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Abstract In this paper, thick branes generated by mimetic
scalar field are investigated. Three typical thick brane models
are constructed and the linear tensor and scalar perturbations
are analyzed. These branes have different inner structures,
some of which are absent in general relativity. For each brane
model, the solution is stable under both tensor and scalar
perturbations. The tensor zero modes are localized on the
branes, while the scalar perturbations do not propagate and
they are not localized on the brane. As the branes split into
multi sub-branes for specific parameters, the potentials of
the tensor perturbations also split into multi-wells, and this
may lead to new phenomenon in the resonance of the tensor
perturbation and the localization of matter fields.

1 Introduction

Though the standard model of cosmology is in good agree-
ment with observation data and has made a number of suc-
cessful predictions, it still faces severe problems. In this
model, dark matter constitutes 84.5% of total mass of matter.
There are many candidates for dark matter in particle physics
(for recent reviews see e.g. [1,2]). However, dark matter has
never been directly observed and its nature remains unknown.
One possible explanation for dark matter is that Einstein’s
gravity is modified at large scale. Among the modified the-
ories of gravity, mimetic gravity is a particularly interesting
one and has been investigated widely. In mimetic gravity, the
physical metric gμν is defined in terms of an auxiliary metric
ĝμν and a scalar field φ by gμν = −ĝμν ĝαβ∂αφ∂βφ [3]. By
this means, the conformal degree of freedom is separated in
a covariant way, and this extra degree of freedom becomes
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dynamic and can mimic cold dark matter [3,4]. In Refs. [5,7]
evolution history of the universe was realized in the frame-
work of mimetic gravity and it was shown that the mimetic
scalar field can mimic cold dark matter at the cosmological
evolution and perturbation level. Reference [8] showed that
rotation curves of spiral galaxies can be explained within the
mimetic gravity framework. In Ref. [9] a MOND-like accel-
eration law was recovered in mimetic gravity in which the
mimetic scalar field and matter are non-minimally coupled,
and opened up the possibility of addressing the dark mat-
ter problem on both galactic and cluster scales. Furthermore,
it is possible to unify the late-time acceleration and inflation
within this framework [10–13]. To obtain a viable theory con-
fronted with the cosmic evolution, this theory is transformed
to Lagrange multiplier formulation and the potential of the
mimetic scalar field is considered. Note that the Lagrange
multiplier form of the mimetic gravity had been developed
in [14–16], earlier than Ref. [3]. For more recent work con-
cerning mimetic gravity see Refs. [5–8,11–13,17–26] or Ref.
[27] for a review.

On the other hand, the brane world scenario has been an
attractive topic in the last two decades, since the Randall–
Sundrum (RS) model being proposed [28,29]. It is shown
that the gauge hierarchy problem and the cosmological con-
stant problem can be explained in this model [28–30]. Var-
ious extensions of the RS model have been investigated in
Refs. [31–36]. In these models, the brane is considered to
be geometrically thin. However, as it is believed that there
exists a minimum length scale, we have strong motivation to
consider the thickness of brane. For this reason, thick brane
models were proposed [37–39] and investigated thoroughly.
For more recent work on thick brane see Refs. [40–50] or
[51] for a review.

Recently, Sadeghnezhad and Nozari investigated the late-
time cosmic expansion and inflation on a thin brane in
mimetic gravity [52]. It is necessary to investigate thick brane
in this theory. In the thick brane world scenario, the brane

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-5527-4&domain=pdf
mailto:zhongy13@lzu.edu.cn
mailto:zhongy@mail.xjtu.edu.cn
mailto:zhangyupeng14@lzu.edu.cn
mailto:liuyx@lzu.edu.cn


45 Page 2 of 8 Eur. Phys. J. C (2018) 78 :45

can be a domain wall generated by a background scalar field
[37–39,53–58] or by pure geometry in a co-dimension one
space-time [59–63]. On the other hand, it is shown that in
some cases thick branes may have inner structure, which may
lead to new phenomenon in the resonance and the localiza-
tion of gravity and matter fields [64–69]. Thus, it is natural
to generate domain wall by the mimetic scalar field, and the
new degree of freedoms allows us to construct new type of
thick branes. For this reason, we will investigate several thick
branes in mimetic gravity and examine stability under tensor
and scalar perturbations. We will find that some of the thick
branes have very different inner structures from the case of
general relativity.

The organization of this paper is as follows. In Sect. 2, we
construct three flat thick brane models. In Sect. 3 we con-
sider the behavior of the tensor perturbations in each of the
brane models. In Sect. 4 we analyze the scalar perturbations.
Finally, the conclusion and discussion are given in Sect. 5.

