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Abstract In 2002, two neutrino mixing ansatze having
trimaximally mixed middle (ν2) columns, namely tri-chi-
maximal mixing (TχM) and tri-phi-maximal mixing (TφM),
were proposed. In 2012, it was shown that TχM with χ =
± π

16 as well as TφM with φ = ± π
16 leads to the solution,

sin2 θ13 = 2
3 sin2 π

16 , consistent with the latest measurements
of the reactor mixing angle, θ13. To obtain TχM(χ=± π

16 )

and TφM(φ=± π
16 ), the type I see-saw framework with fully

constrained Majorana neutrino mass matrices was utilised.
These mass matrices also resulted in the neutrino mass ratios,

m1 : m2 : m3 =
(

2+√
2
)

1+
√

2(2+√
2)

: 1 :
(

2+√
2
)

−1+
√

2(2+√
2)

.

In this paper we construct a flavour model based on the
discrete group Σ(72 × 3) and obtain the aforementioned
results. A Majorana neutrino mass matrix (a symmetric 3×3
matrix with six complex degrees of freedom) is conveniently
mapped into a flavon field transforming as the complex six-
dimensional representation of Σ(72 × 3). Specific vacuum
alignments of the flavons are used to arrive at the desired
mass matrices.

1 Introduction

The neutrino mixing information is encapsulated in the uni-
tary PMNS mixing matrix which, in the standard PDG param-
eterisation [1], is given by
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UPMNS

=
⎛
⎝

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎠

× diag
(

1, ei
α21

2 , ei
α31

2

)
,

(1)

where si j = sin θi j , ci j = cos θi j . The three mixing angles
θ12 (solar angle), θ23 (atmospheric angle) and θ13 (reactor
angle) along with the CP-violating complex phases (the
Dirac phase, δ, and the two Majorana phases, α21 and α31)
parameterise UPMNS. In comparison to the small mixing
angles observed in the quark sector, the neutrino mixing
angles are found to be relatively large [2]:

sin2 θ12 = 0.271 → 0.345, (2)

sin2 θ23 = 0.385 → 0.635, (3)

sin2 θ13 = 0.01934 → 0.02392. (4)

The values of the complex phases are unknown at present.
Besides measuring the mixing angles, the neutrino oscillation
experiments also proved that neutrinos are massive particles.
These experiments measure the mass-squared differences of
the neutrinos and currently their values are known to be [2],

Δm2
21 = 70.3 → 80.9 meV2, (5)

|Δm2
31| = 2407 → 2643 meV2. (6)

Several mixing ansatze with a trimaximally mixed sec-
ond column for UPMNS, i.e. |Ue2| = |Uμ2| = |Uτ2| = 1√

3
,

were proposed during the early 2000s [3–7]. Here we briefly
revisit two of those, the tri-chi-maximal mixing (TχM) and
the tri-phi-maximal mixing (TφM),1 which are relevant to

1 T Mi (T Mi ) has been proposed [8,9] as a nomenclature to denote
the mixing matrices that preserve various columns (rows) of the tribi-
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Table 1 The standard PDG observables θ13, θ12, θ23 and δ in terms
of the parameters χ and φ. Note that the range of χ as well as φ is
− π

2 to + π
2 . In TχM (TφM), the parameter χ (φ) being in the first

and the fourth quadrant correspond to δ equal to + π
2 (0) and − π

2 (π ),
respectively

sin2 θ13 sin2 θ12 sin2 θ23 δ

TχM 2
3 sin2 χ 1(

3−2 sin2 χ
) 1

2 ± π
2

TφM 2
3 sin2 φ 1(

3−2 sin2 φ
)

2 sin2
(

2π
3 +φ

)
(
3−2 sin2 φ

) 0, π

our model. They can be conveniently parameterised [5] as
follows:

UTχM =

⎛
⎜⎜⎝

√
2
3 cos χ 1√

3

√
2
3 sin χ

− cos χ√
6

− i sin χ√
2

1√
3

i cos χ√
2

− sin χ√
6

− cos χ√
6

+ i sin χ√
2

1√
3

−i cos χ√
2

− sin χ√
6

⎞
⎟⎟⎠ , (7)

UTφM =

⎛
⎜⎜⎝

√
2
3 cos φ 1√

3

√
2
3 sin φ

− cos φ√
6

− sin φ√
2

1√
3

cos φ√
2

− sin φ√
6

− cos φ√
6

+ sin φ√
2

1√
3

− cos φ√
2

− sin φ√
6

⎞
⎟⎟⎠ . (8)

Both TχM and TφM have one free parameter each (χ and φ)
which directly corresponds to the reactor mixing angle, θ13,
through the Ue3 elements of the mixing matrices. The three
mixing angles and the Dirac CP phase obtained by relating
Eq. (1) with Eqs. (7), (8) are shown in Table 1.

In TχM, since δ = ± π
2 , CP violation is maximal for a

given set of mixing angles. The JarlskogCP-violating invari-
ant [10–14] in the context of TχM [5] is given by

J = sin 2χ

6
√

3
. (9)

On the other hand, TφM is CP conserving, i.e. δ = 0, π ,
and thus J = 0.

Since the reactor angle was discovered to be non-zero at
the Daya Bay reactor experiment in 2012 [15], there has been
a resurgence of interest [16–27] in TχM and TφM and their
equivalent forms. For anyCP-conserving (δ = 0, π ) mixing
matrix with non-zero θ13 and trimaximally mixed ν2 column,
we can have an equivalent parameterisation realised using the
TφM matrix. Here the “equivalence” is with respect to the
neutrino oscillation experiments. The oscillation scenario is
completely determined by the three mixing angles and the
Dirac phase (Majorana phases are not observable in neutrino
oscillations), i.e. we have a total of four degrees of freedom
in the mixing matrix. If we assumeCP conservation and also

maximal mixing [4]. By this notation, both TχM and TφM fall under
the category of T M2. To be more specific, T M2, which breaks CP
maximally, is TχM and T M2, which conserves CP is TφM.

assume that the ν2 column is trimaximally mixed, then there
is only one degree of freedom left. It is exactly this degree
of freedom which is parameterised using φ in TφM mixing.
Similarly any mixing matrix with δ = ± π

2 , θ13 �= 0 and
trimaximal ν2 column is equivalent to TχM mixing.

In 2012 [22], shortly after the discovery of the non-zero
reactor mixing angle, it was shown that TχM(χ=± π

16 ) as well
as TφM(φ=± π

16 ) results in a reactor mixing angle,

sin2 θ13 = 2

3
sin2 π

16
= 0.025, (10)

consistent with the experimental data. The model was con-
structed in the Type-1 see-saw framework [28–31]. Four
cases of Majorana mass matrices were discussed:

MMaj ∝
⎛
⎜⎝

(2 − √
2) 0 1√

2
0 1 0
1√
2

0 0

⎞
⎟⎠ , ∝

⎛
⎜⎝

0 0 1√
2

0 1 0
1√
2

0 (2 − √
2)

⎞
⎟⎠ ,

(11)

MMaj ∝
⎛
⎜⎝
i + 1−i√

2
0 1 − 1√

2
0 1 0

1 − 1√
2

0 −i + 1+i√
2

⎞
⎟⎠ , ∝

⎛
⎜⎝

−i + 1+i√
2

0 1 − 1√
2

0 1 0
1 − 1√

2
0 i + 1−i√

2

⎞
⎟⎠

(12)

where MMaj is the coupling among the right-handed neutrino
fields, i.e. (νR)cMMajνR . In Ref. [22], the mixing matrix was
modelled in the form

UPMNS = 1√
3

⎛
⎝

1 1 1
1 ω ω̄

1 ω̄ ω

⎞
⎠Uν ,

with ω = ei
2π
3 and ω̄ = e-i 2π

3 , (13)

in which the 3 × 3 trimaximal contribution came from the
charged-lepton sector. Uν , on the other hand, was the contri-
bution from the neutrino sector. The four Uνs vis à vis the
four Majorana neutrino mass matrices given in Eqs. (11) and
(12), gave rise to TχM(χ=± π

16 ) and TφM(φ=± π
16 ), respec-

tively. All the four mass matrices, Eqs. (11), (12), have the

eigenvalues 1+
√

2(2+√
2)(

2+√
2
) , 1 and −1+

√
2(2+√

2)(
2+√

2
) . Due to the

see-saw mechanism, the neutrino masses become inversely
proportional to the eigenvalues of the Majorana mass matri-
ces, resulting in the neutrino mass ratios
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m1 : m2 : m3 =
(

2 + √
2
)

1 +
√

2(2 + √
2)

: 1 :
(

2 + √
2
)

−1 +
√

2(2 + √
2)

.

(14)

Using these ratios and the experimentally measured mass-
squared differences, the light neutrino mass was predicted to
be around 25 meV.

In this paper we use the discrete group Σ(72 × 3) to con-
struct a flavon model that essentially reproduces the above
results. Unlike in Ref. [22] where the neutrino mass matrix
was decomposed into a symmetric product of two matrices,
here a single sextet representation of the flavour group is used
to build the neutrino mass matrix. A brief discussion of the
group Σ(72×3) and its representations is provided in Sect. 2
of this paper. Appendix A contains more details such as the
tensor product expansions of its various irreducible repre-
sentations (irreps) and the corresponding Clebsch–Gordan
(C–G) coefficients. In Sect. 3, we describe the model with its
fermion and flavon field content in relation to these irreps.
Besides the aforementioned sextet flavon, we also introduce
triplet flavons in the model to build the charged-lepton mass
matrix. The flavons are assigned specific vacuum expec-
tation values (VEVs) to obtain the required neutrino and
charged-lepton mass matrices. A detailed description of how
the charged-lepton mass matrix attains its hierarchical struc-
ture is deferred to Appendix B. In Sect. 4, we obtain the
phenomenological predictions and compare them with the
current experimental data along with the possibility of fur-
ther validation from future experiments. Finally, the results
are summarised in Sect. 5. The construction of suitable flavon
potentials which generate the set of VEVs used in our model
is demonstrated in Appendix C.

2 The group Σ(72 × 3) and its representations

Discrete groups have been used extensively in the descrip-
tion of flavour symmetries. Historically, the study of discrete
groups can be traced back to the study of symmetries of geo-
metrical objects. Tetrahedron, cube, octahedron, dodecahe-
dron and icosahedron, which are the famous Platonic solids,
were known to the ancient Greeks. These objects are the only
regular polyhedra with congruent regular polygonal faces.
Interestingly, the symmetry groups of the platonic solids are
the most studied in the context of flavour symmetries too -
A4 (tetrahedron), S4 (cube and its dual octahedron) and A5

(dodecahedron and its dual icosahedron). These polyhedra
live in the three-dimensional Euclidean space. In the con-
text of flavour physics, it might be rewarding to study simi-
lar polyhedra that live in three-dimensional complex Hilbert
space. In fact, five such complex polyhedra that correspond to
the five Platonic solids exist as shown by Coxeter [32]. They

are 3{3}3{3}3, 2{3}2{4}p, p{4}2{3}2, 2{4}3{3}3, 3{3}3{4}2
where we have used the generalised schlafli symbols [32] to
represent the polyhedra. The polyhedron 3{3}3{3}3 known
as the Hessian polyhedron can be thought of as the tetrahe-
dron in the complex space. Its full symmetry group has 648
elements and is called Σ(216 × 3). Like the other discrete
groups relevant in flavour symmetry, Σ(216 × 3) is also a
subgroup of the continuous group U (3).

The principal series of Σ(216 × 3) [33] is given by

{e} � Z3 � Δ(27) � Δ(54) � Σ(72 × 3) � Σ(216 × 3). (15)

Our flavour symmetry group, Σ(72×3), is the maximal nor-
mal subgroup of Σ(216×3). So we get Σ(216×3)/Σ(72×
3) = Z3. Various details as regards the properties of the group
Σ(72 ×3) and its representations can be found in Refs. [33–
37]. Note that Σ(72×3) is quite distinct from Σ(216), which
is defined using the relation Σ(216 × 3)/Z3 = Σ(216). In
other words, Σ(216 × 3) forms the triple cover of Σ(216).
Σ(216×3) as well as Σ(216) is sometimes referred to as the
Hessian group. In terms of the GAP [38,39] nomenclature,
we have Σ(216×3) ≡ SmallGroup(648,532), Σ(72×3) ≡
SmallGroup(216,88) and Σ(216) ≡ SmallGroup(216,153).

We find that, in the context of flavour physics and model
building, Σ(72 × 3) has an appealing feature: it is the small-
est group containing a complex three-dimensional represen-
tation whose tensor product with itself results in a complex
six-dimensional representation,2 i.e.

3 ⊗ 3 = 6 ⊕ 3̄. (16)

With a suitably chosen basis for 6 we get

6 ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1b1

a2b2

a3b3
1√
2

(a2b3 + a3b2)
1√
2

(a3b1 + a1b3)
1√
2

(a1b2 + a2b1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 3̄ ≡
⎛
⎜⎝

1√
2

(a2b3 − a3b2)
1√
2

(a3b1 − a1b3)
1√
2

(a1b2 − a2b1)

⎞
⎟⎠

(17)

where (a1, a2, a3)
T and (b1, b2, b3)

T represent the triplets
appearing in the LHS of Eq. (16). All the symmetric compo-
nents of the tensor product together form the representation
6 and the antisymmetric components form 3̄. For the SU (3)

group it is well known that the tensor product of two 3s gives
rise to a symmetric6 and an antisymmetric 3̄. Σ(72×3) being
a subgroup of SU (3), of course, has its 6 and 3̄ embedded in
the 6 and 3̄ of SU (3).

