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Abstract Based on the studies of confinement of quarks,
we introduce a linear scalar potential into the relativistic
quantum dynamics of a scalar particle. Then we analyze the
linear confinement of a relativistic scalar particle in a Godel-
type spacetime in the presence of a topological defect. We
consider a Godel-type spacetime associated with null curva-
ture, i.e., the Som—Raychaudhuri spacetime, which is char-
acterized by the presence of vorticity in the spacetime. Then
we search for analytical solutions to the Klein—Gordon equa-
tion and analyze the influence of the topology of the cosmic
string and the vorticity on the relativistic energy levels.

1 Introduction

The first solution to Einstein’s equations that considers the
rotation of a homogeneous mass distribution with cylindrical
symmetry was given by Godel [1]. This important and his-
torical solution has a great interest since it was the first and
the best-known solution that describes a model of universe
where causality is violated [2]. This solution is characterized
by the possibility of closed timelike curves (CTCs). Hawk-
ing [3] studied the physical properties of the presence of
CTCs in this geometry, and conjectured that the presence of
CTCs is physically inconsistent. Rebougas et al. [4—6] inves-
tigated the Godel-type solutions and the possible sources of
the model in the context of general relativity. They showed
that the Godel solution can be generalized to cylindrical coor-
dinates. Besides, Rebougas et al. [4—6] analyzed the problem
of causality and then established three classes of solutions
that are characterized by the following properties: (i) solu-
tions with no CTCs; (ii) solutions with a sequence of causal
regions and not causal regions that alternates with each other;
(iii) solutions characterized by only one non-causal region.
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In recent years, investigations of relativistic quantum
effects on scalar and spin-half particles in Godel-type space-
times have been addressed by several authors. In Ref. [7],
the first study of this problem was made, where the Klein—
Gordon and Dirac equations in the Godel-type spacetimes
with positive and negative curvatures were investigated, and
also in a flat Godel-type spacetime. Further, the investiga-
tion of the relationship between the quantum dynamics of
the scalar quantum particle in background of general rela-
tivity with Godel solutions and the Landau levels in the flat,
spherical and hyperbolic spaces was performed by Drukker
et al. [8]. They analyzed the similarity between the spec-
trum of the energy of a scalar quantum particle in these class
of Godel-type spacetimes and the Landau levels in curved
backgrounds. This similarity has also been observed by Das
and Gegenberg [9] by studying the Klein—-Gordon equation
in the Som—Raychaudhuri spacetime (Godel flat solution).
They also compared with the Landau levels in the flat space.
Recently, the scalar quantum particle has been investigated in
the class of the Godel solutions with a cosmic string passing
through the spacetime [10].

In this work, we consider a Godel-type spacetime in the
presence of a topological defect, and then analyze the linear
confinement of a relativistic scalar particle. In recent years,
several authors have investigated the physical properties of a
series of backgrounds with a cosmic string. For example, the
Schwarzschild spacetime with a cosmic string [11,12], the
Kerr spacetime with a cosmic string [13], Godel-type space-
time with a cosmic string [10] and the cosmic string in AdS
space [14]. Furthermore, it is worth mentioning the studies
of a scalar quantum particle confined in two concentric thin
shells in curved spacetime backgrounds with a cosmic string
[15], the Klein—Gordon oscillator in a Som—Raychaudhuri
spacetime with a cosmic dispiration [16], and fermions in a
family of Godel-type solutions with a cosmic string [17]. Itis
worth to observe that the investigation of the influence of the
topology of the cosmic string spacetime on the linear confine-
ment of the scalar particle made in this work can be useful
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in studying the effects of disclinations (an analogue of the
cosmic string) on condensed matter systems. An example is
the quantum Hall effect in the presence of rotation and discli-
nation, where a linear interaction is considered. Therefore,
in this work, we shall deal with a Godel-type spacetime with
null curvature, i.e., with the Som—Raychaudhuri spacetime
[18]. We also consider the presence of the cosmic string.
Thereby, we search for relativistic bound states solutions,
where we discuss the influence of the spacetime background
on the relativistic energy levels.

This paper is organized as follows: in Sect. 2, we introduce
the Som—Raychaudhuri spacetime with the cosmic string.
Then we obtain the Klein—Gordon equation that describes the
confinement of a scalar particle to a linear scalar potential.
We show that we can solve the Klein—Gordon equation ana-
lytically, and thus we discuss the influence of the spacetime
background on the relativistic energy levels of the system; in
Sect. 3, we present our conclusions.

