a particle creation rate has negative and positive
phases. Negative � represents the particle destruction and
positive � describes the elimination of particles. Further-
more, a non-zero � produces effective bulk viscous pressure
[33,35–37,56–58].

Now using the Eqs. (6), (8) and Gibbs relation, we get

Tds = d

(
ρ

n

)
+ pd

(
1

n

)
. (9)

An equation related to the creation pressure 	 and the cre-
ation rate � has the form

	 = − �

�

(
ρ + p

)
. (10)

Under traditional assumption that the specific entropy of each
particle is constant, i.e., the process is adiabatic or isentropic.
This implies a dissipative fluid is similar to a perfect fluid with
a non-conserved particle number. To discuss cosmological
parameters, we insert Eq. (10) and p = (γ − 1)ρ in Eq. (7),
to obtain

Ḣ

H2 = −3γ
(
H − ε

rc

)(
1 − �

3H

)
(
2H − ε

rc

) . (11)

The deceleration parameter q can be written as

q = − Ḣ

H2 − 1 = 3γ
(
H − ε

rc

)(
1 − �

3H

)
(
2H − ε

rc

) − 1. (12)

The effective EoS parameter for this model turns out to be

ωeff = p + 	

ρ
= γ

(
1 − �

3H

)
− 1. (13)

This parameter has ability to explain the different phases of
the universe on the basis of �, i.e., if � < 3H , then we have
quintessence era of the universe (ωeff < −1), if � > 3H
then effective EoS parameter represents the phantom era of
the universe (ωeff > −1) while for � = 3H , effective EoS
parameter exhbits the cosmological constant (ωeff = −1).

In the following, we will discuss first and second thermo-
dynamical laws in the presence of particle creation rate � on
the apparent horizon.

3 Thermodynamical analysis with usual entropy

For flat FRW universe, Hubble parameter coincides with the
apparent horizon as RA = 1

H . Differentiating the apparent
horizon with respect to time, we get

ṘA = − Ḣ

H2 = 3γ
(
H − ε

rc

)(
1 − �

3H

)
(
2H − ε

rc

) . (14)

The Bekenstein entropy and Hawking temperature of the
apparent horizon are given by (8π = G = 1)

SA = A

4
= R2

A

8
and TA = 1

2πRA
= 4

RA
, (15)

where A = 4πR2
A. The first law of thermodynamics at the

horizon can be obtained through the Clausius relation as

− dEA = TAdSA. (16)

For the sake of convenance, we consider � = TAdSA+dEA.
The differential dEA is the amount of energy crossing the
apparent horizon can be evaluated as [59]

− dEA = 1

2
R3

A(ρ + p)Hdt = 3γ
(
H − ε

rc

)
2H

dt . (17)

From Eq. (15), the differential of surface entropy at apparent
horizon yields

dSA = 3γ

4H

(
H − ε

rc

) (
1 − �

3H

)
(

2H − ε
rc

) , (18)

which leads to

TAdSA =
3γ

(
H − ε

rc

) (
1 − �

3H

)
(

2H − ε
rc

) dt. (19)

Thus, � turns out to be

� = 3γ
(
H − ε

r

) (
1 − �

3H

2H − ε
rc

− 1

2H

)
. (20)
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From this relation, it can be seen that first law of thermo-
dynamics holds (i.e., � → 0) at the apparent horizon for

� = 3H

(
1 − 2H− ε

rc
2H

)
.

Next, we will discuss the GSLT and thermodynamical
equilibrium of a system containing perfect fluid distribution
bounded by apparent horizon in DGG brane-world scenario.
For GSLT, the total entropy of the system can not be decrease,
i.e., d(SA + Sf) ≥ 0. In this relation, SA and Sf appear as
the entropy at apparent horizon and the entropy of cosmic
fluid enclosed within the horizon, respectively. The Gibbs
equation is given by

TfdSf = dEf + pdV, (21)

where Tf is the temperature of the cosmic fluid and Ef is the
energy of the fluid (Ef = ρV ). The evolution equation for
fluid temperature having constant entropy can be described
as [60]

Ṫf

Tf
= (� − �)

∂p

∂ρ
. (22)

Eq. (11) leads to � −� = Ḣ
(

2H− ε
rc

)

γ H
(
H− ε

rc

) which inserting in Eq.