2 We studied the comprehensive list of finite subgroups of U (3) pro-
vided in Ref. [40] and determined that Σ(72 × 3) is the smallest group
having this feature.
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Table 2 Character table of Σ(72 × 3)

Σ(72 × 3) C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
#Ck 1 1 1 24 9 9 9 18 18 18 18 18 18 18 18 18
ord(Ck) 1 3 3 3 2 6 6 4 12 12 4 12 12 4 12 12

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1(0,1) 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1

1(1,0) 1 1 1 1 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1

1(1,1) 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 1

2 2 2 2 2 −2 −2 −2 0 0 0 0 0 0 0 0 0

3 3 3ω 3ω̄ 0 −1 −ω −ω̄ 1 ω ω̄ 1 ω ω̄ 1 ω ω̄

3(0,1) 3 3ω 3ω̄ 0 −1 −ω −ω̄ 1 ω ω̄ −1 −ω −ω̄ −1 −ω −ω̄

3(1,0) 3 3ω 3ω̄ 0 −1 −ω −ω̄ −1 −ω −ω̄ 1 ω ω̄ −1 −ω −ω̄

3(1,1) 3 3ω 3ω̄ 0 −1 −ω −ω̄ −1 −ω −ω̄ −1 −ω −ω̄ 1 ω ω̄

3̄ 3 3ω̄ 3ω 0 −1 −ω̄ −ω 1 ω̄ ω 1 ω̄ ω 1 ω̄ ω

3̄(0,1) 3 3ω̄ 3ω 0 −1 −ω̄ −ω 1 ω̄ ω −1 −ω̄ −ω −1 −ω̄ −ω

3̄(1,0) 3 3ω̄ 3ω 0 −1 −ω̄ −ω −1 −ω̄ −ω 1 ω̄ ω −1 −ω̄ −ω

3̄(1,1) 3 3ω̄ 3ω 0 −1 −ω̄ −ω −1 −ω̄ −ω −1 −ω̄ −ω 1 ω̄ ω

6 6 6ω̄ 6ω 0 2 2ω̄ 2ω 0 0 0 0 0 0 0 0 0

6̄ 6 6ω 6ω̄ 0 2 2ω 2ω̄ 0 0 0 0 0 0 0 0 0

8 8 8 8 −1 0 0 0 0 0 0 0 0 0 0 0 0

Consider the complex conjugation of Eq. (16), i.e. 3̄ ⊗
3̄ = 6̄ ⊕ 3. Let the right-handed neutrinos form a triplet,
νR = (νR1, νR2, νR3)

T , which transforms as a 3̄. Symmetric
(and also Lorentz invariant) combination of two such triplets
leads to a conjugate sextet, S̄ν , which transforms as a 6̄,

S̄ν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

νR1.νR1

νR2.νR2

νR3.νR3
1√
2

(νR2.νR3 + νR3.νR2)
1√
2

(νR3.νR1 + νR1.νR3)
1√
2

(νR1.νR2 + νR2.νR1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡ 6̄ (18)

where νRi .νRj is the Lorentz invariant product of the right-
handed neutrino Weyl spinors. We may couple S̄ν to a flavon
field

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)
T (19)

which transforms as a 6 to construct the invariant term

S̄Tν ξ =
⎛
⎝

νR1

νR2

νR3

⎞
⎠

T

.

⎛
⎜⎝

ξ1
1√
2
ξ6

1√
2
ξ5

1√
2
ξ6 ξ2

1√
2
ξ4

1√
2
ξ5

1√
2
ξ4 ξ3

⎞
⎟⎠ .

⎛
⎝

νR1

νR2

νR3

⎞
⎠ . (20)

In general, the 3 × 3 Majorana mass matrix is symmetric
and has six complex degrees of freedom. Therefore, using
Eq. (20), any required mass matrix can be obtained through

a suitably chosen vacuum expectation value (VEV) for the
flavon field.

To describe the representation theory of Σ(72 × 3) we
largely follow Ref. [33]. Σ(72×3) can be constructed using
four generators, namely C , E , V and X [33]. For the three-
dimensional representation, we have

C ≡
⎛
⎝

1 0 0
0 ω 0
0 0 ω̄

⎞
⎠ , E ≡

⎛
⎝

0 1 0
0 0 1
1 0 0

⎞
⎠ ,

V ≡ − i√
3

⎛
⎝

1 1 1
1 ω ω̄

1 ω̄ ω

⎞
⎠ , X ≡ − i√

3

⎛
⎝

1 1 ω̄

1 ω ω

ω 1 ω

⎞
⎠ .

(21)

The characters of the irreducible representations of Σ(72×3)

are given in Table 2. Tensor product expansions of var-
ious representations relevant to our model are given in
Appendix A. There we also provide the corresponding C–
G coefficients and the generator matrices.

3 The model

In this paper we construct our model in the Standard Model
framework with the addition of heavy right-handed neutri-
nos. Through the type I see-saw mechanism, light Majorana
neutrinos are produced. The fermion and flavon content of
the model, together with the representations to which they
belong, are given in Table 3. In addition to Σ(72 × 3),

123
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Table 3 The flavour structure of the model. The three families of the
left-handed-weak-isospin lepton doublets form the triplet L and the
three right-handed heavy neutrinos form the triplet νR . The flavons φα ,
φβ and ξ , are scalar fields and are gauge invariants. On the other hand,
they transform non-trivially under the flavour groups

Fermions eR μR τR L νR φα φβ ξ

Σ(72 × 3) 1 1 1 3̄ 3̄ 3 3 6

C4 −1 1 i 1 1 −i i 1

we have introduced a flavour group C4 = {1,−1, i,−i} for
obtaining the observed mass hierarchy for the charged lep-
tons. The Standard Model Higgs field is assigned to the trivial
(singlet) representation of the flavour groups.

For the charged leptons, we obtain the mass term

(
yτ L

†τR
φ̄β

Λ
+ yμL

†μR

√
2 Āβα

Λ2

)
H + H.T . (22)

where H is the Standard Model Higgs, Λ is the cut-off scale,
yτ and yμ are the coupling constants for the τ -sector and the
μ-sector, respectively. Āβα is the conjugate triplet obtained
from φβ and φα , constructed in the same way as the second
part of Eq. (17),

Āβα ≡
⎛
⎜⎝

1√
2

(
φβ2φα3 − φβ3φα2

)
1√
2

(
φβ3φα1 − φβ1φα3

)
1√
2

(
φβ1φα2 − φβ2φα1

)

⎞
⎟⎠ (23)

where φα = (φα1, φα2, φα3)
T and φβ = (φβ1, φβ2, φβ3)

T .
L†τR transforms as 3× i under the flavour group, Σ(72×

3) × C4. The flavon φ̄β transforms as 3̄ × −i and hence
it couples to L†τR as shown in Eq. (22). No other coupling
involving τR , μR or eR with either φ̄β or φ̄α is allowed, given
the C4 assignments in Table 3. However, L†μR and Āβα ,
which transform as 3×1 and 3̄×1, respectively, can couple,
Eq. (22). Note that Āβα is a second-order product of φβ and
φα and it is antisymmetric. No other second-order product
transforming as 3̄ exists, since the antisymmetric product of
φβ with itself or φα with itself vanishes. H.T . represents all
the higher-order terms, i.e. the terms consisting of higher-
order products of the flavons, coupling to eR , μR and τR . It
can be shown that, for obtaining a flavon term coupling to
the eR , we require at least quartic order.3

The VEV of the Higgs, (0, ho), breaks the weak gauge
symmetry. For the flavons φ̄α and φ̄β , we assign the vacuum
alignments4

3 Refer to Appendix B for an analysis of the higher order products of
φα and φβ .
4 Refer to Appendix C for the details of the flavon potential that leads
to these VEVs.

〈φ̄α〉 = V †(1, 0, 0)Tm, 〈φ̄β〉 = V †(0, 0, 1)Tm (24)

where V is one of the generators of Σ(72 × 3) given
in Eq. (21) and is proportional to the 3 × 3 trimaximal
matrix. The constant m has dimensions of mass. Substituting
these vacuum alignments in Eq. (22) leads to the following
charged-lepton mass term:

⎛
⎝
eL
μL

τL

⎞
⎠

†

V †

⎛
⎝
O(ε4) O(ε4) 0

0 yμhoε2 + O(ε4) 0
O(ε4) O(ε4) yτhoε + O(ε3)

⎞
⎠

⎛
⎝
eR
μR

τR

⎞
⎠

(25)

where ε = m
Λ

. The matrix elements, O(ε3) and O(ε4), are
of the order of ε3 and ε4, respectively. They are the result of
the higher-order terms in Eq. (22) containing cubic and quar-
tic flavon products3. The mass matrix shown in Eq. (25) is
approximately diagonalised 5 by left multiplying it with V . It
is apparent that the charged-lepton masses, i.e. the eigenval-
ues of the mass matrix, are in the ratioO(ε) : O(ε2) : O(ε4).
This is consistent with the experimentally observed mass

hierarchy,
(
mμ

me

)
≈

(
mτ

mμ

)2
.

Now, we write the Dirac mass term for the neutrinos:

2ywL
†νR H̃ , (26)

where H̃ is the conjugate Higgs and yw is the coupling con-
stant. With the help of Eq. (20), we also write the Majorana
mass term for the neutrinos:

ym S̄
T
ν ξ, (27)

where ym is the coupling constant. Let 〈ξ 〉 be the VEV
acquired by the sextet flavon ξ , and let 〈ξ〉 be the correspond-
ing 3 × 3 symmetric matrix of the form given in Eq. (20).
Combining the mass terms, Eqs. (26) and (27), and using
the VEVs of the Higgs and the flavon, we obtain the Dirac–
Majorana mass matrix:

M =
(

0 ywho I
ywho I ym〈ξ〉

)
. (28)

The 6 × 6 mass matrix M , forms the coupling

Mi j νi .ν j with ν =
(

ν∗
L

νR

)
(29)

where νL = (νe, νμ, ντ )
T are the left-handed neutrino

flavour eigenstates.

5 The effect of higher-order elements on diagonalisation is discussed
in Sect. 4.
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Since ywho is at the electroweak scale and ym〈ξ〉 is at
the high energy flavon scale (> 1010 GeV), small neutrino
masses are generated through the see-saw mechanism. The
resulting effective see-saw mass matrix is of the form

Mss = − (ywho)
2 (ym〈ξ〉)−1 . (30)

From Eq. (30), it is clear that the see-saw mechanism makes
the light neutrino masses inversely proportional to the eigen-
values of the matrix 〈ξ〉. We now proceed to construct the
four cases of the mass matrices, Eqs. (11), (12), all of which
result in the neutrino mass ratios, Eq. (14). To achieve this
we choose suitable vacuum alignments6 for the sextet flavon
ξ .

3.1 TχM(χ=+ π
16 )

Here we assign the vacuum alignment

〈ξ 〉 =
(
(2 − √

2), 1, 0, 0, 1, 0
)

Tm. (31)

Using the symmetric matrix form of the sextet given in
Eq. (20), we obtain

〈ξ〉 =
⎛
⎜⎝

(2 − √
2) 0 1√

2
0 1 0
1√
2

0 0

⎞
⎟⎠m. (32)

Diagonalising the corresponding effective see-saw mass
matrix Mss , Eq. (30), we get

U †
ν MssU

∗
ν

= (ywho)2

ymm
Diag

( (
2+√

2
)

1+
√

2(2+√
2)

, 1,

(
2+√

2
)

−1+
√

2(2+√
2)

)
(33)

leading to the neutrino mass ratios, Eq. (14). The unitary
matrix Uν is given by

Uν = i

⎛
⎝

cos
( 3π

16

)
0 −i sin

( 3π
16

)
0 1 0

sin
( 3π

16

)
0 i cos

( 3π
16

)

⎞
⎠ . (34)

The product of the contribution from the charged-lepton sec-
tor i.e. V from Eqs. (25), (21) and the contribution from the
neutrino sector i.e. Uν from Eqs. (33), (34) results in the
TχM(χ=+ π

16 ) mixing:

6 Refer to Appendix C for the details of the flavon potentials that lead
to these VEVs.

UPMNS = VUν =
⎛
⎝

1 0 0
0 ω 0
0 0 ω̄

⎞
⎠

×

⎛
⎜⎜⎝

√
2
3 cos χ 1√

3

√
2
3 sin χ

− cos χ√
6

− i sin χ√
2

1√
3

i cos χ√
2

− sin χ√
6

− cos χ√
6

+ i sin χ√
2

1√
3

−i cos χ√
2

− sin χ√
6

⎞
⎟⎟⎠

×
⎛
⎝

1 0 0
0 1 0
0 0 i

⎞
⎠ (35)

with χ = + π
16 .

3.2 TχM(χ=− π
16 )

Here we assign the vacuum alignment

〈ξ 〉 =
(

0, 1, (2 − √
2), 0, 1, 0

)
Tm (36)

resulting in the symmetric matrix

〈ξ〉 =
⎛
⎜⎝

0 0 1√
2

0 1 0
1√
2

0 (2 − √
2)

⎞
⎟⎠m. (37)

In this case, the diagonalising matrix is

Uν = i

⎛
⎜⎜⎝

cos
(

5π
16

)
0 i sin

(
5π
16

)

0 1 0

sin
(

5π
16

)
0 −i cos

(
5π
16

)

⎞
⎟⎟⎠ (38)

and the corresponding mixing matrix is

UPMNS = VUν =
⎛
⎝

1 0 0
0 ω 0
0 0 ω̄

⎞
⎠

×

⎛
⎜⎜⎝

√
2
3 cos χ 1√

3

√
2
3 sin χ

− cos χ√
6

− i sin χ√
2

1√
3

i cos χ√
2

− sin χ√
6

− cos χ√
6

+ i sin χ√
2

1√
3

−i cos χ√
2

− sin χ√
6

⎞
⎟⎟⎠

×
⎛
⎝

1 0 0
0 1 0
0 0 −i

⎞
⎠ (39)

with χ = − π
16 .

3.3 TφM(φ=+ π
16 )

Here we assign the vacuum alignment

〈ξ 〉 =
(
i + 1 − i√

2
, 1,−i + 1 + i√

2
, 0, (

√
2 − 1), 0

)T

m

(40)
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resulting in the symmetric matrix

〈ξ〉 =
⎛
⎜⎝
i + 1−i√

2
0 1 − 1√

2
0 1 0

1 − 1√
2

0 −i + 1+i√
2

⎞
⎟⎠m. (41)

In this case, the diagonalising matrix is

Uν = i

⎛
⎜⎝

1√
2
e−i π

16 0 − 1√
2
e−i π

16

0 1 0
1√
2
ei

π
16 0 1√

2
ei

π
16

⎞
⎟⎠ (42)

and the corresponding mixing matrix is

UPMNS = VUν =
⎛
⎝

1 0 0
0 ω 0
0 0 ω̄

⎞
⎠

×

⎛
⎜⎜⎝

√
2
3 cos φ 1√

3

√
2
3 sin φ

− cos φ√
6

− sin φ√
2

1√
3

cos φ√
2

− sin φ√
6

− cos φ√
6

+ sin φ√
2

1√
3

− cos φ√
2

− sin φ√
6

⎞
⎟⎟⎠

×
⎛
⎝

1 0 0
0 1 0
0 0 i

⎞
⎠ (43)

with φ = + π
16 .