2 Linear confinement in the Som—Raychaudhuri
spacetime with a cosmic string

In this work, we are interested in a particular case of the
Godel-type solutions. We wish to analyze the linear con-
finement of a scalar particle in a Godel-type spacetime by
searching for relativistic bound states. This particular solu-
tion is called the Som—Raychaudhuri spacetime with a the
cosmic string [10,16]. In recent decades, this type of solu-
tion has been used in studies of string theory [19-21]. Thus,
the Som—Raychaudhuri spacetime with a cosmic string is
described by the line element (with ¢ =7 = 1):

2
ds? = — (dt +aQ r2d<p) + Ol2r2d(02 +dr?+dz2. (D)

The parameter €2 characterizes the vorticity of the spacetime,
while the parameter « characterizes the cosmic string. In
short, the parameter « is associated with the deficit of angle
a = (1 — 4)), where A is the mass per unit length of the
cosmic string. It has values in the range 0 < o < 1. Observe
that the line element defined above can be written as

ds? = —(dr + A;dx")? + hypdx’dxd )

where the spatial coordinates of the spacetime are represented
by x'. Note that in the case of the Som—Raychaudhuri space-
time, we have the form

ds? = —(dr + Q(ydx — xdy)> + dx? + dy? +dz2,  (3)

where we have used the cartesian coordinates (7, x, y, z)
because itis clearer to observe the similarity. From Eq. (1), we
obtain Ay, = o 2 r2 in cylindrical coordinates. This expres-
sion is analogous to the vector potential that yields a uniform
magnetic field in the z-direction. An interesting property of
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this type of metric is that the geodesics for this spacetime are
circles, which have a physical description similar to Larmor
orbits for an electron that moves in a perpendicular mag-
netic field [8,9]. This analogy also arises from the point of
view of quantum mechanics, where the quantum dynamics
of scalar and spinorial quantum particles in this spacetime
is an analogue of the Landau levels, as observed in Refs.
[8-10,16,17]. We shall discuss this point below.

On the other hand, the linear confinement of quantum par-
ticles has great importance for models of confinement of
quarks [22]. It is worth to point out that the linear scalar
potential has attracted a great interest in atomic and molec-
ular physics [23-29] and in relativistic quantum mechanics
[30-39]. Our objective is to investigate the effects of the back-
ground defined in Eq. (1) on the linear confinement of a rela-
tivistic scalar particle. By following Ref. [40], we introduce
the scalar potential into a relativistic wave equation through
the mass term: M — M + V (r, t), where M is the mass of
the free particle and V (r, ¢) is the scalar potential. Hence,
let us consider the linear scalar potential [22]: V (r) = « r,
where « is a constant. Thereby, the Klein-Gordon equation
that describes the linear confinement of a scalar particle in
the Som—Raychaudhuri spacetime with the cosmic string is
given by

3¢ 19 [ 3 1 9 a\> 9%
S A L _Qr— —_z
o T rar (rar)+<ar8<p r8t> ¢+8z2
—~ (M +kr)¢p=0. “

Observe that this system has the cylindrical symmetry,
therefore, the eigenvalues of the z-component of the angu-
lar momentum operator and the z-component of the linear
momentum operator are conserved quantities. In this way,
we can write the solution to Eq. (4) as ¢ (¢, r, ¢, 2) =
e €1l eir:Zy (1), where | = 0, £1, £2, +3, ... are the
eigenvalues of the z-component of the angular momentum
operator and p, = const are the eigenvalues of the z-
component of the linear momentum operator. In this way,
we obtain the following equation for u (r):

1 2
u"—i——u’—ﬁu—wzrzu—ZMxru
r o?r
2Q1E
+|:52—M2—p§—7i|u20, 5)

where @ = vVQ2E2 + k2. Let us define x = /wr, then Eq.
(5) becomes

1" 1 / l2 2
U+ - — ——su—x u—0xu+pu=0, (6)
X s x

where we have defined the parameters w and § in the above
equation as

2Mic
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N
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Next, we use the appropriate boundary conditions to inves-
tigate the bound states in this problem. It is required that the
regularity of wave function at the origin and the normaliz-
ability at infinity. Then we proceed with the analysis of the
asymptotic behaviour of the radial eigenfunction at origin
and in the infinite. These conditions are necessary since the
wave function must be well-behaved in this limits, and thus,
bound states of the energy for the linear confinement can
be obtained. Note that these limits correspond to the criti-
cal points of Eq. (6). With these conditions, we obtain the
convergence of the wave function at the origin (x — 0) and
at infinity (x — o0). Let us impose the requirement that
u (x) — 0 when x — 0 and x — o0, hence, the solution to
Eq. (7) is given by