(22) gives the following equation

ln

(
Tf

T0

)
= 2(γ − 1)

γ

∫
dH

H

⇒ Tf = T0

(
H2 − ε

rc
H

) (γ−1)
γ

, (23)

where T0 is the constant of integration. The differential of
the fluid entropy can be obtained by using the Eq. (21) as
follows

dSf = − 3γ T−1
0(

2H− ε
rc

)
(
H− ε

rc

) (
1− �

3H

) (
H2− ε

rc
H

) 1−γ
γ

×
(

1 − 1

2Hrc
− 3γ

2H

(
H − ε

rc

))
dt . (24)

Using Eqs. (18) and (24), we get the rate of change of total
entropy as

ṠT = 3γ
(
H − ε

rc

)(
1 − �

3H

)
4H

(
2H − ε

rc

)
[

1 + 4T−1
0 H

(
H2 − ε

rc
H

) 1
γ

−1

×
(

1

2H

ε

rc
− 3γ

2H

(
H − ε

rc

)
− 1

)]
, (25)

where ST = SA + Sf. We discuss the validity of GSLT on
the basis of � such that

• � < 3H : The GSLT holds if the following constraint

1 > 4T−1
0

(
H2− ε

rc
H

) 1
γ

−1 (
H− ε

2rc
+ 3γ

2

(
H− ε

rc

))

satisfies. This shows that the GSLT satisfies in the
qunitessence era of the evolving universe.

• � > 3H : For this case, we have the constraint

1 < 4T−1
0

(
H2− ε

rc
H

) 1
γ

−1 (
H− ε

2rc
+ 3γ

2

(
H− ε

rc

))
,

which implies the GSLT holds in phantom era of the
universe.

• � = 3H : This case implies ṠT = 0 in the cosmological
constant era.

Replacing dt to dH
Ḣ

and integrating Eq. (25), we get

ST = SA + Sf

= − 1

8H2ε2rcT0(1 − γ )

(
1 − ε

H2rc

) −1
γ (

1 − H2rc
ε

) −1
γ

[
6γ 2ε2

2F1

(−1 + γ

γ
,− 1

γ
, 2 − 1

γ
,

ε

H2rc

)

(
H2 − ε

rc

) 1
γ
(

1 − H2rc
ε

) 1
γ + 2

(
H2 − ε

rc

) 1
γ

× r2
c

{
− 4Hε(−1 + γ ) 2F1

(
− 1

2
,− 1

γ
,

1

2
,
H2rc

ε
,

)

×
(

1 − ε

H2rc

) 1
γ + γ

(
6H3(−1 + γ )

× 2F1

(
1

2
,
−1 + γ

γ

3

2
,
H2rc

ε

)(
1 − ε

H2rc

) 1
γ

+ ε2
2F1

(−1 + γ

γ
,− 1

γ
, 2 − 1

γ
,

ε

H2rc

)(
1 − H2rc

ε

) 1
γ
)}

+ 2H2r3
c

(
H2 − ε

rc

) 1
γ

(−1 + γ )

(
4H 2F1

×
(

1

2
,
−1 + γ

γ
,

3

2
,
H2rc

ε

)(
1 − ε

H2rc

) 1
γ

+ γ ε

(
− 2F1

(
− 1

γ
,− 1

γ
,
−1 + γ

γ
,

ε

H2rc

)

×
(

1 − H2rc
ε

) 1
γ +

(
1 − ε

H2rc

) 1
γ
(

− 1

+
(

1− H2rc
ε

) 1
γ
)))

+ (−1+γ )ε × rc

{
6γ H

(
H2− ε

rc

) 1
γ

×
(

− 2

(
1 − ε

H2rc

) 1
γ

2F1

(
− 1

2
,
−1

γ
,

1

2
,
H2rc

ε

)

− Hγ ×
(

1 − H2rc
ε

) 1
γ

2F1

(
− 1

γ
,− 1

γ
,
−1 + γ

γ
,

ε

H2rc

)

+
(

1 − ε

H2rc

) 1
γ ×

(
− 1 +

(
1 − H2rc

ε

) 1
γ
)

− ε

(
1 − ε

H2rc

) 1
γ
(

1 − H2rc
ε

) 1
γ
}]

. (26)
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Fig. 1 Plot of total entropy versus γ

The plot between total entropy and parameter γ is shown
in Fig. 1 for three values of T by setting constant values as
H = 67, rc = 1

67 , ε = −1. We observe that ST ≥ 0 for all
the values of T which leads to the validity of GSLT.