3.4 TφM(φ=− π
16 )

Here we assign the vacuum alignment

〈ξ 〉 =
(

−i + 1 + i√
2

, 1, i + 1 − i√
2

, 0, (
√

2 − 1), 0

)T

m

(44)

resulting in the symmetric matrix

〈ξ〉 =
⎛
⎜⎝

−i + 1+i√
2

0 1 − 1√
2

0 1 0
1 − 1√

2
0 i + 1−i√

2

⎞
⎟⎠m. (45)

In this case, the diagonalising matrix is

Uν = i

⎛
⎜⎝

1√
2
ei

π
16 0 1√

2
ei

π
16

0 1 0
1√
2
e−i π

16 0 − 1√
2
e−i π

16

⎞
⎟⎠ (46)

and the corresponding mixing matrix is

UPMNS = VUν =
⎛
⎝

1 0 0
0 ω 0
0 0 ω̄

⎞
⎠

×

⎛
⎜⎜⎝

√
2
3 cos φ 1√

3

√
2
3 sin φ

− cos φ√
6

− sin φ√
2

1√
3

cos φ√
2

− sin φ√
6

− cos φ√
6

+ sin φ√
2

1√
3

− cos φ√
2

− sin φ√
6

⎞
⎟⎟⎠

×
⎛
⎝

1 0 0
0 1 0
0 0 −i

⎞
⎠ (47)

with φ = − π
16 .

As stated earlier, the four cases, Eqs. (32), (37), (41), (45),
result in the same neutrino mass ratios, Eq. (14).

Symmetries of the VEVs of the sextet flavons

A careful inspection of the Majorana matrices, Eqs. (11), (12),
reveals several symmetries which could be attributed to the
underlying symmetries of the VEVs of the sextet flavons,
Eqs. (31), (36), (40), (44). The VEVs, Eqs. (31), (36), (and
thus the mass matrices, Eqs. (11)) are composed of real num-
bers implying they remain invariant under complex conjuga-
tion. Therefore, they do not contribute to CP violation. In
our model, UPMNS = VUν where V originates from the
charged-lepton mass matrix, Eq. (25). Since V is maximally
CP-violating (δ = π

2 ), the resulting leptonic mixing, VUν ,
is also maximally CP-violating (TχM). Note that UTχM,
Eq. (7), is symmetric under the conjugation and the exchange
of μ and τ rows. This generalised CP symmetry under the
combined operations of μ–τ exchange and complex conju-
gation is referred to as μ–τ reflection symmetry in previous
publications [5,16,41–43]. The conjugation symmetry in the
neutrino VEVs together with maximalCP violation from the
charged-lepton sector produces the μ–τ reflection symmetry
of UPMNS.

Consider the exchange of the first and the third rows as
well as the columns of the mass matrix, Eq. (20). This is
equivalent to the exchange of the first and the third elements
and the fourth and the sixth elements of the sextet flavon,
Eq. (19). In Σ(72 × 3), this exchange can be realised using
the group transformation by the unitary matrix E .V .V ,

E .V .V ≡
⎛
⎝

0 0 −1
0 −1 0

−1 0 0

⎞
⎠ ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (48)

with E and V given in Eqs. (21), (67). By the group trans-
formation we imply left and right multiplication of the mass
matrix using the 3 × 3 unitary matrix and its transpose or
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equivalently left multiplication of the sextet flavon using the
6 × 6 unitary matrix. The mass matrices, Eqs. (12), and the
corresponding flavon VEVs, Eqs. (40), (44), are invariant
under the transformation by E .V .V together with the conju-
gation. The VEVs break Σ(72×3) almost completely except
for E .V .V with conjugation which remains as their residual
symmetry.7 The resulting mixing matrix, UPMNS = VUν , is
TφM, which is real and CP conserving. E .V .V -conjugation
symmetry in the neutrino VEVs together with maximal CP
violation from the charged-lepton sector produces the CP
symmetry of UPMNS.

Both TχM and TφM have a trimaximal second column.
This feature of the mixing matrix was linked to the “magic”
symmetry of the mass matrix [42,44–46]. In our model, the
charged-leptonic contribution, V , is trimaximal. Because of
the vanishing of the fourth and the sixth elements of the sextet
VEVs, Eqs. (31), (36), (40), (44) which correspond to the off-
diagonal zeros present in the mass matrices, Eqs. (11), (12),
the trimaximality of V carries over to UPMNS = VUν .

Consider the unitary matrix,

A ≡ diag(−1, 1,−1). (49)

Group transformation by A is the multiplication of the off-
diagonal Majorana matrix elements by −1. Invariance under
A, implies these elements vanish and ensures trimaximality.
In the literature, small groups like the Klein group [16,47–51]
are often used to implement symmetries like the generalised
CP and the trimaximality as the residual symmetries of the
mass matrix. However, A is not a group member of Σ(72 ×
3). In our model, the vanishing mass matrix elements arise as
a consequence of the specific choice of the flavon potential,
Eq. (142), rather than the result of a residual symmetry under
Σ(72 × 3).

The presence of a simple set of numbers in the VEVs
(and the mass matrices) is suggestive of additional symmetry
transformations (like the one generated by A, Eq. (49)) which
are not a part of Σ(72×3). The present model only serves as
a template for constructing any fully constrained Majorana
mass matrix using Σ(72 × 3). We impose additional sym-
metries on the mass matrix by using flavon potentials with a
carefully chosen set of parameters, Table 8. Realising these
symmetries naturally by incorporating more group transfor-
mations along with Σ(72 × 3) in an expanded flavour group
requires further investigation.

7 Here we apply E .V .V and complex conjugation together even though
complex conjugation is not a part of Σ(72 × 3).

4 Predicted observables

For comparing our model with the neutrino oscillation exper-
imental data, we use the global analysis done by the NuFIT
group and their latest results reproduced in Eqs. (2)–(6).
They are a leading group doing a comprehensive statisti-
cal data analysis based on essentially all currently available
neutrino oscillation experiments. Their results are updated
regularly and published on the NuFIT website [2]. The value
sin2 θ13 = 2

3 sin2 π
16 = 0.02537,8 is slightly more than the

upper limit of the 3σ range, 0.02392. We provide a solution
to this discrepancy in the following discussion.

In our previous analysis in Sects. 3.1–3.4, we used the rela-
tion UPMNS = VUν where V is the left-diagonalising matrix
for the charged-lepton mass matrix, Eq. (25). However, the
diagonalisation achieved by V is only an approximation. In
Eq. (25), the presence of theO(ε4) element in the eL -μR off-
diagonal position in relation to the O(ε4) electron mass and
O(ε2) muon mass produces an O(ε2) correction to the diag-
onalisation, i.e. a more accurate left-diagonalisation matrix
is

⎛
⎝

1 O(ε2) 0
O(ε2) 1 0

0 0 1

⎞
⎠ .V . (50)

The resulting correction in the e3 element of UPMNS is

(UPMNS)e3 → (UPMNS)e3 + O(ε2)(UPMNS)μ3. (51)

Since (UPMNS)e3 = sin θ13e−iδ and ε ≈ mμ

mτ
= O(0.1), we

obtain

sin θ13e
−iδ → sin θ13e

−iδ + O(0.01). (52)

The above correction is sufficient to reduce9 our prediction
for sin2 θ13 to within the 3σ range.

For the solar angle, using the formula given in Table 1, we
get

sin2 θ12 = 1

3 − 2 sin2
(

π
16

)

= 0.342 . (53)

8 Besides in Ref. [22], this value was predicted in the context of Δ(6n2)

symmetry group in Ref. [24] and later obtained in Ref. [25]
9 Whether this correction has a reducing or enhancing effect on sin2 θ13,
is determined by the relative phase between the (UPMNS)e3 and the
correction, which in turn is determined by the phases of the elements
in the mass matrix, Eq. (25). For a range of values of the mass matrix
elements, we have numerically verified that a reducing effect can be
achieved.
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This is within 3σ errors of the experimental values, although
there is a small tension towards the upper limit. For the atmo-
spheric angle, TχM predicts maximal mixing:

sin2 θ23 = 1

2
(54)

which is also within 3σ errors. The NuFIT data as well as
other global fits [52,53] are showing a preference for non-
maximal atmospheric mixing. As a result there has been a lot
of interest in the problem of octant degeneracy of θ23 [54–
61]. TφM predicts this non-maximal scenario of atmospheric
mixing. TφM(φ= π

16 ) and TφM(φ=− π
16 ) correspond to the first

and the second octant solutions, respectively. Using the for-
mula for θ23 given in Table 1, we get

TφM(φ=+ π
16 ) : sin2 θ23 = 2 sin2

( 2π
3 + π

16

)

3 − 2 sin2
(

π
16

)

= 0.387 ,

(55)

TφM(φ=− π
16 ) : sin2 θ23 = 2 sin2

( 2π
3 − π

16

)

3 − 2 sin2
(

π
16

)

= 0.613 .

(56)

The Dirac CP phase, δ, has not been measured yet. The
discovery that the reactor mixing angle is not very small
has raised the possibility of a relatively earlier measurement
of δ [62–64]. TχM having δ = ± π

2 should lead to large
observable CP-violating effects. Substituting χ = ± π

16 in
Eq. (9), our model gives

J = ± sin π
8

6
√

3
= ± 0.0368. (57)

which is about 40% of the maximum value of the theoretical
range, − 1

6
√

3
≤ J ≤ + 1

6
√

3
. On the other hand, TφM, with

δ = 0, π and J = 0, is CP conserving.
The neutrino mixing angles are fully determined by the

model, Eqs. (10), (53), (54), (55), (56). Hence, we simply
compared the individual mixing angles with the experimental
data in the earlier part of this section. Regarding the neutrino
masses, the model predicts their ratios, Eq. (14). To compare
this result with the experimental data, which gives the mass-
squared differences, Eqs. (5), (6), we utilise a χ2 analysis,

χ2 =
∑

x=Δm2
21,Δm2

31

(
xmodel − xexpt

σx expt

)2

. (58)

We report that the predicted neutrino mass ratios are consis-
tent with the experimental mass-squared differences. Using
the χ2 analysis we obtain,

Fig. 1 Δm2
31 vs. Δm2

21 plane. The straight line shows the neutrino
mass ratios Eq. (14). As a parametric plot, the line can be represented
as Δm2

21 = (r2
21 − 1)m2

1 and Δm2
31 = (r2

31 − 1)m2
1 where r21 =

m2
m1

= 1+
√

2(2+√
2)(

2+√
2
) and r31 = m3

m1
= 1+

√
2(2+√

2)

−1+
√

2(2+√
2)

are the mass ratios

obtained from Eq. (14). The parametric values of the light neutrino
mass, m1, (denoted by the black dots on the line) are in terms of meV.
The red marking indicates the experimental best fit for Δm2

21 and Δm2
31

along with 1σ and 3σ errors

m1 = 25.04+0.17
−0.15 meV,

m2 = 26.50+0.18
−0.16 meV,

m3 = 56.09+0.37
−0.34 meV.

(59)

The best fit values correspond to χ2
min = 0.03 and the error

ranges correspond to Δχ2 = 1, where Δχ2 = χ2 − χ2
min.

The results from our analysis are also shown in Fig. 1.
Note that the mass ratios Eq. (14), are incompatible

with the inverted mass hierarchy. Considerable experimental
studies are being conducted to determine the mass hierar-
chy [63,65–71] and we may expect a resolution in the not-
too-distant future. Observation of the inverted hierarchy will
obviously rule out the model.

Cosmological observations can provide limits on the sum
of the neutrino masses. The strongest such limit has been set
recently by the data collected using the Planck satellite [72,
73]:

∑
i

mi < 183 meV. (60)
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Our predictions Eqs. (59), give a sum

∑
i

mi = 107.6+0.71
−0.65 meV (61)

which is not far below the current cosmological limit.
Improvements in the cosmological bounds from Planck data
are expected. Future ground-based CMB polarisation experi-
ments such as Polarbear-2 [74] and Square Kilometer Array-
2 [75], could lower the cosmological limit to below 100 meV
and could also determine the mass hierarchy. Such results
may support or rule out our model.

Neutrinoless double beta decay experiments seek to deter-
mine the nature of the neutrinos as Majorana or not. These
experiments have so far set limits on the effective electron
neutrino mass [76] |mββ |, where

mββ = m1U
2
e1 + m2U

2
e2 + m3U

2
e3

= m1|Ue1|2 + m2|Ue2|2eiα21 + m3|Ue3|2ei(α31−2δ)

(62)

with U representing UPMNS. In all the four mixing scenarios
predicted by the model, Eqs. (35), (39), (43), (47), we have

|Ue1| =
√

2
3 cos π

16 , |Ue2| = 1√
3

and |Ue3| =
√

2
3 sin π

16 .

Also, all of them result in the phases:10

α21 = 0, α31 − 2δ = π. (63)

Therefore the model predicts

mββ = 2

3
m1 cos2 π

16
+ 1

3
m2 − 2

3
m3 sin2 π

16
. (64)

Substituting the neutrino masses from Eqs. (59) in Eq. (64)
we get

mββ = 23.47+0.16
−0.14 meV. (65)

The most stringent upper bounds on the value of |mββ | have
been set by Heidelberg–Moscow [77,78], Cuoricino [79],
NEMO3 [80], EXO200 [81] and GERDA [82] experiments.
Combining their results leads to the bounds of the order
of a few hundreds of meV [83]. New experiments such as
CUORE [84], SuperNEMO [85] and GERDA-2 [86] will
improve the measurements on |mββ | to a few tens of meV
and thus may support or rule out our model.

10 Note that both +i and −i appearing in the diagonal phase matrices
in Eqs. (35), (39), (43), (47) correspond to α31 − 2δ = π .

