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Abstract We present an algorithm to generalize a plethora
of well-known solutions to Einstein field equations describ-
ing spherically symmetric relativistic fluid spheres by relax-
ing the pressure isotropy condition on the system. By suit-
ably fixing the model parameters in our formulation, we
generate closed-form solutions which may be treated as
an anisotropic generalization of a large class of solutions
describing isotropic fluid spheres. From the resultant solu-
tions, a particular solution is taken up to show its physical
acceptability. Making use of the current estimate of mass and
radius of a known pulsar, the effects of anisotropic stress on
the gross physical behaviour of a relativistic compact star is
also highlighted.

1 Introduction

In relativistic astrophysics, there has been a growing interest
in studying the physical behaviour of stellar objects com-
posed of anisotropic fluid distributions, i.e., objects where
the radial component of pressure (pr ) is not equal to its trans-
verse component (pt ). A Newtonian approach is sufficient
to study stellar structures in a comparatively low-density
regime. However, in the case of compact stellar structures
in the high-density regime, a general relativistic treatment is
necessary, and the impact of anisotropy cannot be neglected
while modelling such systems, see for example [1–4] and
references therein. Ruderman [5] and Canuto [6] observed
that material distribution in the highly dense core of a com-
pact star might exhibit unequal stresses. Bowers and Liang
[7] have extensively analyzed the sources of anisotropy at the
stellar interior.

a e-mail: rsharma@associates.iucaa.in

Pressure anisotropy in compact star may arise due to var-
ious factors which include phase transitions, pion condensa-
tion [8–10], the existence of a solid core or presence of a type-
3A superfluid [11], strong electromagnetic fields [12–14],
slow rotation of fluids [15], etc. Ivanov [16] has pointed out
that influences of shear and/or electromagnetic field on self-
bound systems can be interpreted by incorporating a gross
anisotropic parameter into the system of field equations. Self-
bound systems composed of scalar fields, i.e., the ‘boson
stars’ are naturally anisotropic [17]. Similarly, wormholes
[18] and gravastars [19,20] are also structurally anisotropic
systems. The shearing motion of the fluid is another source
of anisotropy in self-gravitating objects [21–23]. The origin
and effects of local anisotropy on astrophysical objects have
been studied in details in [24,25]. An exhaustive review of
the subject may be found in [26].

The objective of the current investigation is to provide a
new algorithm to generate anisotropic analogues of a large
family of well-known solutions describing self-gravitating
systems in equilibrium. An algorithm to generate anisotropic
solutions from a seed isotropic solution was initiated by
Chaisi and Maharaj [27]. Herrera et al. [28] had extended
the Lake [29] algorithm to the case of locally anisotropic
fluids to study spherically symmetric relativistic stars. Her-
rera and Barreto [2] had set up a general formalism to model
relativistic polytropic stars with anisotropic pressure. In our
formalism, we have shown that it is possible to generalize
a large class of well-known exact isotropic stellar solutions
by extending the models to the case of an anisotropic matter
distribution. Most importantly, the resultant solution fulfils
the criteria of physical acceptability.

The paper has been organized as follows: In Sect. 2, the
Einstein field equations for a static spherically symmetric
anisotropic fluid distribution have been laid down. An equiv-
alent form of the field equations has been obtained by making
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use of the Durgapal and Bannerji [30] transformation equa-
tions. In Sect. 3, for a particular choice of the gtt compo-
nent of the gravitational potential together with a prescribed
form of the anisotropic parameter, a formalism to has been
developed to generate analytic solutions in terms elementary
functions. In Sect. 4, we have shown how a plethora of phys-
ically reasonable isotropic stellar solutions can be regained
by suitable parametrization of our general class of solutions
describing an anisotropic matter distribution. In Sects. 5 and
6, we have analyzed physical acceptability and implications
of our class of solutions on the gross physical behaviour of
relativistic compact stars. Some concluding remarks have
been made in Sect. 7.