3.1 Thermal equilibrium scenario

Further, we will discuss the thermal equilibrium scenario
in the present case. For thermodynamical equilibrium,
the entropy function attains a maximum value and sat-
isfies the condition d2ST = d2(SA + Sf) < 0. For
this purpose, we consider two cases of particle creation
rate (�).

Case 1: � = constant

Firstly, we consider particle creation rate � as a con-
stant. Under this scenario, differentiating Eq. (25) w.r.t
time, it results the following second order differential
equation

S̈T = −
3γ

(
1 − �

3H

)(
− ε

rc
+ H

)
λḢ

2H

(
− ε

rc
+ 2H

)2 +
3γ

(
1 − �

3H

)
λḢ

4H

(
− ε

rc
+ 2H

)

+ γ�

(
1 − �

3H

)
×

(
− ε

rc
+ H

)
λḢ

4H3

(
− ε

rc
+ 2H

)

−
3γ

(
1 − �

3H

)(
− ε

rc
+ H

)
λḢ

4H2

(
− ε

rc
+ 2H

) + 3γ

4H

(
− ε

rc
+ 2H

)

×
(

1 − �

3H

)(
− ε

rc
+ H

)(4

(
− ε

rc
+ H2

) 1−γ
γ

T0

0.8 1.0 1.2 1.4 1.6 1.8

0

1

2

3

S T

T 102.5

T 102.3

T 102

Fig. 2 Plot of S̈T versus γ = constant

×
(

− 1 + ε

2rcH
− 3γ

2H
×

(
− ε

rc
+ H

))
Ḣ

+
4

(
1 − γ

)
H

γ T0

(
− εH

rc
+ H2

)−1+ 1−γ
γ

×
(

− 1 + ε

2Hrc
−

3γ

(
− ε

rc
+ H

)

2H

)(
− ε

rc
+ 2H Ḣ

)

+ 4H

(
− εH

rc
+ H2

) 1−γ
γ

×

(
− ε Ḣ

2rcH2 − 3γ Ḣ
2H +

3γ

(
− ε

rc
+H

)

2H2

)

T0

)
. (27)

where λ = 1 + 4H
T0

(
− εH

rc
+ H2

) 1−γ
γ

(
−1 + ε

2rcH
−

3γ (− ε
rc

+H)

2H

)
. The plot between S̈T versus γ for three val-

ues of T with constant values of H = 67, rc = 1
67 . ε = −1,

q = −0.53 as shown in Fig. 2. One can observe that the ther-
modynamical equilibrium condition holds for all values of T
with specific ranges of γ . For example, for T = 102, ther-
modynamical equilibrium holds for the range 1.4 < γ ≤ 1.8
and does not obey for 0.6 ≤ γ ≤ 1.4. For T = 102.3, ther-
mal equilibrium holds for the range 1.3 < γ ≤ 1.8 and
does not showing the validity for 0.6 ≤ γ ≤ 1.3. How-
ever, for T = 102.5, thermodynamic equilibrium condition
holds for the range 1.2 < γ ≤ 1.8 and disobey for the range
0.6 ≤ γ < 1.2.

Case 2: � = �(t)

Here we take � as variable parameter, i.e., � = �(t), for
which Eq. (25) becomes
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S̈T = −
3γ λ

(
− ε

rc
+ H

)(
1 − �

3H

)
Ḣ

2H

(
− ε

rc
+ 2H

)2

+
3γ λ

(
1 − �

3H

)
Ḣ

4H

(
− ε

rc
+ 2H

) − 3γ λ

(
1 − �

3H

)
Ḣ

×

(
− ε

rc
+ H

)

4H2

(
− ε

rc
+ 2H

) +
3γ

(
− ε

rc
+ H

)(
1 − �

3H

)

4H

(
− ε

rc
+ 2H

)

×
(

4

(
− εH

rc
+ H2

) 1−γ
γ ×

(
− 1 + ε

2rc H
−

3γ

(
− ε

rc
+H

)

2H

)
Ḣ

T0

+
4

(
1 − γ

)
H

γ T0

(
− εH

rc
+ H2

)−1+ 1−γ
γ

4H

(
1 − γ

)

×

⎛
⎜⎜⎝−1 + ε

2rcH
−

3γ

(
− ε

rc
+ H

)

2H

⎞
⎟⎟⎠

(
− ε Ḣ

rc
+ 2H Ḣ

)

+

4H

(
− εH

rc
+ H2

) 1−γ
γ

⎛
⎜⎜⎝− ε Ḣ

2rc H2 − 3γ Ḣ
2H +

3γ

(
− ε

rc
+H

)
Ḣ

2H2

⎞
⎟⎟⎠

T0

+
3γ λ

(
− ε

rc
+ H

)(
� Ḣ
3H2 − �̇

3H

)

4H

(
− ε

rc
+ 2H

) , (28)

where

�̇ = −9γ
(

�
3H

)(
H − ε

rc

)(
1 − �

3H

)
2H − ε

rc

+ 3H�

(
1 − �

3H

)
.