Renormalisation effects on the observables

The see-saw mechanism requires the existence of a heavy
Majorana mass term coupling the right-handed neuntrinos
together. Our model, combined with the observed neutrino
mass-squared differences, predicts that the neutrino masses
are a few tens of meVs. This places the see-saw scale (also the
flavon scale) at around 1012 GeV. As such, this is the scale
at which the fully constrained mass matrices, as proposed
in our model, are generated. In order to accurately compare
the model with the observed masses and mixing parameters,
it is necessary to calculate its renormalisation group (RG)
evolution from the high energy scale down to the electroweak
scale.

We use the Mathematica package, REAP [87], to numer-
ically study the RG evolution of the masses and the mixing
observables. The Mathematica code for calculating the RG
evolution relevant to the model is given below:

Needs [ " REAP‘RGESM‘ " ] ;
RGEAdd [ "SM" ] ;
R G E S e t I n i t i a l [ 1 0 ^ 1 2 ,
RGE \ [ T he t a ]12 −> 3 3 . 7 9 Degree ,
RGE \ [ T he t a ]23 −> 4 5 . 0 0 Degree ,
RGE \ [ T he t a ]13 −> 9 . 1 6 5 Degree ,
RGE \ [ D e l t a ] −> 9 0 . 0 0 Degree ,
RGEMlightes t −> 0 . 0 3 0 5 5 ,
RGE \ [ C a p i t a l D e l t a ] m2sol −> 0 . 0 0 0 1 1 1 9 ,
RGE \ [ C a p i t a l D e l t a ] m2atm −> 0 . 0 0 3 7 4 9 0 ,
RGEY \ [ Nu ] −> { { . 0 1 , 0 , 0} , {0 , . 0 1 , 0} ,
{0 , 0 , . 0 1 } } ] ;

RGESolve [ 1 0 0 , 1 0 ^ 1 2 ] ;
MNSParameters [ RGEGetSolu t ion [ 1 0 0 ,
RGEM\ [ Nu ] ] , RGEGetSolu t ion [ 1 0 0 ,RGEYe ] ]

In the above code, the initial values of the mixing observ-
ables and the masses are set at 1012 GeV. The mixing observ-
ables are chosen such that they correspond to TχM(χ=+ π

16 ).
We set the masses to be 30.55, 32.33 and 69.24 meV. These
specific values are chosen such that they are consistent with
Eq. (14) (at 1012 GeV) and give the best fit to the observed
mass-squared differences when renormalised to the elec-
troweak scale (100 GeV). MSNParameters in the code gives
the renormalised parameters at 100 GeV as its output and
thus we get θ12 = 33.78◦, θ23 = 45.00◦, θ13 = 9.165◦,
δ = 90.00◦, m1 = 24.63 meV, m2 = 26.07 meV, m3 =
56.16 meV11. From these values we conclude that, under
the conditions of our model, renormalisation has virtually no

11 These masses correspond to χ2
min = 1.23 as calculated using

Eq. (58).
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effect on the mixing parameters. On the other hand, it affects
our predictions for the masses, Eqs. (59), (61), (65), by a few
percentage points.

Analysis of RG equations [87–92] show that, even though
the neutrino masses (the fermion masses in general) evolve
appreciably, their ratios evolve slowly. This behaviour is
sometimes referred to as “universal scaling”. For our model,
the light neutrino masses evolve by around 20%, while their
ratios by less than 1%. This ensures that the mass ratios,
Eq. (14), theorised at the high energy scale remain practi-
cally valid at the electroweak scale as well.

5 Summary

In this paper we utilise the group Σ(72×3) to construct fully
constrained Majorana mass matrices for the neutrinos. These
mass matrices reproduce the results obtained in Ref. [22]
i.e. TχM(χ=± π

16 ) and TφM(φ=± π
16 ) mixings along with the

neutrino mass ratios, Eq. (14). The mixing observables as
well as the neutrino mass ratios are shown to be consistent
with the experimental data. TχM(χ=± π

16 ) and TφM(φ=± π
16 )

predict the Dirac CP-violating effect to be maximal (at fixed
θ13) and null, respectively. Using the neutrino mass ratios
in conjunction with the experimentally observed neutrino
mass-squared differences, we calculate the individual neu-
trino masses. We note that our predicted neutrino mass ratios
are incompatible with the inverted mass hierarchy. We also
predict the effective electron neutrino mass for the neutrino-
less double beta decay, |mββ |. We briefly discuss the current
status and future prospects of determining experimentally
the neutrino observables leading to the confirmation or the
falsification of our model. In the context of model building,
we carry out an in-depth analysis of the representations of
Σ(72 × 3) and develop the necessary groundwork to con-
struct the flavon potentials satisfying the Σ(72 × 3) flavour
symmetry. In the charged-lepton sector, we use two triplet
flavons with a suitably chosen set of VEVs which provide
a 3 × 3 trimaximal contribution towards the PMNS mix-
ing matrix. It also explains the hierarchical structure of the
charged-lepton masses. In the neutrino sector, we discuss four
cases of Majorana mass matrices. The Σ(72 × 3) sextet acts
as the most general placeholder for a fully constrained Majo-
rana mass matrix. The intended mass matrices are obtained
by assigning appropriate VEVs to the sextet flavon. It should
be noted that we need additional symmetries to ‘explain’ any
specific texture in the mass matrix.
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Appendix A: Irreps of Σ(72×3) and their tensor prod-
uct expansions

(i) 3 ⊗ 3 = 6 ⊕ 3̄ (66)

The generator matrices for the triplet representation are pro-
vided in Eq. (21). We define the basis for the sextet repre-
sentation using Eqs. (17). The resulting generator matrices
are

C ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 ω̄ 0 0 0 0
0 0 ω 0 0 0
0 0 0 1 0 0
0 0 0 0 ω̄ 0
0 0 0 0 0 ω

⎞
⎟⎟⎟⎟⎟⎟⎠

, E ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

V ≡ −1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
√

2
√

2
√

2
1 ω̄ ω

√
2

√
2ω̄

√
2ω

1 ω ω̄
√

2
√

2ω
√

2ω̄√
2

√
2

√
2 −1 −1 −1√

2
√

2ω̄
√

2ω −1 −ω̄ −ω√
2

√
2ω

√
2ω̄ −1 −ω −ω̄

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

X ≡ −1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 ω
√

2ω̄
√

2ω̄
√

2
1 ω̄ ω̄

√
2ω̄

√
2ω

√
2ω

ω̄ 1 ω̄
√

2ω
√

2ω̄
√

2ω√
2ω

√
2ω

√
2ω̄ −1 −1 −ω√

2ω
√

2
√

2 −1 −ω̄ −ω̄√
2

√
2ω

√
2 −ω̄ −1 −ω̄

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(67)

(ii) 3 ⊗ 3̄ = 1 ⊕ 8 (68)

With (a1, a2, a3)
T and (b̄1, b̄2, b̄3)

T transforming as 3 and
3̄, the tensor product expansion, Eq. (68), is given by
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1 ≡ 1√
3

(
a1b̄1 + a2b̄2 + a3b̄3

)
,

8 ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
6
a1b̄1 −

√
2√
3
a2b̄2 + 1√

6
a3b̄3

1√
2

(
a1b̄1 − a3b̄3

)
1√
2

(
a2b̄3 + a3b̄2

)
1√
2

(
a3b̄1 + a1b̄3

)
1√
2

(
a1b̄2 + a2b̄1

)
i√
2

(
a2b̄3 − a3b̄2

)
i√
2

(
a3b̄1 − a1b̄3

)
i√
2

(
a1b̄2 − a2b̄1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(69)

In this basis, the generator matrices of the octet representation
are

C ≡ 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 −1 0 0 −√

3 0 0
0 0 0 −1 0 0 −√

3 0
0 0 0 0 −1 0 0 −√

3
0 0

√
3 0 0 −1 0 0

0 0 0
√

3 0 0 −1 0
0 0 0 0

√
3 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

E ≡ 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
√

3 0 0 0 0 0 0
−√

3 −1 0 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 2 0 0 0 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2
0 0 0 0 0 2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V ≡ 1

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
√

3
√

3
√

3 3 3 3
0 0 3 3 3 −√

3 −√
3 −√

3√
3 3 4 −2 −2 0 0 0√
3 3 −2 1 1 −2

√
3

√
3

√
3√

3 3 −2 1 1 2
√

3 −√
3 −√

3
−3

√
3 0 2

√
3 −2

√
3 0 0 0

−3
√

3 0 −√
3

√
3 0 −3 3

−3
√

3 0 −√
3

√
3 0 3 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

X ≡ 1

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −2
√

3
√

3
√

3 0 −3 3
0 0 0 −3 3 2

√
3 −√

3 −√
3√

3 −3 1 1 4 −√
3

√
3 0

−2
√

3 0 −2 −2 1 0 2
√

3
√

3√
3 3 −2 −2 1 −2

√
3 0 −√

3
3

√
3 −√

3
√

3 0 3 3 0
0 −2

√
3 −2

√
3 0 −√

3 0 0 −3
−3

√
3 0 2

√
3

√
3 0 0 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(70)

The octet is a real representation.

(iii) 2 ⊗ 3̄ = 6 (71)

We define the basis for the doublet representation in such a
way that 6 is simply the Kronecker product of 2 and 3̄, i.e.

6 ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

a1b̄1

a1b̄2

a1b̄3

a2b̄1

a2b̄2

a2b̄3

⎞
⎟⎟⎟⎟⎟⎟⎠

(72)

where (a1, a2)
T and (b̄1, b̄2, b̄3)

T represent 2 and 3̄, respec-
tively. In such a basis, the generator matrices for the doublet
are

C ≡
(

1 0
0 1

)
, E ≡

(
1 0
0 1

)
,

V ≡ i√
3

(
1

√
2√

2 −1

)
, X ≡ i√

3

(
1

√
2ω̄√

2ω −1

)
.

(73)

(iv) 2 ⊗ 2 = 1 ⊕ 1(0,1) ⊕ 1(1,0) ⊕ 1(1,1) (74)

The singlets 1( p,q) transform as

C ≡ 1, E ≡ 1, V ≡ (−1)p, X ≡ (−1)q . (75)

In terms of the tensor product expansion, Eq. (74), these
singlets are given by

1 ≡ aT u b,

1(0,1) ≡ aT u1 b, 1(1,0) ≡ aT uω b, 1(1,1) ≡ aT uω̄ b
(76)

where a and b represent the doublets in Eq. (74) and u, u1,
uω and uω̄ are unitary matrices,

u = iσ2

u1 = uV, uω = uX, uω̄ = −u X̄ ,
(77)

with σ2 being the second Pauli matrix and V , X being the
generators of the doublet representation, Eq (73).

(v) 6 ⊗ 3 = 2 ⊕ 8 ⊕ 8 (78)

The C–G coefficients for the above tensor product expansion
are given by

2 ≡
(

1√
3
a1b1 + 1√

3
a2b2 + 1√

3
a3b3

1√
3
a4b1 + 1√

3
a5b2 + 1√

3
a6b3

)
, (79)
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8 ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1√
2
a1b1 + 1√

2
a3b3

1√
6
a1b1 −

√
2√
3
a2b2 + 1√

6
a3b3

1√
6
a2b3 − 1√

6
a3b2 + 1√

3
a4b2 − 1√

3
a4b3

1√
6
a3b1 − 1√

6
a1b3 + 1√

3
a5b3 − 1√

3
a5b1

1√
6
a1b2 − 1√

6
a2b1 + 1√

3
a6b1 − 1√

3
a6b2

− i√
6
a2b3 − i√

6
a3b2 − i√

3
a4b2 − i√

3
a4b3

− i√
6
a3b1 − i√

6
a1b3 − i√

3
a5b3 − i√

3
a5b1

− i√
6
a1b2 − i√

6
a2b1 − i√

3
a6b1 − i√

3
a6b2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (80)

8 ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1√
2
a4b1 + 1√

2
a6b3

1√
6
a4b1 −

√
2√
3
a5b2 + 1√

6
a6b3

− 1√
6
a5b3 + 1√

6
a6b2 − 1√

3
a2b1 + 1√

3
a3b1

− 1√
6
a6b1 + 1√

6
a4b3 − 1√

3
a3b2 + 1√

3
a1b2

− 1√
6
a4b2 + 1√

6
a5b1 − 1√

3
a1b3 + 1√

3
a2b3

i√
6
a5b3 + i√

6
a6b2 − i√

3
a2b1 − i√

3
a3b1

i√
6
a6b1 + i√

6
a4b3 − i√

3
a3b2 − i√

3
a1b2

i√
6
a4b2 + i√

6
a5b1 − i√

3
a1b3 − i√

3
a2b3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (81)

where (a1, a2, a3, a4, a5, a6)
T and (b1, b2, b3)

T represent
the sextet and the triplet appearing in the LHS of Eq. (78).

