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Abstract With motivation by holography, employing black
hole entropy, two-point connection function and entangle-
ment entropy, we show that, for the higher-dimensional Anti-
de Sitter charged hairy black hole in the fixed charged ensem-
ble, a Van der Waals-like phase transition can be observed.
Furthermore, based on the Maxwell equal-area construction,
we check numerically the equal-area law for a first order
phase transition in order to further characterize the Van der
Waals-like phase transition.

1 Introduction

According to the Anti-de Sitter space/Conformal Field The-
ory (AdS/CFT) correspondence [1], the thermodynamics of
AdS black holes plays a key role in comprehending the ther-
mal properties of the holographically dual field theories.
To the compelling phenomena of thermodynamics belong
phase transitions in AdS spacetime. The pioneer discussion
of phase transitions was presented by Hawking and Page
[2]. In 1983, in a four-dimensional non-charged AdS back-
ground, Hawking and Page proved that there exists a first
order phase transition between the AdS and Schwarzschild
AdS black hole. Specifically speaking, the thermal AdS is
unstable, and it has to undergo a phase transition to the sta-
ble Schwarzschild AdS black hole at last, which is the best-
known Hawking–Page phase transition.

Later, in 1999, in a charged AdS background, Chamblin
et al. [3,4] explored the phase structure of an Reissner–
Nordström AdS black hole. Compared to the non-charged
AdS case, the charged black hole’s phase structure becomes
richer and is associated with the chosen statistical ensem-
ble. It was found that the charged AdS black hole in the
temperature–entropy plane presented an analogous Van der
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Waals phase transition in the canonical ensemble (fixed elec-
tric charge), i.e. the isocharge in the temperature–entropy
plane has an unstable branch and two stable ones when the
charge below a critical value. And there exists a second order
critical point at a critical charge. Recently, the research on a
Van der Waals-like phase transition has been generalized to
the extended phase space [5–10]. In this framework, the cos-
mological constant is taken as a thermodynamical pressure,
and its conjugate quantity is treated as the thermodynamical
volume. Consequently, this extended phase space makes the
Van de Waals description more precise.

Very recently, entanglement entropy has also been used to
detect phase structures in different AdS backgrounds. John-
son [11] proposed that, like black hole entropy, entanglement
entropy also exhibited a Van der Waals-like phase transition
in the temperature-entanglement entropy plane in both the
fixed potential ensemble and the charge ensemble. It was
subsequently generalized to supergravity STU black holes
that involve four charges by Caceres et al. [12]. The result
showed that Van der Waals behavior was observed in the
cases of three charge and four charge, however, for the one-
charge and two-charge cases, the STU black holes did not
present this phase transition. Caceres et al. also verified that,
for a charge configuration that presented a Van der Waals-like
phase transition, the entanglement entropy indeed exhibits a
similar phase transition at the same critical temperature and
the same critical exponents as the ones obtained in the black
hole entropy. Furthermore, the equal-area law of entangle-
ment entropy was also checked by Nguyen [13] for an AdS
Reissner–Nordström black hole in the canonical ensemble.
In addition, Zeng et al. have investigated phase structures of
holographic entanglement entropy in massive gravity [14],
in the Born–Infeld Anti-de Sitter background [15] and in
the quintessence Reissner–Nordström AdS background [16],
and all the results showed that there exists a Van de Waals-like
phase transition in these gravity backgrounds [14–18].
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In the framework of holography, in higher-dimensional
AdS spacetime, it is interesting to detect the phase struc-
ture of hairy black holes. Since there exist hair parameters,
hairy black hole solutions become far richer than in General
Relativity [19,20]. The model for higher-dimensional hairy
black holes was first introduced by Oliva and Ray in 2011.
They developed a novel construction of conformal couplings
of a scalar field to arbitrary higher order Euler densities, and
further solved the equations of motion under spherically sym-
metric conditions [21]. Although hairy black holes with van-
ishing cosmological constant are known in four dimensions,
the scalar field configuration of these black holes diverges
at the horizon [22,23]. This may be seen as a natural con-
sequence of the well-known no-hair theorems. However, by
introducing a cosmological constant and a conformal cou-
pling, no-hair theorems can be circumvented. In 2014, in
higher-dimensional AdS spacetime, Giribet et al. proved that
analytic solutions to higher-dimensional hairy black holes do
exist and the scalar configuration is regular everywhere out-
side and on the horizon. It turned out that the hairy solution
asymptotically goes to (Anti-) de Sitter spacetime at large
distance and admits a spherical horizon as well as a hori-
zon of a different topology [24]. In 2015, the thermodynam-
ics of higher-dimensional hairy black holes and the different
phases of hairy black holes in AdS5 space were also studied
in detail [25,26]. At the same time, for these hairy solutions in
a five-dimensional gravitational system, Hennigar and Mann
have first revealed a reentrant phase transition in the case of
demanding the positivity of entropy [7]. In 2017, Hennigar,
Mann and Tjoa have found that, for a class of asymptoti-
cally AdS hairy black holes in Lovelock gravity where a real
scalar field is conformally coupled to gravity, a novel form
of phase transition akin to a superfluid phase transition can
be observed [27]. Here, employing the black hole entropy,
two-point correlated function and entanglement entropy, we
attempt to study whether the Van der Waals-like phase tran-
sition can be observed, and we discuss the hair parameter
effect on the phase transition.