The plot of S̈T versus γ for three values of T as shown in
Fig. 3 by keeping the same constant values as in previous
case. We observe that the thermodynamic equilibrium holds
for all values of T with different ranges of γ . For example,
for T = 102, thermodynamic equilibrium holds for the range
1.4 < γ ≤ 1.8 and does not satisfying 0.6 ≤ γ ≤ 1.4.
For T = 102.3, it leads to the validity of thermodynamic
equilibrium for the range 1.3 < γ ≤ 1.8 and does not valid
for 0.6 ≤ γ ≤ 1.3. However, for T = 102.5, thermodynamic
equilibrium holds for the range 1.2 ≤ γ ≤ 1.8 and does not
satisfying within 0.6 ≤ γ < 1.2.

4 Logarithmic corrected entropy

Quantum gravity allows the logarithmic corrections in the
presence of thermal equilibrium fluctuations and quantum
fluctuations [61–67]. The logarithmic entropy corrections

1.0 1.2 1.4 1.6 1.8
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Fig. 3 Plot of S̈T versus γ = �(t)

can be defined as

SA = A

4L2
p

+ α ln
A

4L2
p

+ β
4L2

p

A
, (29)

where α and β are constants whose values are still under
consideration. The differential form of above equation leads
to

dSA = −
3γ

(
H − ε

rc

) (
1 − �

3H

)
(
2H − ε

rc

)

×
(

1

4HL2
p

+ 2αH − 16βH3L2
p

)
dt, (30)

which gives

TAdSA =
3γ

(
H − ε

rc

) (
1 − �

3H

)
(
2H − ε

rc

)

×
(

1

L2
p

+ 8H2α − 64βH4L2
p

)
dt. (31)

In view of this entropy, the quantity � takes the form

� = 3γ

(
H − ε

rc

) (
− 1

2H
+ (1 − �

3H )

(2H − ε
rc

)

×
(

1

L2
p

+ 8H2α − 64βH4L2
p

))
. (32)

It can be observed from Eq. (32) that the first law of ther-

modynamics holds when � = 3H
(
1 − (2H− ε

rc
)

2H

( 1
L2

p
+ 8H2α

− 64βH4L2
p

))
. To discuss the GSLT for logarithmic cor-

rected entropy of horizon, we obtain the total entropy by
using Eqs. (24) and (30) as follows
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ṠT = 3γ
(
H − ε

rc

)(
1 − �

3H

)
(
2H − ε

rc

)
(

4HL2
p + 2αH

−16βH3L2
p − T−1

0

(
H2 − ε

rc
H

) 1−γ
γ

×
(

1 − 1

2H

ε

rc
− 3γ

2H

(
H − ε

rc

) ))
. (33)

The GSLT will hold under these constraints.

• For the case � < 3H , the GSLT satisfy in the
quintessence region of the universe if the following con-
straint holds

4L2
p + 2α

> 16βH2L2
p+(HT0)

−1
(

1− 1

2H

ε

rc
− 3γ

2H

(
H− ε

rc

))

×
(
H2 − ε

rc
H

) 1−γ
γ

.

• � > 3H For this case, we obtain the following constraint

4L2
p + 2α

< 16βH2L2
p+(HT0)

−1
(

1− 1

2H

ε

rc
− 3γ

2H

(
H− ε

rc

) )

×
(
H2 − ε

rc
H

) 1−γ
γ

.

which implies the GSLT holds in phantom era of the
universe.

• The case � = 3H means ṠT = 0 in the cosmological
constant era.

The expression of total entropy in the form of Hubble
parameter is given by

ST = SA + Sf

= +8H2βL2
p − 2 ln(H)(α + 2L2

p) +
γ

(
H

(
H − ε

rc

)) 1
γ

2H3T0
.

(34)

The plot of total entropy ST versus γ with respect to three
values of T is shown in Fig. 4 with constant values asα = −2,
β = −0.00001, L p = 1. It is observed that the total entropy
is positive, i.e, ST > 0 which leads to the validity of GSLT
for all values of T .