(vi) 6 ⊗ 3̄ = 3 ⊕ 6̄ ⊕ 3(0,1) ⊕ 3(1,0) ⊕ 3(1,1) (82)

The representations 3(0,1), 3(1,0) and 3(1,1) are simply the
product of the triplet 3 and the singlets 1(0,1), 1(1,0) and 1(1,1),
respectively,

3( p,q) = 3 1( p,q). (83)

The C–G coefficients for the tensor product expansion,
Eq. (82), are given by

3 ≡
⎛
⎜⎝

1√
2
a1b̄1 + 1

2a5b̄3 + 1
2a6b̄2

1√
2
a2b̄2 + 1

2a6b̄1 + 1
2a4b̄3

1√
2
a3b̄3 + 1

2a4b̄2 + 1
2a5b̄1

⎞
⎟⎠ , (84)

6̄ ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1√
2
a5b̄3 + 1√

2
a6b̄2

− 1√
2
a6b̄1 + 1√

2
a4b̄3

− 1√
2
a4b̄2 + 1√

2
a5b̄1

1√
2
a2b̄3 − 1√

2
a3b̄2

1√
2
a3b̄1 − 1√

2
a1b̄3

1√
2
a1b̄2 − 1√

2
a2b̄1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (85)

3(0,1) ≡
⎛
⎜⎝

1√
6
a1b̄1 + 1√

6
a{2b̄3} + 1√

3
a4b̄1 − 1

2
√

3
(a5b̄3 + a6b̄2)

1√
6
a2b̄2 + 1√

6
a{3b̄1} + 1√

3
a5b̄2 − 1

2
√

3
(a6b̄1 + a4b̄3)

1√
6
a3b̄3 + 1√

6
a{1b̄2} + 1√

3
a6b̄3 − 1

2
√

3
(a4b̄2 + a5b̄1)

⎞
⎟⎠ ,

(86)

3(1,0) ≡
⎛
⎜⎝

1√
6
a1b̄1 + ω√

6
a{2b̄3} + ω̄√

3
a4b̄1 − 1

2
√

3
(a5b̄3 + a6b̄2)

1√
6
a2b̄2 + ω√

6
a{3b̄1} + ω̄√

3
a5b̄2 − 1

2
√

3
(a6b̄1 + a4b̄3)

1√
6
a3b̄3 + ω√

6
a{1b̄2} + ω̄√

3
a6b̄3 − 1

2
√

3
(a4b̄2 + a5b̄1)

⎞
⎟⎠ ,

(87)

3(1,1) ≡
⎛
⎜⎝

1√
6
a1b̄1 + ω̄√

6
a{2b̄3} + ω√

3
a4b̄1 − 1

2
√

3
(a5b̄3 + a6b̄2)

1√
6
a2b̄2 + ω̄√

6
a{3b̄1} + ω√

3
a5b̄2 − 1

2
√

3
(a6b̄1 + a4b̄3)

1√
6
a3b̄3 + ω̄√

6
a{1b̄2} + ω√

3
a6b̄3 − 1

2
√

3
(a4b̄2 + a5b̄1)

⎞
⎟⎠ ,

(88)

where (a1, a2, a3, a4, a5, a6)
T and (b̄1, b̄2, b̄3)

T represent
the sextet and the conjugate triplet appearing in the LHS
of Eq. (82). In Eqs. (86)–(88) we have used the curly bracket
to denote the symmetric sum, i.e. a{i b̄ j} = ai b̄ j + a j b̄i .

(vii) 6 ⊗ 6 = 6̄ ⊕ 6̄ ⊕ 6̄ ⊕ 3︸ ︷︷ ︸
symm

⊕ 6̄ ⊕ 3(0,1) ⊕ 3(1,0) ⊕ 3(1,1)︸ ︷︷ ︸
antisymm

(89)

Here the sextet, 6̄, appears more than once in the symmetric
part. So there is no unique way of decomposing the product
space into the sum of the irreducible sextets, i.e. the C–G
coefficients are not uniquely defined. To solve this problem,
we utilise the group Σ(216 × 3), which has Σ(72 × 3) as
one of its subgroups. Σ(216 × 3) has three distinct types
of sextets [33], 60, 61, 62. The sextet of Σ(72 × 3) can be
embedded in any of these three sextets of Σ(216 × 3). The
tensor product expansion for two 60s of Σ(216 × 3) is given
by

60 ⊗ 60 = 6̄0 ⊕ 6̄1 ⊕ 6̄2 ⊕ 30︸ ︷︷ ︸
symm

⊕ 6̄0 ⊕ 9︸ ︷︷ ︸
antisymm

. (90)

In Eq. (90), the decomposition of the symmetric part into the
irreducible sextets is unique. Hence we embed the irreps of
Σ(72 × 3) in the irreps of Σ(216 × 3),

Σ(216 × 3) : 60⊗60=6̄0⊕6̄1⊕6̄2⊕30⊕6̄0⊕ 9

Σ(72 × 3) : 6 ⊗ 6 = 6̄ ⊕ 6̄ ⊕ 6̄ ⊕ 3 ⊕ 6̄ ⊕3(0,1)⊕3(1,0)⊕3(1,1),

(91)

to obtain a unique decomposition for the case of Σ(72 × 3)

as well. Thus the C–G coefficients for Eq. (89) are given by

6̄ ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
3
a{2b3} − 1√

3
a4b4

1√
3
a{3b1} − 1√

3
a5b5

1√
3
a{1b2} − 1√

3
a6b6

1√
6
a{5b6} − 1√

3
a{1b4}

1√
6
a{6b4} − 1√

3
a{2b5}

1√
6
a{4b5} − 1√

3
a{3b6}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (92)
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6̄ ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1√
3
a1b1 + 1√

6
a{2b6} + 1√

6
a{3b5}

− 1√
3
a2b2 + 1√

6
a{3b4} + 1√

6
a{1b6}

− 1√
3
a3b3 + 1√

6
a{1b5} + 1√

6
a{2b4}√

2√
3
a4b4 + 1√

6
a{2b3}√

2√
3
a5b5 + 1√

6
a{3b1}√

2√
3
a6b6 + 1√

6
a{1b2}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (93)

6̄ ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
6
a{1b4} + 1√

3
a{5b6}

1√
6
a{2b5} + 1√

3
a{6b4}

1√
6
a{3b6} + 1√

3
a{4b5}

−
√

2√
3
a1b1 − 1

2
√

3
a{2b6} − 1

2
√

3
a{3b5}

−
√

2√
3
a2b2 − 1

2
√

3
a{3b4} − 1

2
√

3
a{1b6}

−
√

2√
3
a3b3 − 1

2
√

3
a{1b5} − 1

2
√

3
a{2b4}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (94)

3 ≡
⎛
⎜⎝

1
2a{2b6} − 1

2a{3b5}
1
2a{3b4} − 1

2a{1b6}
1
2a{1b5} − 1

2a{2b4}

⎞
⎟⎠ , (95)

6̄ ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2
a[1b4]

1√
2
a[2b5]

1√
2
a[3b6]

1
2a[2b6] + 1

2a[3b5]
1
2a[3b4] + 1

2a[1b6]
1
2a[1b5] + 1

2a[2b4]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (96)

3(0,1) ≡

⎛
⎜⎜⎝

− 1√
6
a[2b3] + 1

2
√

3
a[2b6] − 1

2
√

3
a[3b5] + 1√

6
a[5b6]

− 1√
6
a[3b1] + 1

2
√

3
a[3b4] − 1

2
√

3
a[1b6] + 1√

6
a[6b4]

− 1√
6
a[1b2] + 1

2
√

3
a[1b5] − 1

2
√

3
a[2b4] + 1√

6
a[4b5]

⎞
⎟⎟⎠ ,

(97)

3(1,0) ≡

⎛
⎜⎜⎝

− ω√
6
a[2b3] + 1

2
√

3
a[2b6] − 1

2
√

3
a[3b5] + ω̄√

6
a[5b6]

− ω√
6
a[3b1] + 1

2
√

3
a[3b4] − 1

2
√

3
a[1b6] + ω̄√

6
a[6b4]

− ω√
6
a[1b2] + 1

2
√

3
a[1b5] − 1

2
√

3
a[2b4] + ω̄√

6
a[4b5]

⎞
⎟⎟⎠ ,

(98)

3(1,1) ≡

⎛
⎜⎜⎝

− ω̄√
6
a[2b3] + 1

2
√

3
a[2b6] − 1

2
√

3
a[3b5] + ω√

6
a[5b6]

− ω̄√
6
a[3b1] + 1

2
√

3
a[3b4] − 1

2
√

3
a[1b6] + ω√

6
a[6b4]

− ω̄√
6
a[1b2] + 1

2
√

3
a[1b5] − 1

2
√

3
a[2b4] + ω√

6
a[4b5]

⎞
⎟⎟⎠

(99)

where (a1, a2, a3, a4, a5, a6)
T and (b1, b2, b3, b4, b5, b6)

T

represent the sextets appearing in the LHS of Eq. (89). In
Eqs. (92)–(99) we have used the curly bracket and the square
bracket to denote the symmetric sum and the antisymmetric
sum, respectively, i.e. a{i b j} = aib j + a jbi and a[i b j] =
aib j − a jbi .

(viii) 6 ⊗ 6̄ = 1 ⊕ 8 ⊕ 1(0,1) ⊕ 1(1,0) ⊕ 1(1,1) ⊕ 8 ⊕ 8 ⊕ 8
(100)

We are not listing the C–G coefficients for the above expan-
sion, since they are not used in our model.

AppendixB:Hierarchical structure of the charged-lepton
mass matrix

The triplet flavons, φα and φβ , transform as 3 × −i and
3 × i under Σ(72 × 3) × C4, Table 3. L†τR , L†μR , L†eR
transform as 3 × i , 3 × 1, 3 × −1, respectively. Therefore,
the flavons and their tensor products which transform as 3̄
under Σ(72 × 3) and −i , 1, −1 under C4 couple with L†τR ,
L†μR , L†eR , respectively. C4 is responsible for restricting
the allowed couplings and produces the hierarchical struc-
ture of the mass matrix. In Sect. 3, we showed that φ̄β and
Āβα couple to the τ and μ sectors. After symmetry break-
ing, the flavons attain the VEVs 〈φα〉 = V †(1, 0, 0)Tm and
〈φβ〉 = V †(0, 0, 1)Tm, Eq. (24). The resulting tau and muon
masses are of the order of ε and ε2, respectively. The term
H.T . in Eq. (22) contains all the higher-order products of the
flavons transforming as 3̄ and − i , 1, − 1 coupling to τ , μ, e
sectors. In this appendix, we analyse the cubic and the quar-
tic products which give rise O(ε3) and O(ε4) mass matrix
elements, respectively in Eq. (25). We neglect the products
beyond quartic order.

Cubic products

(i) 3 ⊗ 3 ⊗ 3 = (6 ⊕ 3̄) ⊗ 3

= 2 ⊕ 8 ⊕ 8 ⊕ 1 ⊕ 8 (101)

(ii) 3̄ ⊗ 3̄ ⊗ 3̄ = (6̄ ⊕ 3) ⊗ 3̄

= 2 ⊕ 8 ⊕ 8 ⊕ 1 ⊕ 8 (102)

(iii) 3 ⊗ 3 ⊗ 3̄ = (6 ⊕ 3̄) ⊗ 3̄

= 3 ⊕ 6̄ ⊕ 3(0,1) ⊕ 3(1,0) ⊕ 3(1,1) ⊕ 6̄ ⊕ 3
(103)

The above expansions, Eqs. (101)–(103), do not contribute
to any coupling, since 3̄ does not appear in their RHS.

(iv) 3̄ ⊗ 3̄ ⊗ 3 = (6̄ ⊕ 3) ⊗ 3

= 3̄ ⊕ 6 ⊕ 3̄(0,1) ⊕ 3̄(1,0) ⊕ 3̄(1,1) ⊕ 6 ⊕ 3̄
(104)

In the above expansion, 3̄ appears twice in the RHS. In terms
of the components of the triplets, these 3̄s are given by

First 3̄ = 1

2
√

2

(
ā1(2b̄1c1 + b̄2c2 + b̄3c3) + b̄1(ā2c2 + ā3c3),

ā2(2b̄2c2 + b̄3c3 + b̄1c1) + b̄2(ā3c3 + ā1c1),

ā3(2b̄3c3 + b̄1c1 + b̄2c2) + b̄3(ā1c1 + ā2c2)
)T

,

(105)
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Table 4 Cubic products of φα and φβ of the form 3̄⊗ 3̄⊗ 3 leading to
3̄s

C4 First 3̄ Second 3̄

φ̄αφ̄αφα i
(

1√
2
, 0, 0

)
(0, 0, 0)

φ̄αφ̄αφβ − i (0, 0, 0) (0, 0, 0)

φ̄αφ̄βφα − i
(

0, 0, 1
2
√

2

) (
0, 0, 1

2

)

φ̄αφ̄βφβ i
(

1
2
√

2
, 0, 0

) (− 1
2 , 0, 0

)

φ̄β φ̄βφα i (0, 0, 0) (0, 0, 0)

φ̄β φ̄βφβ − i
(

0, 0, 1√
2

)
(0, 0, 0)

2nd 3̄ = 1

2

(
b̄1(ā2c2 + ā3c3) − ā1(b̄2c2 + b̄3c3),

b̄2(ā3c3 + ā1c1) − ā2(b̄3c3 + b̄1c1),

b̄3(ā1c1 + ā2c2) − ā3(b̄1c1 + b̄2c2)
)T

(106)

where (ā1, ā2, ā3)
T , (b̄1, b̄2, b̄3)

T and (c1, c2, c3)
T are the

3̄, 3̄ and 3 appearing in the LHS of Eq. (104). The prod-
uct 3̄ ⊗ 3̄ ⊗ 3 can be obtained in terms of the flavons
φα and φβ in several different ways. These are listed in
Table 4. For each combination of flavons, we provide the
correspondingC4 representation. Under 〈φα〉 ∝ (1, 0, 0) and
〈φβ〉 ∝ (0, 0, 1),12 we calculate the vacuum alignments of
the cubic 3̄s given in Eqs. (105) and (106). These are listed
in the last two columns of the table.

The products transforming as i under C4 cannot couple to
any of the right-handed charged leptons. On the other hand
φ̄αφ̄αφβ , φ̄αφ̄βφα and φ̄β φ̄βφβ , which transform as −i , cou-
ple with τR . From the table, it is clear that these products
lead to non-vanishing elements in the third position only.
The cubic products provide O(ε3) contributions to the mass
matrix. The aforementioned position corresponds to the posi-
tion of the O(ε3) element in the mass matrix, Eq. (25).

Quartic products

(i) 3⊗3 ⊗ 3 ⊗ 3

= (6 ⊕ 3̄) ⊗ (6 ⊕ 3̄)

= 6̄ ⊕ 6̄ ⊕ 6̄ ⊕ 3 ⊕ 6̄ ⊕ 3(0,1) ⊕ 3(1,0) ⊕ 3(1,1)

⊕ 3 ⊕ 6̄ ⊕ 3(0,1) ⊕ 3(1,0) ⊕ 3(1,1)

⊕ 3 ⊕ 6̄ ⊕ 3(0,1) ⊕ 3(1,0) ⊕ 3(1,1)

⊕ 6̄ ⊕ 3 (107)

(ii) 3⊗3 ⊗ 3̄ ⊗ 3̄

= (6 ⊕ 3̄) ⊗ (6̄ ⊕ 3)

12 For the sake of brevity, in this appendix we omit V †, m and the trans-
position when referring to the VEVs, i.e. (1, 0, 0) ≡ V †(1, 0, 0)Tm.