2 Construction of the thick brane models

In the natural unit, the action of the mimetic gravity is

S=
∫

d4xdy
√−g

(
R

2
+ Lφ

)
, (1)

where the lagrangian of the mimetic scalar field is [14]

Lφ = λ
[
gMN ∂Mφ∂Nφ −U (φ)

]
− V (φ), (2)

and the λ is a Lagrange multiplier. In the original mimetic
gravity, U (φ) = −1 [3], and then it is extended into to the
case with U (φ) < 0 [70]. In thick brane models, a brane
will be generated by the mimetic scalar field φ = φ(y).
Therefore, we assume that U (φ) = gMN ∂Mφ∂Nφ > 0. The
equations of motion (EoM) are obtained by varying the above
action with respect to gMN , φ and λ, respectively:

GMN + 2λ∂Mφ∂Nφ − LφgMN = 0, (3)

2λ�(5)φ + 2∇Mλ∇Mφ + λ
∂U

∂φ
+ ∂V

∂φ
= 0, (4)

gMN ∂Mφ∂Nφ −U (φ) = 0. (5)

Here the five-dimensional d’Alembert operator is defined as
�(5) = gMN∇M∇N . The indices M, N · · · = 0, 1, 2, 3, 5
denote the bulk coordinates and μ, ν · · · denote the ones on
the brane.

In this paper we consider the following brane world metric
which preserves four-dimensional Poincaré invariance:

ds2 = a2(y)ημνdxμdxν + dy2. (6)

With this metric assumption, Eqs. (3)–(5) read

3a′2

a2 + 3a′′

a
+ V (φ) + λ

(
U (φ) − φ′2) = 0, (7)

(a) The warp factor (b) The scalar field

Fig. 1 The shapes of the warp factor a(y) and the scalar field φ(y) of
the first brane model. The parameters are set as k = 1, v = 1 and n = 1
for the dashed red lines, n = 3 for the thick blue lines, and n = 7 for
the thin black lines a the warp factor, b the scalar field

6a′2

a2 + V (φ) + 2λ
(
U (φ) + φ′2) = 0, (8)

λ

(
8a′φ′

a
+ 2φ′′ + ∂U

∂φ

)
+ 2λ′φ′ + ∂V

∂φ
= 0, (9)

φ′2 = U (φ). (10)

Here, the primes denote the derivatives with respect to the
extra dimension coordinate y. Substituting Eqs. (7) and (10)
into Eq. (8) we can solve the Lagrange multiplier λ(y)

λ = 3(−a′2 + aa′′)
2a2φ′2 . (11)

Note that there are only three independent equations in Eqs.
(7)–(10). Once A(y) and φ(y) are given, we can get λ(y),
V (φ) and U (φ) from Eqs. (11), (7) and (10), respectively.
Next, we will investigate three kinds of thick brane models.

2.1 Model 1

In the first model, we consider the solution of the warp factor
a(y) and the scalar field that has similar property as the case
of general relativity. The solution of such a model is given
by

a(y) = sechn(ky), (12)

φ(y) = v tanhn(ky), (13)

λ(y) = − 3

2nv2 sinh2(ky)tanh−2n(ky), (14)

V (φ) = 3k2
[
n − n(1 + 2n)

(φ

v

) 2
n
]

, (15)

U (φ) = k2n2v2
(

φ

v

) 2(n−1)
n

[(
φ

v

) 2
n − 1

]2

, (16)

where n is a positive odd integer. The shapes of the warp
factor a(y) and the scalar field φ(y) are plotted in Fig. 1,
from which we can see that the double-kink scalar field φ

generates a single brane.
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2.2 Model 2

Next we would like to construct a model with multi sub-
branes, for which the warp factor has many maxima while
the scalar field is still a single kink. One typical solution of
such a model is given by

a(y) = sech(k(y − b))

+sech(ky) + sech(k(y + b)), (17)

φ(y) = v tanh(ky), (18)

U (φ) = k2

v2 (φ2 − v2)2. (19)

Here we do not show the complicate expressions of λ(y) and
V (φ). Note that λ(y) can be solved from Eq. (11), andV (φ) is
given by V (φ(y)) = − 6a′2

a2 − 4λU (φ) with the replacement

y → 1
k tanh−1 (φ/v). The shape of the warp factor of this

model is shown in Fig. 2, from which it can be seen that small
parameter b corresponds to a single brane and the brane will
split into three sub-branes as the parameter b increases. The
distance between two sub-branes is b.