4.1 Thermal equilibrium scenario

Now we will discuss the thermodynamic equilibrium by
assuming two cases for particle creation rate � as follows:
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Fig. 4 Plots of total entropy versus γ

Case 1: � = constant

In this way, the second order differential equation can be
obtained from Eq. (33) for � as a constant

S̈T = −
6γ

(
1 − �

3H

) (
H − ε

rc

)
(
2H − ε

rc

) (
4HL2

p − λ2

+2αH − 16L2
pβH3)Ḣ + 3γ

×
(
1 − �

3H

) (
4HL2

p − λ2 + 2αH − 16L2
pβH3

)
Ḣ(

2H − ε
rc

)

+γ�

(
H − ε

rc

) (
4HL2

p − λ2 + 2αH − 16L2
pβH3

)
H2

(
2H − ε

rc

)

+
3γ

(
1 − �

3H

) (
H − ε

rc

)
(

2H − ε
rc

)

⎛
⎜⎜⎜⎜⎝4L2

p Ḣ

−

(
1 − γ

) (
1 − 3γ

(
H− ε

rc

)
2H − ε

2Hrc

) (
H2 − εH

rc

)−1+ 1−γ
γ

γ T0

×
(

2H Ḣ − ε Ḣ

rc

)

−

(
H2 − ε

rc

) 1−γ
γ

(
− 3γ Ḣ

2H + 3γ
(
H− ε

rc

)
2H2 + ε Ḣ

2H2rc

)

T0

+2α Ḣ − 48L2
pβH2β Ḣ

⎞
⎟⎟⎟⎟⎠ , (35)

where

λ2 =

(
1 − 3γ

(
H− ε

rc

)
2H − ε

2Hrc

) (
H2 − εH

rc

) 1−γ
γ

T0
.
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Fig. 5 Plot of S̈T versus γ when � = constant

The plot between S̈T and γ for three values of T by fixing the
constant values q = −0.53, α = −2, β = −0.000000001
and L p = 1 as shown in Fig. 5. It can be seen that thermo-
dynamical equilibrium is obeying the condition S̈T < 0 for
all values of T which leads to the thermal equilibrium.

Case 2: � = �(t)

Taking � as a function of t , Eq. (33) yields

S̈T = −
6γ

(
1 − �

3H

) (
H − ε

rc

)
(
2H − ε

rc

) (
4HL2

p − λ2 + 2αH

− 16L2
pβH3)Ḣ + 3γ

× (1 − �
3H )

(
4HL2

p − λ2 + 2αH − 16L2
pβH3

)
Ḣ(

2H − ε
rc

)

+ 3γ
(
1 − �

3H

)
(
2H − ε

rc

)
(
H − ε

rc

)

×
(

4L2
p Ḣ −

(
1 − 3γ

(
H− ε

rc

)
2H − ε

2Hrc

)(
H2 − εH

rc

)−1+ 1−γ
γ

γ T0

× (
1 − γ

) (
2H Ḣ − ε Ḣ

rc

)

−

(
− 3γ Ḣ

2H + 3γ
(
H− ε

rc

)
2H2 + ε Ḣ

2H2rc

)

T0

× (
H2 − ε

rc

) 1−γ
γ + 2α Ḣ − 48L2

pβH2β Ḣ

)

+ 3γ

(
H − ε

rc

)

× 1(
2H − ε

rc

) (
4HL2

p − λ2 + 2αH − 16L2
pβH3)

×
(

� Ḣ

3H2 − �̇

3H

)
. (36)
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Fig. 6 Plot of S̈T versus γ when � = �(t)

Figure 6 reperesents the plot between S̈T and γ for three
values of T for variable � for same constant values. Fig-
ure 6 indicates that the trajectories of S̈T corresponding to
all the values of T ensure the validity of thermodynamical
equilibrium.