Table 5 Quartic products of φα and φβ of the form 3̄ ⊗ 3̄ ⊗ 3̄ ⊗ 3̄
leading to 3̄s

C4 First 3̄ Second 3̄ Third 3̄ 4th 3̄

φ̄αφ̄αφ̄αφ̄α 1 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

φ̄αφ̄αφ̄αφ̄β −1 (0, 0, 1
2
√

2
) (0, 0, 0) (0, 0, 0) (0, 0, 0)

φ̄αφ̄αφ̄β φ̄β 1 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

φ̄αφ̄β φ̄β φ̄β −1 ( −1
2
√

2
, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

φ̄β φ̄β φ̄β φ̄β 1 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

= 1 ⊕ 8 ⊕ 1(0,1) ⊕ 1(1,0) ⊕ 1(1,1) ⊕ 8 ⊕ 8

⊕ 2 ⊕ 8 ⊕ 8 ⊕ 2 ⊕ 8 ⊕ 8

⊕ 1 ⊕ 8 (108)

(iii) 3̄⊗3̄ ⊗ 3 ⊗ 3̄

= (6̄ ⊕ 3) ⊗ 3 ⊗ 3̄

= (3̄ ⊕ 6 ⊕ 3̄(0,1) ⊕ 3̄(1,0) ⊕ 3̄(1,1) ⊕ 6 ⊕ 3̄) ⊗ 3̄

= 6̄ ⊕ 3 ⊕ 3 ⊕ 6̄ ⊕ 3(0,1) ⊕ 3(1,0) ⊕ 3(1,1)

⊕ 6̄ ⊕ 3(0,1) ⊕ 6̄ ⊕ 3(1,0) ⊕ 6̄ ⊕ 3(1,1)

⊕ 3 ⊕ 6̄ ⊕ 3(0,1) ⊕ 3(1,0) ⊕ 3(1,1) ⊕ 6̄ ⊕ 3
(109)

The above expansions, Eqs. (107)–(109), do not contribute
to any coupling, since 3̄ does not appear in their RHS.

(iv) 3̄⊗3̄ ⊗ 3̄ ⊗ 3̄ (110)

This tensor product corresponds to the conjugation of
Eq. (107). The conjugate expansion will have four 3̄s13 in the
RHS. The product 3̄ ⊗ 3̄ ⊗ 3̄ ⊗ 3̄ can be obtained in terms of
the flavons φα and φβ in several different ways. All these are
listed in Table 5. For each combination of flavons, we provide
the corresponding C4 representation. Under 〈φα〉 ∝ (1, 0, 0)

and 〈φβ〉 ∝ (0, 0, 1), we calculate the vacuum alignments of
the above-mentioned four 3̄s and list them in the table.

(v) 3⊗3 ⊗ 3̄ ⊗ 3 (111)

This tensor product corresponds to the conjugation of
Eq. (109). The conjugate expansion will have four 3̄s14 in
the RHS. All the products of φα and φβ in the form of
3⊗ 3⊗ 3̄⊗ 3 are listed in Table 6, along with their respec-
tive C4 representations. Under 〈φα〉 ∝ (1, 0, 0) and 〈φβ〉 ∝

13 For the sake of brevity, we do not provide the explicit expressions of
these quartic 3̄s. However, it is straightforward to obtain them, as was
the case for the cubic 3̄s, Eqs. (105, 106).
14 We do not provide the expressions of these 3̄s also.
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Table 6 Quartic products of φα and φβ of the form 3 ⊗ 3 ⊗ 3̄ ⊗ 3
leading to 3̄s

C4 First 3̄ Second 3̄ Third 3̄ 4th 3̄

φαφαφ̄αφα −1 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

φαφαφ̄αφβ 1 (0, 0, 0) (0,− 1
2 , 0) (0, 0, 0) (0, 0, 0)

φαφαφ̄βφα 1 (0, 0, 0) (0, 0, −1
2
√

2
) (0, 0, 0) (0, 0, 0)

φαφαφ̄βφβ −1 (0, 0, 0) ( −1
2
√

2
, 0, 0) (0, 0, 0) (0, 0, 0)

φβφβφ̄αφα −1 (0, 0, 0) (0, 0, 1
2
√

2
) (0, 0, 0) (0, 0, 0)

φβφβφ̄αφβ 1 (0, 0, 0) ( 1
2
√

2
, 0, 0) (0, 0, 0) (0, 0, 0)

φβφβφ̄βφα 1 (0, 1
2 , 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

φβφβφ̄βφβ −1 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 1), the four 3̄s attain specific alignments which we have
calculated and provided in the table.

The quartic products in Tables 5, 6 with theC4 representa-
tions 1 and −1 couple to μR and eR , respectively. The VEVs
with C4 ≡ 1 have non-zero elements in the first, the sec-
ond and the third positions while the VEVs with C4 ≡ −1
have non-zero elements in the first and the third positions
only. The quartic products provide O(ε4) contributions to
the mass matrix. The aforementioned positions correspond
to the positions of the O(ε4) elements in the mass matrix,
Eq. (25).

Appendix C: Flavon potentials

Here we discuss the flavon potentials that lead to the vacuum
alignments assumed in our model. It should be noted that
even though our construction results in the required VEVs,
we are not doing an exhaustive analysis of the most general
flavon potentials involving all the possible invariant terms.
However, the content we include is sufficient to realise our
VEVs.

The triplet flavons: φα , φβ

First we consider the triplet flavons φα and φβ . Our target
is to obtain the VEVs, 〈φα〉 = V (1, 0, 0)Tm and 〈φβ〉 =
V (0, 0, 1)Tm, Eqs. (24). The flavons φα and φβ transform as
3, Table 3. The 3 × 3 maximal matrix V , Eqs. (21), is one
of the generators of 3. Therefore if the potentials of φα and
φβ have minima at (1, 0, 0)Tm and (0, 0, 1)Tm, then they
have minima at V (1, 0, 0)Tm and V (0, 0, 1)Tm as well. The
3 × 3 cyclic matrix E , Eqs. (21), is another generator of 3.
Therefore, if the potential has a minimum at (1, 0, 0)Tm, then
it has a minimum at (0, 0, 1)Tm also. So, for obtaining the
target VEVs, all we need to do is to construct a potential with
a minimum at (1, 0, 0)Tm.

An invariant term (singlet) can be constructed using the
tensor product expansion of a 3 and a 3̄, Eq. (68). This
expansion is valid for both Σ(72 × 3) and SU (3). It is well
known that the singlet constructed from a triplet and its con-
jugate is the square of the norm of the triplet, e.g. for the
flavon φα = (φα1, φα2, φα3)

T , we have |φα|2 = φ̄α1φα1 +
φ̄α2φα2 + φ̄α3φα3. Next we take the symmetric part of the
tensor product of two 3s to obtain a 6, similar to Eq. (18),

Sα =

⎛
⎜⎜⎜⎜⎜⎜⎝

φ2
α1

φ2
α2

φ2
α3√

2φα2φα3√
2φα3φα1√
2φα1φα2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (112)

With this sextet, we may construct a singlet by combining it
with its conjugate, i.e. S̄Tα Sα . It can be shown that S̄Tα Sα =
|φα|4. Therefore, without loss of generality we may choose,

Tφα = (|φα|2 − m2)2 (113)

as the potential term having a minimum at (1, 0, 0)Tm. Tφα

is invariant not only under Σ(72 × 3) but also under the
continuous symmetry, SU (3), and hence the minima of the
potential are not discrete. This issue can be tackled in two
different ways. We may add higher-order non-renormalisable
terms which break SU (3) to Σ(72×3). Or we may introduce
extra flavons whose sole purpose is to break SU (3) while
maintaining renormalisability. In this paper we choose the
later approach.

To achieve SU (3) breaking we introduce a flavon ηα =
(ηα1, ηα2)

T , which transforms as a doublet under Σ(72×3),
Eqs. (73). For ηα , we construct the following potential:

Tηα = (|ηα|2 − m2)2 + Re2(ηTα u1 ηα)

+ Re2(ω̄ ηTα uω ηα) + Re2(ω ηTα uω̄ ηα), (114)

where Re2 denotes the square of the real part. Since the terms
ηTα u1 ηα , ηTα uω ηα and ηTα uω̄ ηα transform as 1(0,1), 1(1,0)

and 1(1,1), respectively, Eq. (76), their squares are invariants.
Therefore it is evident that Re2(ηTα u1 ηα), Re2(ω̄ ηTα uω ηα)

and Re2(ω ηTα uω̄ ηα) are also invariants. In terms of the com-
ponents of ηα , the invariants in Eq. (114) are given by

(|ηα |2 − m2)2 = (η̄α1ηα1 + η̄α2ηα2 − m2)2, (115)

Re2(ηTα u1 ηα) = Re2

(
i
√

2√
3

(η2
α1 − √

2ηα1ηα2 − η2
α2)

)
, (116)

Re2(ω̄ ηTα uω ηα) = Re2

(
ω̄
i
√

2√
3

(ωη2
α1 − √

2ηα1ηα2 − ω̄η2
α2)

)
,

(117)
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Re2(ω ηTα uω̄ ηα) = Re2

(
ω
i
√

2√
3

(ω̄η2
α1 − √

2ηα1ηα2 − ωη2
α2)

)
.

(118)

If we assign

〈ηα〉 = (1, 0)Tm, (119)

it is evident that each of these invariants vanishes. There-
fore the potential, Eq. (114), attains its minimum value of
zero at ηα = (1, 0)Tm (and also at the states generated by
the discrete transformations on (1, 0)Tm). Note that the first
term, (|ηα|2−m2)2, is SU (2) invariant. The other three terms
break the continuous SU (2) group and all itsU (1) subgroups
so that only discrete symmetries generated by Eqs. (73) are
present in the potential.

The Kronecker product of ηα(2) and φ̄α(3̄), calculated
using Eq. (72), leads to a sextet (6),

Kα =

⎛
⎜⎜⎜⎜⎜⎜⎝

ηα1φ̄α1

ηα1φ̄α2

ηα1φ̄α3

ηα2φ̄α1

ηα2φ̄α2

ηα2φ̄α3

⎞
⎟⎟⎟⎟⎟⎟⎠

. (120)

We utilise Sα , Eq. (112), and Kα , Eq. (120), to couple together
the flavons ηα , φα and their conjugates and thus we construct

Tφαηα = (
S̄α − K̄α

)T
(Sα − Kα) (121)

as an invariant.15 If we assign

〈φα〉 = (1, 0, 0)Tm, (122)

its symmetric product, Sα , becomes (1, 0, 0, 0, 0, 0)Tm2.
The Kronecker product, Kα , of 〈η〉 = (1, 0)Tm and 〈φα〉 =
(1, 0, 0)Tm also becomes (1, 0, 0, 0, 0, 0)Tm2. Therefore,
Tφαηα vanishes (which is its minimum value) at assigned
VEVs, Eqs. (119), (122).

Combining Eqs. (113), (114), (121), we obtain the follow-
ing renormalisable potential term for the flavon φα:

Tφα + Tηα + Tφαηα (123)

which is Σ(72 × 3) invariant and at the same time devoid
of continuous symmetries. A similar potential can be con-
structed for the flavon φβ also,

Tφβ + Tηβ + Tφβηβ , (124)

15 Under the group C4, Table 3, φα belongs to −i . Hence ηα needs to
transform as i to ensure the invariance of Eq. (121).

Table 7 The full flavour structure of the model. The flavons in the upper
half, φα , φβ , ξ , are the ones whose VEVs form the charged-lepton and
neutrino mass matrices. The lower half comprises extra flavons added
to break the continuous symmetries in the potentials. The sole purpose
of C3 is to avoid unwanted couplings between the charged-lepton and
the neutrino sectors

eR μR τR L νR φα φβ ξ

Σ(72 × 3) 1 1 1 3̄ 3̄ 3 3 6

C4 −1 1 i 1 1 −i i 1

C3 ω ω ω ω ω 1 1 ω

ηα ηβ η φa φb

Σ(72 × 3) 2 2 2 3 3

C4 i −i 1 1 1

C3 1 1 1 ω̄ ω̄

by introducing a doublet ηβ .16 The expressions for the three
invariants in Eq. (124) can be found by replacing α with β

in Eqs. (112)–(118), (120), (121). We also write the term

Tφαφβ = |φ†
αφβ |2, (125)

which couples φα and φβ together and ensures that their
VEVs are orthogonal to each other, Eqs. (24). In conclusion,
the potential,

Tφα + Tφβ + Tηα + Tηβ + Tφαηα + Tφβηβ + Tφαφβ (126)

which is invariant under Σ(72 × 3), has a discrete set of
minima. One among them corresponds to the required VEVs,
Eqs. (24). The flavons φα and φβ attain these VEVs through
the spontaneous symmetry breaking of Σ(72 × 3).

The sextet flavon: ξ

We studied the invariants that can be constructed using the
sextet ξ up to the quartic order (renormalisable) and found
that these terms are insufficient to obtain a potential devoid
of continuous symmetries (SU (3) and its continuous sub-
groups). Therefore, as in the previous subsection, we intro-
duce extra flavons to break the continuous symmetries and
to ensure that the potential has a discrete set of minima. The
extra flavons introduced here are a doublet η and two triplets
φa ,φb. The flavons used in the charged-lepton sector (φα ,φβ ,
ηα , ηβ ) are kept distinct from the flavons used in the neutrino
sector (ξ , η, φa , φb) in order to avoid unwanted couplings
between the two sectors. Table 7 provides the complete list
of flavons in the model along with the fermions.