2 Einstein field equations

To describe the interior of a static and spherically symmet-
ric relativistic star, we write the line element in coordinates
(xa) = (t, r, θ, φ) as

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2). (1)

For an anisotropic matter distribution, we choose the energy-
momentum tensor in the form

T i
j = diag(−ρ, pr , pt , pt ). (2)

The energy density ρ, the radial pressure pr and the tangen-
tial pressure pt are measured relative to the comoving fluid
velocity ui = e−νδi0. For the line element (1), the indepen-
dent set of Einstein field equations are then obtained as

ρ = 1

r2

[
r(1 − e−2λ)

]′
, (3)

pr = − 1

r2

(
1 − e−2λ

)
+ 2ν′

r
e−2λ, (4)

pt = e−2λ

(
ν′′ + ν′2 + ν′

r
− ν′λ′ − λ′

r

)
, (5)

where a prime (′) denotes differentiation with respect to r . In
the field equations (3)–(5), we have assumed 8πG = 1 = c.
The system of equations determines the behaviour of the
gravitational field of an anisotropic imperfect fluid sphere.
The mass contained within a radius r of the sphere is defined
as

m(r) = 1

2

∫ r

0
ω2ρ(ω)dω. (6)

A different but equivalent form of the field equations can be
obtained if we introduce the transformation [30]

x = Cr2, Z(x) = e−2λ(r) and A2y2(x) = e2ν(r), (7)

where A and C are arbitrary constants. Under the transfor-
mation (7), the system of Eqs. (3)–(5) take the following
form

ρ

C
= 1 − Z

x
− 2Ż , (8)

pr
C

= 4Z
ẏ

y
+ Z − 1

x
, (9)

pt = pr + Δ (10)

0 = Ż
(

2x2 ẏ + xy
)

+ Z(4x2 ÿ − y)

+
(

1 − Δx

C

)
y, (11)

where Δ = pt − pr is the measure of anisotropy and dots
denote differentiation with respect to the variable x . The
anisotropic stress will be directed outward (repulsive) when
pt > pr (i.e., Δ > 0) and inwards when pt < pr (i.e.,
Δ < 0).

3 Method of generating analytic solutions

The system (8)–(11) comprises four equations in the six
unknowns namely, Z , y, ρ, pr , pt and Δ. Therefore, we have
the freedom to choose any two variables to integrate the sys-
tem. In our formalism, rather than assuming an equation of
state (EOS) for the matter composition, we assume a partic-
ular form of y together with a prescribed anisotropy Δ which
are well-behaved and can provide solutions to Eq. (11). We
choose the metric function y as

y = (1 + axn)m (12)

where a,m and n are real numbers. Substitution of Eq. (12)
in (11) yields

Ż + f (x)Z −
(

Δx
C − 1

)
(1 + axn)

x[1 + (2mn + 1)axn] = 0, (13)

f (x) = 1

x(1 + axn)[1 + (2mn + 1)axn]
×

[
(4mn(mn − 1) − 1)(axn)2

+(4mn(n − 1) − 2)axn − 1
]
.

Using partial fractions, we write Eq. (13) in the form

Ż + g(x)Z =
(

Δx
C − 1

)
(1 + axn)

x[1 + (2mn + 1)axn] ,

g(x) =
[
− 1

x
+ 2n(m − 1)axn−1

(1 + axn)

+2n[2m(n − 1) + 1]axn−1

[1 + (2mn + 1)axn]
]

, (14)
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whose solution can be expressed in integral form as

Z = x

(1 + axn)2(m−1)[1 + (2mn + 1)axn] 2[2m(n−1)+1]
2mn+1

×
[∫ (

Δ

Cx
− 1

x2

)
(1 + axn)(2m−1)

×[1 + (2mn + 1)axn]1− 4m
2mn+1 dx − B

]
, (15)

where B is the constant of integration. At this stage, we spec-
ify the anisotropy Δ. We assume the radial fall-off profile of
the anisotropic parameter in the form