Furthermore, this model can be extended to a brane array
described by the following warp factor:

a(y) =
N∑

n=−N

sech(k(y + nb)), (20)

where N is an arbitrary positive integer. Note that the above
solution corresponds to the case of odd number of sub-branes.
It is not difficult to construct solution for the case of even
number. In addition, we only consider the simple solution for
which each part of the warp factor has the same maximum.

2.3 Model 3

Finally, we try to construct another kind of brane solution
that will result in different effective potential for the tensor
perturbation from the previous model (see the next section).
In such a model, there is an inner structure in the effective
potential for each sub-brane. One typical solution of such a
brane model with double-kink scalar is given by

a(y) = tanh[k(y + 3b)] − tanh[k(y − 3b)]
−tanh[k(y + b)] + tanh[k(y − b)], (21)

φ(y) = v tanhn(ky), (22)

U (φ) = k2n2v2
(

φ

v

) 2(n−1)
n

[(
φ

v

) 2
n − 1

]2

. (23)

Here we do not show the complicate expressions of λ(y) and
V (φ). The shape of the warp factor of this model is shown
in Fig. 2. The distance of the two sub-branes (for large b)
is about 6b and the width of each sub-brane is b. Note that
the sub-brane here is fatter than the one in the second model,

(a) model 2 (b) model 3

Fig. 2 The shape of the warp factor a(y) of the brane models 2 and 3.
In a the parameters are set k = 1, and b = 0.5 for the dashed red line,
b = 3 for the thick blue line, b = 8 for the thin black line. In b the
parameters are set k = 1, and b = 0.2 for the dashed red line, b = 0.8
for the thick blue line, b = 2.5 for the thin black line a model 2 , b
model 3

which results in different structures of the effective potential
for each sub-brane in the two models.

Furthermore, this model can be extended into a brane array
described by the warp factor

a(y) =
N∑

n=−N−1

tanh [k(y + (2n + 1)b)] , (24)

where N is an arbitrary integer.

3 Tensor perturbation

In this section, we consider the linear tensor perturbation.
Because of the similarity of the field equations between the
mimetic gravity and general relativity, it is easy to see that the
tensor perturbation is decoupled from the vector and scalar
perturbations. For the tensor perturbation, the perturbed met-
ric is given by

g̃MN = a(y)2(ημν + hμν)dx
μdxν + dy2, (25)

where hμν = hμν(xμ, y) depends on all the coordinates and
satisfies the transverse-traceless (TT) condition ημν∂μhλν =
0 and ημνhμν = 0. The perturbation of Eq. (3) gives

1

2κ2 δGMN + δ

(
λ∂Mφ∂Nφ − 1

2
LφgMN

)
= 0. (26)

Using this TT condition, the perturbation of the μν compo-
nents of the Einstein tensor δGμν reads

δGμν = −1

2
�(4)hμν + (3a′2 + 3aa′′)hμν

−2aa′h′
μν − 1

2
a2h′′

μν, (27)

where the four-dimensional d’Alembertian is defined as
�(4) ≡ ημν∂μ∂ν . Using Eqs. (7) and (27), the above equation
reads

− 1

2
�(4)hμν − 2aa′h′

μν − 1

2
a2h′′

μν = 0. (28)
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(a) n= 1 (b) n= 3

(c) n= 5

Fig. 3 a n = 1, b n = 3, c n = 5 The effective potential Vt (z) (blue
solid lines) and the zero mode t0(z) (red dashed lines) of the tensor
perturbation for brane model 1. The parameters are set k = 1, and
n = 1 in a, n = 3 in b, n = 5 in c

After redefining the extra dimension coordinate dz = 1
a(z)dy

and the pertubation hμν = a(z)− 3
2 h̃μν , we get the equation

of h̃μν :

�(4)h̃μν + ∂2
z h̃μν − ∂2

z a
3
2

a
3
2

h̃μν = 0. (29)

Considering the decomposition h̃μν = εμν(xγ )ei pλxλ
t (z),

where the polarization tensor εμν satisfies the TT condition
ημν∂μελν = 0 and ημνεμν = 0, we obtain the Schrödinger-
like equation for t (z):

− ∂2
z t (z) + Vt (z)t (z) = m2

t t (z), (30)

with the potential Vt (z) given by

Vt (z) = ∂2
z a

3
2

a
3
2

. (31)