5 Power law corrected entropy

The power-law correction to the entropy-area law comes
from association of the wave-function of the scalar field
between the ground state and the exited state [68–72]. The
correction term is also more significant for higher excitations.
It is important to note that the correction term decreases faster
with A and hence in the semi-classical limit (large area) the
entropy-area law is recovered. The power entropy can b given
as

SA = A

4L2
p

(
1 − KδA

1− δ
2

)
, Kδ = δ

(
4π

) δ
2 −1

(
4 − δ

)
r4−δ
c

(37)

where δ is dimensionless constant and rc is the crossover
scale. From Eq. (37) the differential of surface entropy at
horizon can be expressed as

dSA = 3γ
(
H − ε

rc

)(
1 − �

3H

)
(
2H − ε

rc

)

×
(

1

4HL2
p

− Kδ

4HL2
p

(
2 − δ

2

) (
1

H

)3−δ )
dt, (38)

which gives

TAdSA = 3γ
(
H − ε

rc

)(
1 − �

3H

)
(

2H − ε
rc

)

×
(

1

L2
p

−
(

2 − δ

2

)
KδR

2−δ

)
dt. (39)
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In this entropy correction, we have

� = 3γ

(
H − ε

rc

)⎛
⎝− 1

2H
+

(
1 − �

3H

)
(

2H − ε
rc

)

×
(

1

L2
p

−
(

2 − δ

2

)
KδR

2−δ

))
, (40)

This equation shows that the first law of thermodynamics

(i.e., � = 0) holds for � = 3H
(
1 − (2H− ε

rc
)

2H
(

1
L2

p
−(2− δ

2 )KδR2−δ
))

.

In the presence of power law corrected entropy, the rate
of change of total entropy takes the form

ṠT =
3γ

(
H − ε

rc

) (
1 − �

3H

)
(

2H − ε
rc

)
(

1

4HL2
p

− Kδ

4HL2
p

(
2 − δ

2

) (
1

H

)3−δ

−T−1
0

(
H2 − ε

rc
H

) 1−γ
rc

(
1 − 1

2H

ε

rc
− 3γ

2H

(
H − ε

r

)) )
.

(41)

To discuss the validity of GSLT, the following constraints
must satisfy. These are as

• The condition � < 3H implies that

1

4L2
p

>
Kδ

4L2
p

(
2− δ

2

) (
1

H

)3−δ

+HT−1
0

×
[

1− 1

2H

ε

rc
− 3γ

2H

(
H− ε

r

)]
×

(
H2− ε

rc
H

) 1−γ
rc

• � > 3H For this case, we obtain the following constraint
which indicates the validity of GSLT in phantom phase.
It is given as

1

4L2
p

<
Kδ

4L2
p

(
2− δ

2

) (
1

H

)3−δ

+HT−1
0

×
[

1 − 1

2H

ε

rc
− 3γ

2H

(
H− ε

r

)]
×

(
H2− ε

rc
H

) 1−γ
rc

• The case � = 3H gives ṠT = 0 in the cosmological
constant era.

The Eq. (41) in terms of Hubble parameter takes the following
form

ST = SA + Sf

= 1

4

(
1

2H2L2
p

−
( 1
H

)4−δ
Kδ

2L2
p

+
2γ

(
H

(
H − ε

rc

)) 1
γ

H3T0

)
.

(42)
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Fig. 7 Plot of total entropy versus γ

The plot of total entropy (ST ) is shown in Fig. 7 versus γ for
three values of T by assigning the constant values as L = 1,
H = 67, 1

67 , α = −2, and ε = −1. We observe that total
entropy is positive, i.e, (ST ) > 0 which leads to the validity
of GSLT for all values of T .

5.1 Thermal equilibrium scenario

For thermodynamic equilibrium, we assume two cases of �,
i.e., � is constant and � is variable.

Case 1: � = constant

For constant �, the second order differential equation of total
entropy leads to

S̈T = −
6γ

(
1 − �

3H

) (
H − ε

rc

)
λ3(

2H − ε
rc

)2 + 3γ
(
1 − �

3H

)
λ3(

2H − ε
rc

)

+
γ�

(
H − ε

rc

)
λ3

H2
(

2H − ε
rc

) +
3γ

(
1 − �

3H

) (
H − ε

rc

)

(2H − ε
rc

)

×

⎛
⎜⎜⎝ − Ḣ

4H2L2
p

+ (3 − δ)
(
2 − δ

2

) ( 1
H

)4−δ
Kδ Ḣ

4L2
p

−
(
1−γ

)(
1− 3γ

(
H− ε

rc

)
2H − ε

2Hrc

)(
H2− εH

rc

)−1+ 1−γ
γ

(
2H Ḣ− ε Ḣ

rc

)
γ T0

−
(
H2 − εH

rc

) 1−γ
γ

(
− 3γ Ḣ

2H + 3γ
(
H− ε

rc

)
Ḣ

2H2 + ε Ḣ
2rch2

)