Δ = αCax

(1 + axn)(2m+1)[1 + (2mn + 1)axn]1− 4m
2mn+1

, (16)

where the constant α specifies the extend of anisotropy. This
particular choice ensures that anisotropy vanishes at the cen-
ter of the star. Substitution of (16) into (15) yields

Z = x

(1 + axn)2(m−1)[1 + (2mn + 1)axn] 2[2m(n−1)+1]
2mn+1

×
[∫ (

α

(1 + axn)2 − l(x)

)
dx − B

]
,

l(x) = (1 + axn)(2m−1)[1 + (2mn + 1)axn]1− 4m
2mn+1

x2 ,

(17)

which solves the system. It should be mentioned here that in
an earlier work Herrera et al. [28] had shown that all static
spherically symmetric anisotropic solutions to Einstein field
equations could be obtained by making use of two generat-
ing functions. In our case, it turns out that the solution (17)
can be obtained as a special case by choosing the following
generating functions

z(r) = 1

r
+ 2mnaCnr2n−1

1 + aCnr2n ;

Π(r) = −8παCax

(1 + axn)(2m+1)[1 + (2mn + 1)axn]1− 4m
2mn+1

in Eq. (10) of Ref. [28].
We are now in a position to integrate Eq. (17) for specified

values of m and n. Interestingly, it turns out that the solutions
can also be expressed in terms of elementary functions for
particular values ofm and n as will be shown in the following
section.

4 Anisotropic models

It is interesting to note that an anisotropic generalization
of a large family of physically reasonable isotropic stellar
models studied earlier can be regained by suitably fixing
the values of m and n. Our motivation will be to generate

new solutions only for those values of m and n which would
allow us to regain the isotropic analogues of solutions which
have been shown to be well-behaved and physically accept-
able [31]. It is remarkable that the new class of solutions,
as shown below, contains a large class of known solutions
which have been developed to study relativistic isotropic fluid
spheres.

4.1 Case I: m = 1
2 and n = 1

By setting m = 1
2 and n = 1 in Eqs. (17) and (16), we obtain

Z = (1 + ax)(1 − Bx)

(1 + 2ax)
− αx

(1 + 2ax)
, (18)

Δ = αCax

(1 + ax)2 , (19)

so that the line element (1) takes the form

ds2 = −A2(1 + aCr2)dt2

+
[
(1 + aCr2)(1 − BCr2)

(1 + 2aCr2)
− αCr2

(1 + 2aCr2)

]−1

dr2

+r2(dθ2 + sin2 θdφ2). (20)

4.1.1 Anisotropic generalization of Tolman IV Model

In (20), if we set a = 1
D2 , B = 1

R2 and C = 1, the line
element (20) reduces to

ds2 = −A2
(

1 + r2

D2

)
dt2

+
⎡
⎣

(
1 + r2

D2

) (
1 − r2

R2

)
(

1 + 2 r2

D2

) − αr2
(

1 + 2 r2

D2

)
⎤
⎦

−1

dr2

+r2(dθ2 + sin2 θdφ2). (21)

Note that for zero anisotropy Δ = 0 (i.e., α = 0), the line
element (21) reduces to

ds2 = −A2
(

1 + r2

R2

)
dt2 + 1 + 2 r2

D2(
1 + r2

D2

) (
1 − r2

R2

)dr2

+r2(dθ2 + sin2 θdφ2), (22)

which is the well known Tolman IV solution [32]. Thus, the
metric (21) turns out to be an anisotropic generalization of
Tolman IV solution. This solution was shown to satisfy all
the physical requirements of a realistic star [31] and pre-
viously used by Tolman [32] to study relativistic compact
stars with isotropic matter distribution. It is to be noted that
an anisotropic generalization of the Tolman IV solution was
obtained earlier by Cosenza et al. [33]. While in the earlier
approach the generalization was done by assuming a specific
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density profile (or equivalently making an ansatz for the met-
ric potential grr ), in our case, the metric potential grr gets
determined for a specific form of the metric potential gtt .