2 0
u(x) =x""e"Te 2% H (x), (8)
where H (x) is the solution to the biconfluent Heun equation
[41], which has the form

21|
At
H”—i—|:“ —9—2x:|H/

X

92 0 (% + 1)
+(B+——-2-2]l - H=0. )
4 2x

With the goal of obtaining analytical solutions to Eq. (9),
let us write H (x) = Z?’:O dj x7, then, from Eq. (9), we
obtain the relation

0
dy = = dy, 10
1=5do (10)
and the recurrence relation
. 211
o(2j+3+2L)
djtr = — : i, G
2+ (j+2+2)
(4ﬁ+92—8—%—8j)
— dj. (11

4G +2) (j+2+2)

A polynomial solution to H (x) is achieved when we

impose the requirement that the series terminates. Naturally,

there is a convergence problem in this solution that can be
solved when we impose

8111

4,3+92—8—T=8n; dpy1=0 (n=1,2,3,..).

12)

Hence, there are two conditions that must be satisfied in order
that the series terminates. Note that n = 1,2, 3, ... is the
quantum number associated with the radial modes. From the
condition 48 + 02 —8— % = 8n, we obtain

2Q1

En)— ==& —Cn1 =0, (13)
o

where

cn,,=M2+p§+2w<n+ (14)

7] K>M?
—+1)-—
o 1)
However, if we wish to obtain a polynomial solution to
H (x), for example, a polynomial of first degree (n = 1),
then, from the condition d,,11 = 0, we have d» = 0, and

thus, we obtain the relation

1/3
G, o )
wy, ] = — |13 +2— .
2 o

Equation (15) is obtained by assuming that the parameter «
can be adjusted, and thus, a polynomial of first degree can
be achieved [39,42]. In this way, by substituting Egs. (15)
into (13), we obtain the following second degree algebraic
equation for &1 ;:

15)

2Q1
512,1——a &1.1—C11=0, (16)
where
1/3
, 7 (M3, 17\
Cri=M+p24+2|24— L3428
: o 2 o
M2K12,1
— . (17)

ey

Hence, the solutions to Eq. (16) yield the allowed energies
associated with the radial mode n = 1:

Ql Q22
Eli=—=,/Cli+—5—.
o o

By comparing with the expression for the relativistic
energy level of the ground state (n =1;/=0) in the
Minkowski spacetime discussed in Ref. [39], we see that the
vorticity of the spacetime and the deficit of the angle modify
the relativistic energy level of the ground state. In the Som—
Raychaudhuri spacetime with a cosmic string, the ground
state of the linear confinement of a relativistic scalar parti-
cle has two allowed energies as shown in Eq. (18). Observe
that the topology of the cosmic string modifies the angular
momentum operator and gives an effective angular momen-
tum quantum number lef = //w, i.e., a fractional angular
momentum. Furthermore, with both conditions established
in Eq. (12) satisfied, for n = 1, the function H (x) is given
by a polynomial of first degree; therefore, the wave function
(8) is written in the form

(18)

2 0
up g (x) = xe e~ =8 <1+§x>, (19)

which is associated with the ground state of the system.
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Besides, a particular case is given by taking o« = 1 in Eq.
(18), which yields

E11=Ql+,/C+Q212, (20)

where
1/3
leclz’l
[3+2]]

GJ=Aﬁ+4€+2p+uu< 5

2
M K12,1
- 21

S 23"
(MT [3+2 |1|]>

Therefore, Eq. (20) corresponds to the allowed energies of
the linear confinement of the relativistic scalar particle in the
Som-Raychaudhuri spacetime. In this case, only the vorticity
of the spacetime modifies the ground state energy in contrast
to that discussed in Ref. [39].

Note that, in the limit x = O (i.e., in the absence of the
linear scalar potential), we obtain from Egs. (4) to (9) the
results obtained in Ref. [16] for a scalar particle in the Som—
Raychaudhuri spacetime with a cosmic string. In Refs. [8,9,
16], the close similarity is demonstrated between the energy
levels of a scalar quantum particle in the Som—Raychaudhuri
spacetime and the Landau levels [43]. Observe that, in this
limit, Eq. (9) becomes the hypergeometric equation. This
limit corresponds to taking & = 0 in Eq. (12), then we obtain
only the first relation of Eq. (12):

8l
%—S—le&ﬁ(ﬂzaLZ&“), 22)
o

and thus one of the eigenvalues of the energy is

I 1
5:<n/+|—|+—+1>9
o o

/ |l| ! ? 2 2 2
s ) @2 p2 M2, (23)