Now we can see that the equation of the tensor perturbation in
mimetic gravity is the same as that in general relativity. Nev-
ertheless, the mimetic scalar field generates more types of
thick brane, which could lead to new type of potential of the
tensor perturbation. We present the potentials of the tensor
perturbations for three models in Figs. 3, 4 and 5, respec-
tively. In model 1, the potential is a volcano-like potential.
As the parameter n increases, the potential well become nar-
rower and deeper. In model 2, as the parameter b increases,
the single brane splits into three sub-branes, and the volcano-
like potential changes to a tri-well potential, and at last splits
into three independent volcano-like potentials. In model 3, as
the parameter b increases, the single potential well splits into
a double well, and then becomes two volcano-like potentials

(a) b= 0.5 (b) b= 3

(c) b= 8

Fig. 4 a b = 0.5, b b = 3, c b = 8. The effective potential Vt (z) (blue
solid lines) and the zero mode t0(z) (red dashed lines) of the tensor
perturbation for brane model 2. The parameters are set k = 1, and
b = 0.5 in a, b = 3 in b, b = 8 in c

(a) a= 0.2 (b) b= 0.8

(c) b= 2.5

Fig. 5 a a = 0.2, b b = 0.8, c b = 2.5 The effective potential Vt (z)
(blue solid lines) and the zero mode t0(z) (red dashed lines) of the
tensor perturbation for brane model 3. The parameters are set k = 1,
and a = 0.2 in a, b = 0.8 in b, b = 2.5 in c

with inner structure. For both cases, the distance of the those
wells increases with b.

The zero mode of the tensor perturbation is

t0(z) ∝ a
3
2 (z). (32)

It is easy to verify that the zero modes for the above brane
models are square-integrable and hence are localized around
the brane. Since the zero mode solution t0(z) coincides with
the case in general relativity, the four-dimensional Newtonian
potential can be realized on the brane [37,71]. Similar to the
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RS model, the action of four-dimensional effective gravity is
the four-dimensional Einstein–Hilbert action.

Also Eq. (30) can be factorized as(
−∂z + ∂za

3
2

a
3
2

) (
∂z + ∂za

3
2

a
3
2

)
t (z) = m2

t t (z). (33)

It is clear that there is no tensor tachyon mode, thus the brane
is stable against the tensor perturbation.

4 Scalar perturbation

In this section, we study the scalar perturbation. The per-
turbed metric is

ds2 = a2(z)
[
(1 + 2ψ)ημνdxμdxν + (1 + 2Φ)dz2

]
. (34)

From Eq. (3) we have

RMN + 2λ∂Mφ∂Nφ − 2

3
gMN (λU + V ) = 0. (35)

The perturbation of Eq. (35) reads

δRμν − 4

3
(∂za)2ψ(λU + V )ημν

−2

3
a2ημν

(
λ

∂U

∂φ
δφ + ∂V

∂φ
δφ

)
= 0, (36)

δRμ5 + 2λ∂zφ∂μδφ = 0, (37)

δR55 + 4λ∂zφδ∂zφ − 2

3
a2

(
λ

∂U

∂φ
δφ + ∂V

∂φ
δφ

)

−4

3
a2(λU + V )Φ = 0, (38)

where the components of δRMN are given by

δRμν = −2∂μ∂νψ − ∂μ∂νΦ − ημν�(4)ψ − ημν∂
2
z ψ,

+
(

4(∂za)2

a2 + 2∂2
z a

a

)
(Φ − ψ)ημν

+∂za

a
(∂zφ − 7∂zψ)ημν, (39)

δRμ5 = ∂μ

(
3∂za

a
Φ − 3∂zψ

)
, (40)

δR55 = −�(4)Φ − 4∂2
z ψ + 4∂za

a
(∂zφ − ∂zψ). (41)

On the other hand, the perturbation of Eq. (5) gives

2

a2 ∂zφ∂zδφ − 2

a2 (∂zφ)2Φ = ∂U

∂φ
δφ, (42)

from which it follows that

Φ = ∂zδφ

∂zφ
− a2

2(∂zφ)2

∂U

∂φ
δφ. (43)

From the off-diagonal part of Eq. (39) we get the simple rela-
tion between the scalar modes Φ and ψ in the perturbation

of the metric:

Φ = −2ψ. (44)

Substituting Eqs. (43) and (44) into Eq. (37) and integrating
with respect to the four-dimensional coordinates xμ, we get
the master equation of the scalar perturbation δφ

−3

2
∂2
z δφ + 3

4

(
a2

∂zφ

∂U

∂φ
+ 2∂2

z φ

∂zφ
− 4∂za

a

)
∂zδφ

+
[

3a∂za

∂zφ

∂U

∂φ
+ 2λ(∂zφ)2 + 3

4
a2

(
∂2U

∂φ2 − 2
∂U

∂φ

∂2
z φ

(∂zφ)2

)]