4.1.2 Anisotropic generalization of de-Sitter solution

For a = −1, A = 1, B = 2 and C = 1
R2 , the line element

(20) becomes

ds2 = −
(

1 − r2

R2

)
dt2

+
⎡
⎣

(
1 − r2

R2

)
− α r2

R2(
1 − 2 r2

R2

)
⎤
⎦

−1

dr2

+ r2(dθ2 + sin2 θdφ2). (23)

Now, if we set α = 0 (i.e., Δ = 0), the metric reduces to the
familiar de-Sitter solution

ds2 = −
(

1 − r2

R2

)
dt2 +

(
1 − r2

R2

)−1

dr2

+ r2(dθ2 + sin2 θdφ2), (24)

which models an isotropic universe dominated by dark
energy which is, in general, interpreted in terms of a cos-
mological constant.

4.1.3 Anisotropic generalization of Einstein universe

For a = 0, B = 1 and C = 1
R2 , using Eq. (20), we obtain

ds2 = −A2dt2 +
(

1 − r2

R2 − α
r2

R2

)−1

dr2

+ r2(dθ2 + sin2 θdφ2). (25)

For vanishing anisotropy (α = 0), the metric reduces
to the isotropic Einstein universe model described by the
metric

ds2 = −A2dt2 +
(

1 − r2

R2

)−1

dr2 + r2(dθ2 + sin2 θdφ2).

(26)

In this case, the metric corresponds to a matter domi-
nated Friedmann model with zero curvature in which the
universe will continue to expand forever with the right
amount of energy provided during the time of the Big-
bang.

4.2 Case II: m = n = 1

4.2.1 Anisotropic generalization of Korkina and Orlyanskii
solution III

By setting m = n = 1 and using Eqs. (17) and (16), we
obtain

Z = 1 − Bx(1 + 3ax)−2/3

−αx(1 + ax)−1(1 + 3ax)−2/3, (27)

Δ = αCax(1 + 3ax)1/3

(1 + ax)3 , (28)

so that the line element (1) takes the form

ds2 = −A2(1 + aCr2)2dt2 +
[
1−BCr2(1 + 3aCr2)−2/3

−αCr2(1 + aCr2)−1(1 + 3aCr2)−2/3
]−1

dr2

+ r2(dθ2 + sin2 θdφ2). (29)

Now, for an anisotropic sphere (α = 0), if we set B = 0 and
C = 1, the metric (29) reduces to

ds2 = −A2(1+ar2)2dt2+dr2+r2(dθ2+sin2 θdφ2), (30)

which is the Korkina and Orlyanskii solution III [34]. Con-
sequently, the metric (29) is a generalization of the solution
of Korkina and Orlyanskii [34].

4.3 Case III: m = 3
2 and n = 1

4.3.1 Anisotropic generalization of Heintzmann IIa solution

When m = 3
2 and n = 1, using Eqs. (17) and (16), we obtain

Z = 2 − ax − 2Bx(1 + 4ax)−1/2

2(1 + ax)

−αx(1 + 4ax)−1/2

(1 + ax)2 , (31)

Δ = αCax
√

1 + 4ax

(1 + ax)4 . (32)

Now, if we set B = 3aC/2, Eq. (31) takes the form

Z = 1 − 3ax

2

[
1 + c(1 + 4ax)−1/2

1 + ax

]
− αx(1 + 4ax)−1/2

(1 + ax)2 ,

(33)

123



Eur. Phys. J. C (2018) 78 :31 Page 5 of 9 31

and consequently the metric (1) gets the form

ds2 = −A2(1 + ar2)3dt2 +
(

1 − 3ar2

2

×
[

1 + c(1 + 4ar2)−1/2

1 + ar2

]

−αr2(1 + 4ar2)−1/2

(1 + ar2)2

)−1

dr2

+r2(dθ2 + sin2 θdφ2), (34)

where we have set C = 1. The above metric reduces to
Heintzmann IIa [35] solution

ds2 = −A2(1 + ar2)3dt2

+
(

1 − 3ar2

2

[
1 + c(1 + 4ar2)−1/2

1 + ar2

])−1

dr2

+r2(dθ2 + sin2 θdφ2), (35)

when α = 0.