Note that the eigenvalue (23) is the same as that obtained
for Som—Raychaudhuri spacetime with a cosmic string in
Ref. [16], and also by taking the limit ¢ = 1 in Refs. [8,9].
The eigenvalue (23) is similar to the Landau levels for a scalar
particle as demonstrated in Refs. [8,9,16], where the rotation
plays the role of a uniform magnetic field and the parameter
Q plays the role of the cyclotron frequency. This similarity
is more visible in the limit case where M = p, = 0, where
the eigenvalue (23) becomes £ = 29 (n/ + '(i—' + é + 1).
This is similar to the eigenvalue obtained for the Landau
levels in the presence of a cosmic string in Ref. [44]. This
similarity is the central issue as one claims the use of the
Som-Raychaudhuri spacetime to investigate the linear con-
finement of quarks in the presence of magnetic fields and
topological defects.

@ Springer

Returning to Eq. (18), it is interesting to observe that
bound states exist only for restricted values of the linear con-
finement constant k, as we can observe from Eqs. (15) to (18).
This fact results from the series H (x) = ZC;O:O dj x4 to be
required to terminate. Note that the problem which is inves-
tigated in this work is very different from that investigated in
Refs. [37-39]. Here, we investigate the relativistic spinless
quantum particle in a rotating spacetime in the presence of
a topological defect. We recover the results of Refs. [37-39]
in the appropriate limits. In this way, the results (18) cor-
respond to the bound state associated with the radial mode
n = 1, where the allowed energies depend on the rotation
parameter 2 and the parameter «, which characterizes the
cosmic string. It is interesting to observe that the behavior of
the Klein—Gordon particle in the presence of a linear inter-
action in the Som—Raychaudhuri spacetime is analogous to
the Landau levels in the presence of a linear scalar potential.
In the present case, the rotation plays the role of an exter-
nal magnetic field. The influence of the parameter €2 can be
viewed as the influence of the external field on the bound
states; therefore, these physical results can be used to inves-
tigate linear confinement of quarks.

Despite our discussion having been focused on the radial
mode n = 1, by following the steps from Egs. (12) to (16),
we can obtain the allowed energies associated with the radial
modes n = 2, n = 3 and so on.

3 Conclusions

We have investigated the influence of the vorticity and a topo-
logical defect on the linear confinement of a relativistic scalar
particle. The vorticity and the topological defect stem from a
particular Godel-type solution called the Som—Raychaudhuri
spacetime with a cosmic string [10,16]. By analyzing the
energy associated with the radial mode n = 1, we have seen
that both vorticity and the topology of the cosmic string mod-
ify this energy level and give rise to the allowed energies writ-
ten in Eq. (18). Moreover, the topology of the cosmic string
gives rise to an effective angular momentum legr = [/, A
particular case of the allowed energies associated with the
radial mode n = 1 is given by taking o« = 1; then we have
obtained the expression of the allowed energies in the Som—
Raychaudhuri spacetime as shown in Eq. (20). In this case,
we have observed that only the vorticity modifies the ground
state energy.

In this paper, we have obtained the bound states for the
linear confinement of a scalar quantum particle in the Som—
Raychaudhuri spacetime with a topological defect and ana-
lyzed the similarities between the present results and Lan-
dau levels in this spacetime background. As shown in Refs.
[8,9,16], due to the close relation of the Landau levels to
the relativistic quantum energy levels in this Godel-type uni-
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verse, this result can be used to discuss the Landau levels in
condensed matter systems of interacting particles. This close
relation can also be used in solving problems of the linear
confinement of quarks in the presence of a topological defect,
where a magnetic field can be introduced in a geometric way
through the Som—Raychaudhuri spacetime metric. We claim
that the results obtained here can be used to investigate heavy
quarkonia subject to a strong magnetic field [45] in the pres-
ence of a topological defect, due to the similarity between
the quantum dynamics in Som—Raychaudhuri spacetime and
the Landau levels [8,9,16]. Models with confining poten-
tials have been used to describe the spectrum of quarkonia-
type systems. In the case of the linear confining potential,
this would be the confining potential of quarks. This type
of potential has been used to describe quarkonia with heavy
quarks. Thereby, the study of the linear confinement in the
Som-Raychaudhuri spacetime in the presence of a topolog-
ical defect can be used as a model, where the rotation plays
the role of an external magnetic field. Therefore, the interac-
tion is introduced by the potential V = « r and the geometric
background, in turn, introduces a “magnetic field” (it arises
from the vorticity of the spacetime). As a future study, we
can mention the introduction of the Coulomb interaction plus
the linear potential, hence, we could investigate the Cornell
potential [46] in a flat Godel-type universe.
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