16 Under the group C4, Table 3, φβ belongs to i . Hence ηβ needs to
transform as −i to ensure the invariance of Tφβηβ in Eq. (124).
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Our first step is to write the potential terms for η, φa and
φb, similar to Eq. (126),

Tφa + Tφb + Tη + Tφaη + Tφbη + Tφaφb . (127)

The individual invariant terms in Eq. (127) are

Tφa = (|φa |2 − m2)2, (128)

Tφb = (|φb|2 − m2)2, (129)

Tη = (|η|2 − m2)2

+ Re2(ηT u1 η) + Re2(ω̄ ηT uω η) + Re2(ω ηT uω̄ η),

(130)

Tφaη = (
S̄a − K̄a

)T
(Sa − Ka) , (131)

Tφbη = (
S̄b − K̄b

)T
(Sb − Kb) , (132)

Tφaφb = |φ†
aφb|2, (133)

where Sa , Ka and Sb, Kb are defined similar to Sα , Kα in
Eqs. (112), (120) having φα , ηα replaced with φa , η and
φb, η, respectively. As described earlier, it is straightforward
to show that each term in Eqs. (128)–(133) vanishes, if we
assign the following VEVs:

〈η〉 =(1, 0)Tm, (134)

〈φa〉 =(1, 0, 0)Tm, (135)

〈φb〉 =(0, 0, 1)Tm. (136)

Sa and Sb are the sextets constructed from φa and φb,
respectively. We may also construct a sextet combining φa

and φb together,

Sab =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φa1φb1

φa2φb2

φa3φb3
1√
2

(φa2φb3 + φa3φb2)
1√
2

(φa3φb1 + φa1φb3)
1√
2

(φa1φb2 + φa2φb1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (137)

Using the VEVs, Eqs. (135), (136), we obtain

〈Sa〉 = (1, 0, 0, 0, 0, 0)Tm2, (138)

〈Sb〉 = (0, 0, 1, 0, 0, 0)Tm2, (139)

〈Sab〉 = (0, 0, 0, 0,
1√
2
, 0)Tm2. (140)

We use the sextet ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) to construct
the Majorana neutrino mass matrix, Eq. (20). In the VEV
of ξ , if any two among the three elements ξ4, ξ5 and ξ6

become zero, then two off-diagonal elements in the mass
matrix vanishes. Uν effectively becomes a 2 × 2 unitary

matrix and UPMNS = VUν attains one trimaximal column.
In all the four VEVs, Eqs. (31), (36), (40), (44), we can see
that ξ4 = 0 and ξ6 = 0 leading to the trimaximal second col-
umn, i.e. |Ue2| = |Uμ2| = |Uτ2| = 1√

3
. Both TχM and TφM

belong to the larger class of mixing schemes in which one
neutrino is trimaximally mixed [7]. As the first step in con-
structing the potential for ξ , we consider the tensor product
of two ξs, Eq. (89), and obtain a sextet,

X̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
3
ξ{2ξ3} − 1√

3
ξ4ξ4

1√
3
ξ{3ξ1} − 1√

3
ξ5ξ5

1√
3
ξ{1ξ2} − 1√

3
ξ6b6

1√
6
ξ{5ξ6} − 1√

3
ξ{1ξ4}

1√
6
ξ{6ξ4} − 1√

3
ξ{2ξ5}

1√
6
ξ{4ξ5} − 1√

3
ξ{3ξ6}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (141)

as shown in Eq. (92). X̄ transforms as a 6̄. Note that, when
ξ4 = 0 and ξ6 = 0, the fourth and sixth elements of X̄ also
vanishes.

If the second column of UPMNS is trimaximally mixed,
then the VEV, 〈ξ 〉, as well as the resulting 〈X̄〉 have non-zero
elements only in the first, second, third and the fifth positions.
As shown in Eqs. (138), (139), (140), 〈Sa〉, 〈Sb〉 and 〈Sab〉
have non-zero elements only in the first, third and the fifth
position, respectively. Therefore, a linear combination of 〈ξ 〉,
〈Xξ 〉, 〈Sa〉, 〈Sb〉 and 〈Sab〉 can be constructed which fully
vanishes. With this information in hand, we construct the
potential term,

Tξ = (
m ξ̄ + c̄1 X̄ + c̄2 S̄a + c̄3 S̄b + c̄4 S̄ab

)T
× (m ξ + c1X + c2Sa + c3Sb + c4Sab) ,

(142)

where c1, c2, c3 and c4 are constants. Tξ couples the sextet
flavon, ξ with the triplet flavons, φa and φb. Any neutrino
mass matrix which leads to a trimaximally mixed column
can be obtained using a potential of the form, Eq. (142). The
values of the constants resulting in the four VEVs, Eqs. (31),
(36), (40), (44), are given in Table 8.

Using an appropriate choice of the constants, c1, c2, c3,
and c4, we may obtain any mixing scheme within the con-
straint of a trimaximal column. It can be shown that, having
the symmetry of c2 and c3 being real (invariant under com-
plex conjugation) leads to TχM. In the case of TφM, the
symmetry is the simultaneous conjugation and interchange
of c2 and c3. Additionally, the fact that c1, c2, c3 and c4

are related by simple ratios points to the presence of more
symmetries, the study of which is beyond the scope of this
paper.

With the help of first- and second-order partial derivatives
of a given potential, its minima can be calculated, as was done
in previous work, e.g. in Ref. [93]. Using such a procedure,
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Table 8 The values of constants appearing in the potential, Eq. (142),
for the sextet flavon, ξ , corresponding to the four cases. We have t =
tan( π

8 ) = √
2 − 1

c1 c2 c3 c4

Eq. (31)
√

3 −√
2t −2

√
2t

√
2

Eq. (36)
√

3 −2
√

2t −√
2t

√
2

Eq. (40) −√
3 1√

2
(1 − i3t) 1√

2
(1 + i3t) −3

√
2t

Eq. (44) −√
3 1√

2
(1 + i3t) 1√

2
(1 − i3t) −3

√
2t

along with numerical analysis, we have verified that every
potential discussed here has a discrete set of minima and that
the quoted VEVs are included among those minima in each
case.

References

1. C. Patrignani et al. (Particle Data Group), The review of particle
physics (2016). Chin. Phys. C 40, 100001 (2016)

2. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler,
T. Schwetz, Updated fit to three neutrino mixing: exploring the
accelerator-reactor complementarity, JHEP 2017(1), 87 (2017),
arXiv:1611.1514. http://www.nu-fit.org/?q=node/12

3. P.F. Harrison, D.H. Perkins, W.G. Scott, A redetermination
of the neutrino mass-squared difference in tri-maximal mixing
with terrestrial matter effects. Phys. Lett. B 458, 79–92 (1999).
arXiv:hep-ph/9904297

4. P.F. Harrison, D.H. Perkins, W.G. Scott, Tri-bimaximal mixing and
the neutrino oscillation data. Phys. Lett. B 530, 167–173 (2002).
arXiv:hep-ph/0202074

5. P.F. Harrison, W.G. Scott, Symmetries and generalisations of tri-
bimaximal neutrino mixing. Phys. Lett. B 535, 163–169 (2002).
arXiv:hep-ph/0203209

6. Z.-Z. Xing, Nearly tri-bimaximal neutrino mixing and CP violation.
Phys. Lett. B 533, 85–93 (2002). arXiv:hep-ph/0204049

7. P.F. Harrison, W.G. Scott, Permutation symmetry, tri-bimaximal
neutrino mixing and the S3 group characters. Phys. Lett. B 557,
76–86 (2003). arXiv:hep-ph/0302025

8. C.H. Albright, W. Rodejohann, Comparing trimaximal mixing and
its variants with deviations from tri-bimaximal mixing. Eur. Phys.
J. C 62, 599–608 (2009). arXiv:0812.0436

9. C.H. Albright, A. Dueck, W. Rodejohann, Possible alternatives
to tri-bimaximal mixing. Eur. Phys. J. C 70, 1099–1110 (2010).
arXiv:1004.2798

10. C. Jarlskog, Commutator of the quark mass matrices in the standard
electroweak model and a measure of maximal CP nonconservation.
Phys. Rev. Lett. 55, 1039–1042 (1985)

11. C. Jarlskog, A basis independent formulation of the connection
between quark mass matrices, CP violation and experiment. Z.
Phys. C 29, 491 (1985)

12. C. Jarlskog, Jarlskog responds. Phys. Rev. Lett. 57, 2875–2875
(1986)

13. C. Jarlskog, Reply to comment on Jarlskog’s conditions for CP
invariance. Phys. Rev. D 39, 988–988 (1989)

14. C. Jarlskog, Invariants of lepton mass matrices and CP and T viola-
tion in neutrino oscillations. Phys. Rev. Lett. 609, 323–329 (2005).
arXiv:hep-ph/0412288

15. F.P. An et al. (Daya Bay Collaboration), Observation of electron-
antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 108,
171803 (2012). arXiv:1203.1669

16. F. Feruglio, C. Hagedorn, R. Ziegler, Lepton mixing parame-
ters from discrete and CP symmetries. JHEP 07, 027 (2013).
arXiv:1211.5560

17. B. Hu, Trimaximal-Cabibbo neutrino mixing: a parametrization in
terms of deviations from tri-bimaximal mixing. Phys. Rev. D 87,
053011 (2013). arXiv:1212.4079

18. N. Memenga, W. Rodejohann, H. Zhang, A4 flavor symmetry
model for Dirac-neutrinos and sizableUe3. Phys. Rev. D87, 053021
(2013). arXiv:1301.2963

19. H.B. Benaoum, Broken S3 neutrinos. Phys. Rev. D 87, 073010
(2013). arXiv:1302.0950

20. F. Feruglio, C. Hagedorn, R. Ziegler, A realistic pattern of lepton
mixing and masses from S4 and CP. Eur. Phys. J. C 74, 2753 (2014).
arXiv:1303.7178

21. R. Krishnan, P.F. Harrison, W.G. Scott, Simplest neutrino mixing
from S4 symmetry. JHEP 04, 087 (2013). arXiv:1211.2000

22. R. Krishnan, A model for large θ13 constructed using the eigen-
vectors of the S4 rotation matrices. J. Phys. Conf. Ser. 447, 012043
(2013). arXiv:1211.3364

23. G.-J. Ding, S.F. King, C. Luhn, A.J. Stuart, Spontaneous CP vio-
lation from vacuum alignment in S4 models of leptons. JHEP 05,
084 (2013). arXiv:1303.6180

24. M. Holthausen, K.S. Lim, M. Lindner, Lepton mixing patterns from
a scan of finite discrete groups. Phys. Lett. B 721, 61–67 (2013).
arXiv:1212.2411

25. S.F. King, T. Neder, A.J. Stuart, Lepton mixing predictions from
Δ(6n2) family symmetry. Phys. Lett. B 726, 312–315 (2013).
arXiv:1305.3200

26. V.V. Vien, A.E.C. Hernandez, H.N. Long, The Δ(27) flavor 3-3-1
model with neutral leptons. Nucl. Phys. B 913, 792–814 (2016).
arXiv:1601.3300

27. V.V. Vien, Lepton mass and mixing in a neutrino mass model based
on S4 flavor symmetry. Int. J. Mod. Phys. A 31, 1650039 (2016).
arXiv:1603.3933

28. P. Minkowski, μ → eγ at a rate of one out of 109 muon decays?
Phys. Lett. B 67, 421 (1977)

29. M. Gell-Mann, P. Ramond, R. Slansky, Supergravity, in Proceed-
ings of the Workshop, Stony Brook, New York, ed. by F. van
Nieuwenhuizen and D. Freedman (Amsterdam, North Holland)
(1979), p. 315

30. T. Yanagida, Horizontal symmetry and masses of neutrinos. Prog.
Theor. Phys. 64, 1103 (1980)

31. R.N. Mohapatra, G. Senjanovic, Neutrino mass and spontaneous
parity nonconservation. Phys. Rev. Lett. 44, 912 (1980)

32. H.S.M. Coxeter, Regular complex polytopes, 2nd edn. (Cambridge
University Press, Cambridge, 1991)

33. W. Grimus, P.O. Ludl, Principal series of finite subgroups of SU (3).
J. Phys. A Math. Theor. 43, 445209 (2010). arXiv:1006.0098

34. P.O. Ludl, Systematic analysis of finite family symmetry groups
and their application to the lepton sector. Diploma thesis, University
of Vienna (2010). arXiv:0907.5587

35. R. Coquereaux, J.-B. Zuber, Drinfeld doubles for finite sub-
groups of SU (2) and SU (3) lie groups. SIGMA 9, 039 (2013).
arXiv:1212.4879

36. C. Hagedorn, A. Meroni, L. Vitale, Mixing patterns from the
groups Σ(nφ). J. Phys. A Math. Theor. 47, 055201 (2014).
arXiv:1307.5308

37. A. Merle, R. Zwicky, Explicit and spontaneous breaking of SU (3)

into its finite subgroups. JHEP 02, 128 (2012). arXiv:1110.4891
38. The GAP Group, GAP—groups, algorithms, and programming,

cersion 4.7.2 (2013). http://www.gap-system.org
39. H.U. Besche, B. Eick, E.A. O’Brien, SmallGroups—a GAP pack-

age. http://www.icm.tu-bs.de/ag_algebra/software/small/

123

http://arxiv.org/abs/1611.1514
http://www.nu-fit.org/?q=node/12
http://arxiv.org/abs/hep-ph/9904297
http://arxiv.org/abs/hep-ph/0202074
http://arxiv.org/abs/hep-ph/0203209
http://arxiv.org/abs/hep-ph/0204049
http://arxiv.org/abs/hep-ph/0302025
http://arxiv.org/abs/0812.0436
http://arxiv.org/abs/1004.2798
http://arxiv.org/abs/hep-ph/0412288
http://arxiv.org/abs/1203.1669
http://arxiv.org/abs/1211.5560
http://arxiv.org/abs/1212.4079
http://arxiv.org/abs/1301.2963
http://arxiv.org/abs/1302.0950
http://arxiv.org/abs/1303.7178
http://arxiv.org/abs/1211.2000
http://arxiv.org/abs/1211.3364
http://arxiv.org/abs/1303.6180
http://arxiv.org/abs/1212.2411
http://arxiv.org/abs/1305.3200
http://arxiv.org/abs/1601.3300
http://arxiv.org/abs/1603.3933
http://arxiv.org/abs/1006.0098
http://arxiv.org/abs/0907.5587
http://arxiv.org/abs/1212.4879
http://arxiv.org/abs/1307.5308
http://arxiv.org/abs/1110.4891
http://www.gap-system.org
http://www.icm.tu-bs.de/ag_algebra/software/small/


74 Page 20 of 21 Eur. Phys. J. C (2018) 78 :74

40. P.O. Ludl, On the finite subgroups of U(3) of order smaller than
512. J. Phys. A 43, 395204 (2010). arXiv:1006.1479

41. P.F. Harrison, W.G. Scott, Mu–tau reflection symmetry in lep-
ton mixing and neutrino oscillations. Phys. Lett. B 547, 219–228
(2002). arXiv:hep-ph/0210197