T0

⎞
⎟⎟⎠ , (43)

where

λ3 =
(

1

4HL2
p

−
(
2 − δ

2

)( 1
H

)3−δ
Kδ

4L2
p

−
(

1 − 3γ
(
H − ε

rc

)
2H

− ε

2Hrc

)
×

(
H2 − εH

rc

) 1−γ
γ

T0

)
Ḣ .
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Fig. 8 Plot of S̈T versus γ

The graphical behavior of S̈T against γ is shown in Figure 8
for three values of T by keeping the constant values as H =
67, rc = 1

67 , ε = −1, q = −0.53, δ = −2, L = 1. It is found
that the trajectories of this plot satisfy the condition S̈T <

0 for all values of T which leads to the thermodynamical
equilibrium of the system.

Case 2: � = �(t)

For variable �, second order differential equation of total
entropy turns out to be

S̈T = −
6γ

(
1 − �

3H

) (
H − ε

rc

)
λ3(

2H − ε
rc

)2 + 3γ
(
1 − �

3H

)
λ3(

2H − ε
rc

)

+
3γ

(
1 − �

3H

) (
H − ε

rc

)
(

2H − ε
rc

)

×

⎛
⎜⎜⎝ − Ḣ

4H2L2
p

+
(
3 − δ

)(
2 − δ

2

)( 1
4H

)4−δ
Kδ Ḣ

4L2
p

−
(

2H Ḣ − ε Ḣ

rc

)

× (1 − γ )
(
1 − 3γ

(
H− ε

rc

)
2H − ε

2Hrc

)(
H2 − εH

rc

)−1+ 1−γ
γ

γ T0

−
(
H2− εH

rc

) 1−γ
γ

(
−3γ Ḣ

2H + 3γ
(
H− ε

rc

)
Ḣ

2H2 + ε Ḣ
2H2rc

)

T0

⎞
⎟⎟⎠

+
3γ (H − ε/rc)λ3

(
� Ḣ
3H2 − �̇

3H

)

2H − ε
rc

. (44)

The plot between S̈T and γ for three values of T by setting
the constant values as H = 67, rc = 1

67 , ε = −1, q =
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Fig. 9 Plot of S̈T versus γ

−0.53, δ = −2, L = 1 as shown in Fig. 9. We observe
that thermodynamical equilibrium satisfying the condition
S̈T < 0 for all values of T which leads to thermodynamical
disequilibrium of the system.

6 Comparison and conclusion

We have studied the thermodynamics on the apparent hori-
zon for gravitationally induced particle creation scenario by
assuming entropy corrections (Bakenstein entropy, logarith-
mic corrected entropy and power law corrected entropy) in
DGP braneworld gravity. Considering the perfect fluid EoS
p = (γ − 1)ρ, we have analyzed the first law of thermo-
dynamics, GSLT and thermodynamic equilibrium. We have
fixed model parameters in the way to obtain the validity of
GSLT. However, the results may be changed for other model
parameters. The results have been summarized as follows:

For Bakenstein entropy, the first law of thermodynamics

holds at apparent horizon when � = 3H
(
1 − (2H− ε

rc
)

2H

)
. The

GSLT valid under some constraints in different eras of the
evolving universe. In terms of total entropy scenario, GSLT
remains valid for all values of T with 2

3 ≤ γ ≤ 2 (Fig. 1).
In the presence of usual entropy of horizon and for constant
�, thermodynamical equilibrium holds for all values of T
with specific ranges of γ . For example, thermodynamical

equilibrium is satisfying the condition d2ST
dt2

< 0 for 1.4 <

γ ≤ 1.8, 3 < γ ≤ 1.8, 1.2 < γ ≤ 1.8 and does not
showing the validity 0.6 ≤ γ ≤ 1.4, 0.6 ≤ γ ≤ 1.3 and
0.6 ≤ γ < 1.2 with T = 102, T = 102.3 and T = 102.5

respectively (Fig. 2). For variable �, Fig. 3 indicates that
thermodynamical equilibrium holds for all values of T with
different ranges of γ such as 1.4 < γ ≤ 1.8, 1.3 < γ ≤ 1.8,
1.2 ≤ γ ≤ 1.8 and does not obey 0.6 ≤ γ ≤ 1.4, 0.6 ≤
γ ≤ 1.3 and 0.6 ≤ γ < 1.2 for T = 102, T = 102.3 and
T = 102.5 respectively.
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For logarithmic corrected entropy, it has observed that
first law of thermodynamics holds at apparent horizon when

� = 3H
(
1− (2H− ε

rc
)

2H ( 1
L2

p
+8H2α−64βH4L2

p)
)
. The GSLT

valid under some constraints in different eras of the evolving
universe. In terms of total entropy scenario, GSLT is valid for
all values of T with 2

3 ≤ γ ≤ 2 (Fig. 4). Thermodynamical

equilibrium condition ( d
2ST
dt2

< 0) satisfied for all values of T
with all values of γ for constant as well as variable � (Figs. 5
and 6).