4.4 Case IV: m = 2 and n = 1

4.4.1 Anisotropic generalization of Durgapal IV Model

For m = 2 and n = 1, using Eqs. (17) and (16), we obtain

Z = 7 − 10ax − a2x2

7(1 + ax)2 − Bx

(1 + ax)2(1 + 5ax)2/5

− αx

(1 + ax)3(1 + 5ax)2/5
, (36)

Δ = αCax(1 + 5ax)3/5

(1 + ax)5
, (37)

and consequently, the line element (1) takes the form

ds2 = −A2(1 + aCr2)4dt2 +
[

7 − 10aCr2 − a2C2r4

7(1 + aCr2)2

− BCr2

(1 + aCr2)2(1 + 5aCr2)2/5

− αCr2

(1 + aCr2)3(1 + 5aCr2)2/5

]−1

dr2

+r2(dθ2 + sin2 θdφ2). (38)

Now, if we set a = 1 and α = 0, we regain the Durgapal
IV[36] metric

ds2 = −A2(1 + Cr2)4dt2 +
[

7 − 10Cr2 − C2r4

7(1 + Cr2)2

− BCr2

(1 + Cr2)2(1 + 5Cr2)2/5

]−1

dr2

+r2(dθ2 + sin2 θdφ2). (39)

4.5 Case V: m = 5
2 and n = 1

4.5.1 Anisotropic generalization of Durgapal V Model

For m = 5
2 and n = 1, using Eqs. (17) and (16) we obtain

Z =
1 − ax(309+54ax+8a2x2)

112 − Bx
(1+6ax)1/3

(1 + ax)3

− αx

(1 + ax)4(1 + 6ax)1/3 , (40)

Δ = αCax(1 + 6ax)2/3

(1 + ax)6 , (41)

and subsequently the line element (1) takes the form

ds2 = −A2(1 + aCr2)5dt2

+
⎡
⎣1 − aCr2(309+54aCr2+8a2C2r4)

112 − BCr2

(1+6aCr2)1/3

(1 + aCr2)3

− αCr2

(1 + aCr2)4(1 + 6aCr2)1/3

⎤
⎦

−1

dr2

+ r2(dθ2 + sin2 θdφ2). (42)

Obviously, the line element (42) reduces to Durgapal V [36]
solution if we set a = 1 and α = 0.

4.6 Case VI: m = 1
4 and n = 1

4.6.1 Anisotropic generalization of Durgapal et al. [37]
stellar model

For m = − 1
4 and n = 1, using Eqs. (17) and (16), we obtain

Z = u(x)

(2 + ax)4 , (43)

Δ = 8αCax√
1 + ax(2 + ax)3

,

u(x) = −16x(1 + ax)3/2(B(1 + ax) + α)

+ 4(1 + ax)2(4 + 4ax − a2x2), (44)

so that the line element (1) takes the form

ds2 = − A2

√
1 + aCr2

dt2

+ (2 + aCr2)4

v(x)
dr2

+ r2(dθ2 + sin2 θdφ2),

v(x) = −16Cr2(B(1 + aCr2) + α)(1 + aCr2)3/2

+ 4(1 + aCr2)2(4 + 4aCr2 − a2C2r4). (45)

By setting a = −1 and α = 0, the above metric can be
reduced to the Durgapal et al. [37] stellar model.
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5 Physical acceptability

In the previous section, we have presented an algorithm to
generate a large class of anisotropic solutions and showed
that many well-known exact solutions may be regained by
suitably fixing the model parameters in this formulation. To
check physical acceptability of our class of solutions, we
consider a particular solution (case I). The variables in this
case are obtained as

e2ν = A2(1 + ax), (46)

e2λ = (1 + 2ax)

(1 + ax)(1 − Bx) − αx
, (47)