δφ = 0. (45)

To simplify this equation, we have to use the background
Eqs. (3)–(5) in the coordinate system (xμ, z),

3a′′

a3 = −V (φ), (46)

6a′2

a2 + a2V (φ) + 2a2λU (φ) = 0, (47)

a2
(

λU ′(φ) + ∂V

∂φ

)
+ 6λ∂zφ

a′

a
+ 2λ′∂zφ

+2λ∂2
z φ = 0, (48)

1

a2 (∂zφ)2 = U (φ), (49)

and redefine δφ(xμ, z) = (∂zφ)
3
2

a2 s(z)δφ(xμ). Then Eq. (45)
turns to

− ∂2
z s(z) + Vs(z)s(z) = 0, (50)

with the effective potential Vs(z) given by

Vs(z) = 2(∂za)2 − a∂2
z a

a2 + −(∂2
z φ)2 + 2∂zφ∂3

z φ

4(∂zφ)2 . (51)

The corresponding scalar perturbation mode in the metric is
given by Eqs. (43) and (44).

Note that there is no term of the form �4δφ in Eq. (45),
and hence there is no term of the form m2

s s(z) in Eq. (50),
which is consistent with the cosmological scalar perturbation
in mimetic gravity [4]. This implies that the scalar perturba-
tions do not propagate on the brane. Thus there is no tachyon
scalar mode, and the brane is stable under the linear scalar
perturbations.

The effective potential Vs(z) for the three models are
shown in Figs. 6, 7 and 8, respectively. From these figures,
it can be seen that, for model 1, there are two wells for the
parameter n = 1 and n = 3, while when n = 5 there are
three, and the potential is divergent at the origin; for model
2, the potential turns from double-well type into four sub-
wells as the parameter b increases; for model 3, the potential
remains of double-well type as the parameter b increases.
Furthermore, for all the three brane models, the potential

123



45 Page 6 of 8 Eur. Phys. J. C (2018) 78 :45

(a) n= 1 (b) n= 3

(c) n= 5

Fig. 6 a n = 1, b n = 3, c n = 5. The effective potential Vs(z) for
model 1. The parameters are set k = 1, v = 1 and n = 1 in a, n = 3 in
b, n = 5 in c

(a) b= 0.5 (b) b= 3

(c) b= 8

Fig. 7 a b = 0.5, b b = 3, c b = 8. The effective potential Vs(z) for
model 2. The parameters are set k = 1, v = 1 and b = 0.5 in a, b = 3
in b, b = 8 in c

approaches 0− at infinity, hence the scalar perturbations are
not localized on the brane and would not lead to the “fifth
force”.

5 Conclusion

In this work, we investigated three kinds of thick branes
generated by the mimetic scalar field, which represents the
isolated conformal degree of freedom. Since we are free to
choose arbitrary potentials V (φ) and U (φ), it is possible to
construct abundant kinds of thick brane models in mimetic

(a) a= 0.2 (b) b= 0.8

(c) b= 2.5

Fig. 8 a a = 0.2, b b = 0.8, c b = 2.5. The effective potential Vs(z)
of the model 3. The parameters are set k = 1, v = 1, n = 1, and a = 0.2
in a, b = 0.8 in b, b = 2.5 in c

gravity. In the first brane model, we get a single brane with
a double-kink scalar field. In the last two brane models,
the branes split into many sub-branes as the parameter b
increases, and the potentials Vt (z) and Vs(z) of the extra parts
t (z) and s(z) of the tensor and scalar perturbations also split
into multi-wells. We also showed that the branes are stable
under the tensor perturbations and the Newtonian potentials
can be realized on the branes. The scalar perturbations do not
propagate on the brane, which is quite different from other
brane models. By analyzing the potential Vs(z) we conclude
that the scalar perturbations s(z) for the three models are not
localized on the brane.

It is also interesting to consider the braneworld in extended
mimetic gravities. Note that in general ghost field may exist
in higher-order derivative mimetic gravity, for instance, the
mimetic f (R) gravity [72]. It is possible to eliminate the
ghost in the f (R) gravity with a Lagrange multiplier con-
straint [72].

Furthermore, models 2 and 3 can be extended into the case
of brane array. The inner structure of the brane may lead to
new phenomenon in the resonance of the tensor perturbation
and the localization of matter fields. We will consider this
issue in the future work.
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