For power law entropy corrected, it has been observed
that the first law of thermodynamics satisfies under constraint

� = 3H
(
1 − (2H− ε

rc
)

2H
(

1
L2

p
−(2− δ

2 )KδR2−δ
))

and GSLT holds under

some conditions on model parameters in quintessence, phan-
tom and cosmological constant phases. Also, GSLT meets
for all values of T in the range ( 2

3 ≤ γ ≤ 2) (Fig. 7). It is
found that, for constant as well as variable �, the thermody-

namic equilibrium condition d2ST
dt2

< 0 obey for all values
of T which leads to the thermodynamical equilibrium of the
system.

Here we provide some details about past works and com-
pare with underlying work. Harko et al. [73] considered the
possibility of a gravitationally induced particle production
through the mechanism of a non-minimal curvature?matter
coupling. An interesting feature of this gravitational theory
is that the divergence of the energy-momentum tensor is
nonzero. Firstly, they have reformulated the model in terms of
an equivalent scalar-tensor theory, with two arbitrary poten-
tials. By using the formalism of open thermodynamic sys-
tems, they have interpreted the energy balance equations in
this gravitational theory from a thermodynamic point of view,
as describing irreversible matter creation processes. The par-
ticle number creation rates, the creation pressure, and the
entropy production rates have explicitly obtained as func-
tions of the scalar field and its potentials, as well as of the
matter Lagrangian. The temperature evolution laws of the
newly created particles are also obtained. The cosmological
implications of the model have briefly investigated, and it is
shown that the late-time cosmic acceleration may be due to
particle creation processes. Furthermore, it has also shown
that due to the curvature-matter coupling, during the cosmo-
logical evolution a large amount of comoving entropy is also
produced.

Mitra et al. [74] have studied thermodynamics laws by
assuming flat FRW universe enveloped by by apparent and
event horizon in the framework of RSII brane model and
DGP brane scenario. Assuming extended Hawking tem-
perature on the horizon, the unified first law is exam-
ined for perfect fluid (with constant equation of state) and
Modified Chaplygin Gas model. As a result there is a
modification of Bekenstein entropy on the horizons. Fur-
ther the validity of the generalized second law of ther-

modynamics and thermodynamical equilibrium are also
investigated.

Pan et al. [75] investigated the expansion of the universe
powered by the gravitationally induced adiabatic matter cre-
ation by developing general creation rate and their dynamical
analysis. They also developed dynamical analysis in the the
presence of a non-singular universe (without the big bang sin-
gularity) with two successive accelerated phases, one at the
very early phase of the universe (i.e. inflation), and the other
one describes the current accelerating universe, where this
early, late accelerated phases are associated with an unstable
fixed point (i.e. repeller) and a stable fixed point (attractor),
respectively.

Sal and Haro [76] performed a qualitative and thermody-
namic study of two models when one takes into account adi-
abatic particle production. In the first one, there is a constant
particle production rate, which leads to solutions depicting
the current cosmic acceleration but without inflation. The
other one has solutions that unify the early and late time
acceleration. These solutions converge asymptotically to the
thermal equilibrium.

Recently, by assuming the gravitationally induced particle
scenario with constant specific entropy and arbitrary particle
creation rate (�), thermodynamics on the apparent horizon
for FRW universe has been discussed [49]. They have inves-
tigated the first law, GSLT and thermodynamical equilibrium
by assuming the EoS for perfect fluid and put forward vari-
ous constraints on � for which thermodynamical laws hold.
We have extended the work of [49] in the DGP brane-world
scenario by assuming usual entropy as well as its entropy
corrections (power law as well as logarithmic corrected) in
flat FRW universe. We have extracted EoS parameter and
obtained its various constraints with respect to quintessence,
vacuum and phantom era of the universe. For variable as
well as constant particle creation rate (�), the first law of
thermodynamics, GSLT and thermal equilibrium condition
is satisfied in all cases of entropies forms.
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