ρ

C
= (a + α)(3 + 2ax) + B[3 + ax(7 + 6ax)]

(1 + 2ax)2 , (48)

pr
C

= a(1 + ax) − α(1 + 3ax) − B[1 + ax(4 + 3ax)]
(1 + ax)(1 + 2ax)

,

(49)

pt = pr + Δ, (50)
Δ

C
= αax

(1 + ax)2 . (51)

The physical quantities are expressed in simple elementary
functions which facilitates a detailed study of the physical
behaviour of the star. Most importantly, the solution con-
tains an ‘anisotropic switch’ α which can be conveniently
used to investigate the impact of anisotropy. Another inter-
esting feature of our solution is that the solution provides
a barotropic equation of state (EOS) pr = pr (ρ) which is
obtained explicitly in the form

pr
C

= 1

8

[
24α(3B + 2ρ̃) + β(a − 7α − 2B − ρ̃)

a + α − 2B − ρ̃

+ 2Bβ

2(a + α) − B
+ 14α − 2a − 13B

]
, (52)

where we have used the relation

ρ̃ = ρ

C
and β = √[2(a + α) − B][2(a + α) − 23B + 16ρ̃].

We would like to stress here that a barotropic EOS is generally
difficult to extract from an exact solution of field equations.
It is not so in our case.

Let us now analyze the physical acceptability of our solu-
tion:

1. In our model, we have (e2ν(r))′r=0 = (e2λ(r))′r=0 = 0 and
e2ν(0) = A2, e2λ(0) = 1; these imply that the metric is
regular at the centre r = 0.

2. Since ρ(0) = 3C(a + B + α) and pr (0) = pt (0) =
C(a − B − α), the energy density, radial pressure and
tangential pressure will be non-negative at the centre if we
choose the parameters satisfying the conditiona > B+α.

3. The condition pr (r = s) = 0 determines the boundary
of the star

s =
√
a − (4B + 3α) +

√
(a + 2B)2 − 6(a − 2B)α + 9α2

6aBC
.

4. The interior solution (20) should be matched to the exte-
rior Schwarzschild metric

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+r2(dθ2 + sin2 θdφ2), (53)

across the boundary of the star r = s, where M is the
total mass of the sphere which can be obtained directly
from Eq. (6) as

M = m(s) = Cs3[a + α + B(1 + aCs2)]
2(1 + 2aCs2)

.

Matching of the line elements (20) and (53) at the bound-
ary r = s yields

(
1 − 2M

s

)
= (1 + aCs2)(1 − BCs2)

(1 + 2aCs2)

− αCs2

(1 + 2aCs2)
, (54)

(
1 − 2M

s

)
= A2(1 + aCs2). (55)

Making use of the junction conditions, the constant A is
determined as

A2 =
√

(a+2B)2−6(a−2B)α + 9α2 + 2B + 3α − a

4a
.

5. The gradient of density, radial pressure and tangential
pressure are respectively obtained as

dρ

dr
= −2ac2[2(a + α) + B]r(5 + 2aCr2)

(1 + 2aCr2)3 , (56)

dpr
dr

= 2aC2r

(1 + aCr2)2(1 + 2aCr2)2

×
[
−(2a + B)(1 + aCr2)2

+2aCr2(2 + 3aCr2)α
]
, (57)

dpt
dr

= 2aC2r

(1 + aCr2)2(1 + 2aCr2)2

×
[
−(2a + B)(1 + aCr2)3

+(1 + aCr2(7 + 2aCr2(5 + aCr2)))α
]
. (58)
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The decreasing nature of these quantities is shown graph-
ically.