42. P.F. Harrison, W.G. Scott, The simplest neutrino mass matrix. Phys.
Lett. B 594, 324–332 (2004). arXiv:hep-ph/0403278

43. W. Grimus, L. Lavoura, A non-standard CP transformation leading
to maximal atmospheric neutrino mixing. Phys. Lett. B 579, 113–
122 (2004). arXiv:hep-ph/0305309

44. R. Friedberg, T.D. Lee, A possible relation between the neutrino
mass matrix and the neutrino mapping matrix. Chin. Phys. C 30,
591–598 (2006). arXiv:hep-ph/0606071

45. C.S. Lam, Magic neutrino mass matrix and the Bjorken–Harrison–
Scott parameterization. Phys. Lett. B 640, 260–262 (2006).
arXiv:hep-ph/0606220

46. S. Luo, Z.-Z. Xing, Friedberg–Lee symmetry breaking and
its prediction for θ13. Phys. Lett. B 646, 242–247 (2007).
arXiv:hep-ph/0611360

47. R. de Adelhart Toorop, F. Feruglio, C. Hagedorn, Discrete flavour
symmetries in light of T2K. Phys. Lett. B 703, 447–451 (2011).
arXiv:1107.3486

48. C.S. Lam, Symmetry of lepton mixing. Phys. Lett. B 656, 193–198
(2007). arXiv:0708.3665

49. C.S. Lam, The horizontal symmetry for neutrino mixing. Phys.
Rev. Lett. 101, 121602 (2008). arXiv:0804.2622

50. C.S. Lam, The unique horizontal symmetry of leptons. Phys. Rev.
D 78, 073015 (2008). arXiv:0809.1185

51. C.S. Lam, Group theory and dynamics of neutrino mixing. Phys.
Rev. D 83, 113002 (2011). arXiv:1104.0055

52. F. Capozzi, E.D. Valentino, E. Lisi, A. Marrone, A. Melchiorri, A.
Palazzo, Global constraints on absolute neutrino masses and their
ordering. Phys. Rev. D 95, 096014 (2017). arXiv:1703.4471

53. F. Capozzi, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, Neu-
trino masses and mixings: status of known and unknown 3ν param-
eters. Nucl. Phys. B 908, 218–234 (2016). arXiv:1601.7777

54. S.K. Agarwalla, S. Prakash, S.U. Sankar, Resolving the octant of
θ23 with T2K and NOvA. JHEP 07, 131 (2013). arXiv:1301.2574

55. A. Chatterjee, P. Ghoshal, S. Goswami, S.K. Raut, Octant sen-
sitivity for large θ13 in atmospheric and long baseline neutrino
experiments. JHEP 06, 010 (2013). arXiv:1302.1370

56. S. Choubey, A. Ghosh, Determining the octant of θ23 with
PINGU, T2K, NOvA and reactor data. JHEP 11, 166 (2013).
arXiv:1309.5760

57. C. Das, J. Maalampi, J. Pulido, S. Vihonen, Determination of the
θ23 octant in LBNO. JHEP 2, 48 (2015). arXiv:1411.2829

58. S.K. Agarwalla, S.S. Chatterjee, A. Palazzo, Degeneracy between
θ23 octant and neutrino non-standard interactions at DUNE. Phys.
Lett. B 762, 64–71 (2016). arXiv:1607.1745

59. S. Choubey, Atmospheric neutrinos: status and prospects. Nucl.
Phys. B 908, 235–249 (2016). arXiv:1603.6841

60. K. Bora, G. Ghosh, D. Dutta, octant degeneracy, quadrant of
leptonic CPV phase at long baseline neutrino experiments and
baryogenesis. Adv. High Energy Phys. 2016, 9496758 (2016).
arXiv:1606.0554

61. S.S. Chatterjee, P. Pasquini, J. Valle, Resolving the atmospheric
octant by an improved measurement of the reactor angle, Phys.
Rev. D 96, 011303 (2017). arXiv:1703.3435

62. T. Ohlsson, H. Zhang, S. Zhou, Probing the leptonic Dirac CP-
violating phase in neutrino oscillation experiments. Phys. Rev. D
87, 053006 (2013). arXiv:1301.4333

63. S.K. Agarwalla et al. (LAGUNA-LBNO Collaboration), The mass-
hierarchy and CP-violation discovery reach of the LBNO long-
baseline neutrino experiment. JHEP 5, 94 (2014). arXiv:1312.6520

64. I. Girardi, S.T. Petcov, A.V. Titov, Predictions for the leptonic Dirac
CP violation phase: a systematic phenomenological analysis. Eur.
Phys. J. C 75, 345 (2015). arXiv:1504.0658

65. A. Ghosh, T. Thakore, S. Choubey, Determining the neutrino mass
hierarchy with INO, T2K, NOvA and reactor experiments. JHEP
04, 009 (2013). arXiv:1212.1305

66. F. Capozzi, E. Lisi, A. Marrone, Neutrino mass hierarchy and elec-
tron neutrino oscillation parameters with one hundred thousand
reactor events. Phys. Rev. D 89, 013001 (2014). arXiv:1309.1638

67. W. Winter, Neutrino mass hierarchy determination with IceCube-
PINGU. Phys. Rev. D 88, 013013 (2013). arXiv:1305.5539

68. H. Wang, L. Zhan, Y.-F. Li, G. Cao, S. Chen, Mass hierar-
chy sensitivity of medium baseline reactor neutrino experiments
with multiple detectors. Nucl. Phys. B 918, 245–256 (2017).
arXiv:1602.4442

69. F. Simpson, R. Jimenez, C. Pena-Garay, L. Verde, Strong evidence
for the normal neutrino hierarchy. J. Cosmol. Astropart. Phys. 06,
029 (2017). arXiv:1703.3425

70. U. Rahaman, S. Razzaque, Mass hierarchy and CP-phase sensi-
tivity of ORCA using Fermilab neutrino beam. Phys. Rev. D 96,
073007 (2017). arXiv:1703.4438

71. L. Stanco, S. Dusini, M. Tenti, Determination of the neutrino mass
hierarchy with a new statistical method. Phys. Rev. D 95, 053002
(2017). arXiv:1606.9454

72. P.A.R. Ade et al. (Planck Collaboration), Planck 2015 results. XIII.
Cosmological parameters. Astron. Astrophys. 594, A13 (2016).
arXiv:1502.1589

73. E. Giusarma, M. Gerbino, O. Mena, S. Vagnozzi, S. Ho, K. Freese,
On the improvement of cosmological neutrino mass bounds. Phys.
Rev. D 94, 083522 (2016). arXiv:1605.4320

74. Y. Inoue, et al., POLARBEAR-2: an instrument for CMB polariza-
tion measurements. In Proc. SPIE Millimeter, Submillimeter, and
Far-Infrared Detectors and Instrumentation for Astronomy VIII
(2016), p. 99141. arXiv:1608.3025

75. Y. Oyama, K. Kohri, M. Hazumi, Constraints on the neutrino
parameters by future cosmological 21 cm line and precise CMB
polarization observations. J. Cosmol. Astropart. Phys. 02, 008
(2016). arXiv:1510.3806

76. S.M. Bilenky, C. Giunti, Neutrinoless double-beta decay. A brief
review. Mod. Phys. Lett. A 27, 1230015 (2012). arXiv:1203.5250

77. H.V. Klapdor-Kleingrothaus et al., Latest results from the
Heidelberg–Moscow double beta decay experiment. Eur. Phys. J.
A 12, 147 (2001). arXiv:hep-ph/0103062

78. H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, The evidence for
the observation of 0νββ decay: the identification of 0νββ events
from the full spectra. Mod. Phys. Lett. A 21, 1547 (2006)

79. E. Andreotti et al., 130Te neutrinoless double-beta decay with
CUORICINO. J. Astropart. Phys. 34, 822 (2011). arXiv:1012.3266

80. H. Gomez (NEMO-3 and SuperNEMO collaborations), Latest
results of NEMO-3 experiment and present status of SuperNEMO.
Nucl. Part. Phys. Proc. 273–275, 1765–1770 (2016)

81. J.B. Albert et al. (EXO-200 Collaboration), Search for Majorana
neutrinos with the first two years of EXO-200 data. Nature 510,
229–234 (2014). arXiv:1402.6956

82. M. Agostini et al. (GERDA Collaboration), Results on neutrinoless
double beta decay of 76Ge from GERDA Phase I. Phys. Rev. Lett.
111, 122503 (2013). arXiv:1307.4720

83. P. Guzowski, A combined limit on the neutrino mass from neu-
trinoless double-beta decay searches in multiple isotopes. J. Phys.
Conf. Ser. 718, 062022 (2016)

84. D.R. Artusa, et al. (CUORE Collaboration), Searching for neutrino-
less double-beta decay of 130Te with CUORE. Adv. High Energy
Phys. (2015) (Article ID 879871). https://doi.org/10.1155/2015/
879871. arXiv:1402.6072

123

http://arxiv.org/abs/1006.1479
http://arxiv.org/abs/hep-ph/0210197
http://arxiv.org/abs/hep-ph/0403278
http://arxiv.org/abs/hep-ph/0305309
http://arxiv.org/abs/hep-ph/0606071
http://arxiv.org/abs/hep-ph/0606220
http://arxiv.org/abs/hep-ph/0611360
http://arxiv.org/abs/1107.3486
http://arxiv.org/abs/0708.3665
http://arxiv.org/abs/0804.2622
http://arxiv.org/abs/0809.1185
http://arxiv.org/abs/1104.0055
http://arxiv.org/abs/1703.4471
http://arxiv.org/abs/1601.7777
http://arxiv.org/abs/1301.2574
http://arxiv.org/abs/1302.1370
http://arxiv.org/abs/1309.5760
http://arxiv.org/abs/1411.2829
http://arxiv.org/abs/1607.1745
http://arxiv.org/abs/1603.6841
http://arxiv.org/abs/1606.0554
http://arxiv.org/abs/1703.3435
http://arxiv.org/abs/1301.4333
http://arxiv.org/abs/1312.6520
http://arxiv.org/abs/1504.0658
http://arxiv.org/abs/1212.1305
http://arxiv.org/abs/1309.1638
http://arxiv.org/abs/1305.5539
http://arxiv.org/abs/1602.4442
http://arxiv.org/abs/1703.3425
http://arxiv.org/abs/1703.4438
http://arxiv.org/abs/1606.9454
http://arxiv.org/abs/1502.1589
http://arxiv.org/abs/1605.4320
http://arxiv.org/abs/1608.3025
http://arxiv.org/abs/1510.3806
http://arxiv.org/abs/1203.5250
http://arxiv.org/abs/hep-ph/0103062
http://arxiv.org/abs/1012.3266
http://arxiv.org/abs/1402.6956
http://arxiv.org/abs/1307.4720
http://dx.doi.org/https://doi.org/10.1155/2015/879871
http://dx.doi.org/https://doi.org/10.1155/2015/879871
http://arxiv.org/abs/1402.6072


Eur. Phys. J. C (2018) 78 :74 Page 21 of 21 74

85. C. Vilela (on behalf of the NEMO Collaboration), The
SuperNEMO neutrinoless double beta decay experiment. J. Phys.
Confer. Ser. 598, 012034 (2015)

86. V. D’Andrea (for the GERDA Collaboration), Status report of
the GERDA phase II startup. In ICNPA 2016 Conference (2016),
arXiv:1604.5016

87. S. Antusch, J. Kersten, M. Lindner, M. Ratz, M.A. Schmidt, Run-
ning neutrino mass parameters in see-saw scenarios. JHEP 0503,
024 (2005). arXiv:hep-ph/0501272

88. S. Antusch, J. Kersten, M. Lindner, M. Ratz, Running neu-
trino masses, mixings and CP phases: analytical results and phe-
nomenological consequences. Nucl. Phys. B 674, 401–433 (2003).
arXiv:hep-ph/0305273

89. P.H. Chankowski, W. Krolikowski, S. Pokorski, Fixed points in the
evolution of neutrino mixings. Phys. Lett. B 473, 109–117 (2000).
arXiv:hep-ph/9910231

90. J.A. Casas, J.R. Espinosa, A. Ibarra, I. Navarro, General
RG equations for physical neutrino parameters and their phe-
nomenological implications. Nucl. Phys. B 573, 652–684 (2000).
arXiv:hep-ph/9910420

91. S. Lola, Renormalisation effects of neutrino masses and
interactions. Acta Phys. Polon. B 31, 1253–1271 (2000).
arXiv:hep-ph/0005093

92. P.F. Harrison, R. Krishnan, W.G. Scott, Exact one-loop evolution
invariants in the standard model. Phys. Rev. D 82, 096004 (2010).
arXiv:1007.3810

93. S.F. King, C. Luhn, A supersymmetric grand unified theory of
flavour with PSL(2, 7) × SO(10). Nucl. Phys. B 832, 414–439
(2010). arXiv:0912.1344

123

http://arxiv.org/abs/1604.5016
http://arxiv.org/abs/hep-ph/0501272
http://arxiv.org/abs/hep-ph/0305273
http://arxiv.org/abs/hep-ph/9910231
http://arxiv.org/abs/hep-ph/9910420
http://arxiv.org/abs/hep-ph/0005093
http://arxiv.org/abs/1007.3810
http://arxiv.org/abs/0912.1344

	Fully constrained Majorana neutrino mass matrices using Σ(72times3)
	Abstract 
	1 Introduction
	2 The group Σ(72times3) and its representations
	3 The model
	3.1 TχM(χ=+π16)
	3.2 TχM(χ=-π16)
	3.3 TφM(φ=+π16)
	3.4 TφM(φ=-π16)
	Symmetries of the VEVs of the sextet flavons

	4 Predicted observables
	Renormalisation effects on the observables

	5 Summary
	Appendix A: Irreps of Σ(72times3) and their tensor product expansions
	Appendix B: Hierarchical structure of the charged-lepton mass matrix
	Cubic products
	Quartic products

	Appendix C: Flavon potentials
	The triplet flavons: φα, φβ
	The sextet flavon: ξ

	References