6. Within a stellar interior, it is expected that the speed of
sound should be less than the speed of light i.e., 0 ≤
dpr
dρ

≤ 1 and 0 ≤ dpt
dρ

≤ 1. In our model, we have

dpr
dρ

= 1

(1 + aCr2)2(5 + 2aCr2)(2a + B + 2α)

×(1 + 2aCr2)
[
(2a + B)(1 + aCr2)2

−2aCr2(2 + 3aCr2)α
]
, (59)

dpt
dρ

= 1

(1 + aCr2)3(5 + 2aCr2)(2a + B + 2α)

×(1 + 2aCr2)
[
(2a + B)(1 + aCr2)3

−(aCr2(7 + 2aCr2(5 + aCr2)))α
]
. (60)

By choosing the model parameters appropriately, we
have shown that this requirement is also satisfied in our
model.

7. The fulfillment of energy conditions for an anisotropic
fluid i.e., ρ − pr − 2pt ≥ 0 and ρ + pr + 2pt ≥ 0 are
also shown to be satisfied in this model.

8. Finally, we have calculated the adiabatic index

Γ = ρ + p

p

dp

dρ
, (61)

for a particular configuration. Bondi’s [38,39] analyses
show that a Newtonian isotropic sphere will be in equi-
librium if the adiabatic index Γ > 4/3 which, however,
gets modified for a relativistic anisotropic fluid sphere.
Subsequently, the issue relating to stability of a relativis-
tic anisotropic spherical body was taken up by many
investigators (see for example [40–42] and references
therein). Based on these results, it can be concluded that
an anisotropic fluid sphere will be stable if the following
condition is fulfilled:

Γ >
4

3
−

[
4

3

(pr − pt )

|pr ′|r
]

max
. (62)

In Figs. 8 and 9, we have plotted Γ for α = 0.5 and
α = 0, respectively. The dashed lines in the plots cor-
respond to values of the right hand side of Eq. (62). We
note that in the case of α = 0.5, the term within bracket
[ ] takes its maximum value at the centre and decreases
radially outward. Consequently, the above condition is
satisfied throughout the star. In the case of an isotropic
configuration (α = 0), the right hand side of Eq. (62)
remains constant (4/3) throughout the star and it is obvi-

Fig. 1 Density profiles

Fig. 2 Radial pressure profiles

Fig. 3 Tangential pressure profiles

ous from Fig. 9 that the stability requirement is fulfilled
in this case as well.

6 Compatibility with observational data

We examine the physical applicability of our solution by
making use of the values of masses and radii of observed
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Fig. 4 Radial component of sound speed

Fig. 5 Transverse component of sound speed

Fig. 6 Fulfillment of energy condition

pulsars as input parameters. To illustrate the case, we have
considered the data available from the pulsar 4U1820 − 30
whose estimated mass and radius are M = 1.58 M� and
s = 9.1 km, respectively [43]. For these values, we have
determined two sets of constants. For the isotropic case (α =
0), we have obtained A = 0.7375, C = 0.0068, B =
0.2719 and assuming the star to be composed of anisotropic
matter (we have assume α = 0.5) the constants have been
evaluated as A = 0.7375, C = 0.0068, B = −0.1188. Note

Fig. 7 Radial variation of anisotropy

Fig. 8 Radial variation of adiabatic index for α �= 0. The dashed line
corresponds to

Fig. 9 Radial variation of adiabatic index for α = 0

that the parameter a remains free in this model. Making use
of these values, we have shown graphically the nature of all
the physically meaningful quantities in Figs. 1, 2, 3, 4, 5, 6,
7, 8 and 9. The plots show that all the physically meaningful
variables comply with the requirements of a realistic star. In
particular, the figures highlight the effects of anisotropy on
the gross physical behaviour of a compact star.
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7 Conclusions

To summarize, we have developed an algorithm to gener-
ate exact solutions to Einstein field equations for a spheri-
cally symmetric anisotropic star. The most remarkable fea-
ture of our approach is that a large family of previously
developed isotropic stellar solutions can be regained from our
anisotropic family of solutions by suitably fixing the model
parameters in our treatment. It will be interesting to explore
the possibility of generating new class of solutions by choos-
ing sets of values of m and n which have not been considered
in this work. Probing the effects of electromagnetic field on
top of anisotropy is another area which we would also like
to take up in our future investigation and will be reported
elsewhere.
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