2 Phase transition and Maxwell’s equal-area law for the
thermodynamic entropy

Let us start by reviewing the exact solution of an electri-
cally charged hairy black hole in five dimensions. Einstein–
Maxwell-Λ theory conformally coupled to a scalar field in
higher dimensions and see whether it can exhibit analytic
solutions [24,25]. Here, we are concerned with the case of
five dimensions, and the action of the theory reads

I = 1

κ

∫
d 5x

√−g

[
R − 2Λ − 1

4
F2 + κLm (φ,∇φ)

]
,

(1)

where

κ = 16πG, (2)

Lm (φ,∇φ) = b0φ
15 + b1φ

7Sμν
μν + b2φ

−1(Sμγ
μγ Sνδ

νδ

−4Sμγ
νγ Sνδ

μδ + Sμν
γ δSνμ

γ δ

)
, (3)

Sμν
γ δ = φ2Rμν

γ δ − 12δ
[γ
[μδ

δ]
ν]∇ρφ∇ρφ

−48φδ
[γ
[μ∇ν]∇δ]φ + 18δ

[γ
[μ∇ν]φ∇δ]φ. (4)

Here, b0, b1 and b2 are real coupling constants, which are
generated by a real scalar the field conformally coupled to
gravity. The static spherically symmetric black hole solution
coming from the action (1) can be written as

ds 2 = −N 2 (r) f (r) dt 2 + dr 2

g (r)
+ r 2dΩ2

3 , (5)

where

g (r) = f (r) = 1 − m

r 2 − q

r 3 + e 2

r 4 + r 2

l 2 , N 2 (r) = 1.

(6)

Here, l is AdS radius l2 = −6/Λ, and dΩ2
3 is the metric

of the unit 3-sphere. The integration constants m and e are
related with the mass and the electric charge of the hairy
black hole, and q is given with respect to the scalar coupling
constants by the relation

q = 64πG

5
εb1

(
−18b1

5b0

)3/2

, (7)

where ε = −1, 0, +1. For the five-dimensional black hole
solution to exist, the scalar coupling constants must obey the
following constraint:

10b0b2 = 9b2
1. (8)

The Maxwell potential is

Aμ = √
3
e

r 2 δ 0
μ (9)

with Fμν = ∂μAν −∂ν Aμ. On the other hand, the scalar field
configuration takes the form

φ (r) = n

r1/3 , n = ε

(
−18

5

b1

b0

)1/6

. (10)

In Ref. [25], Galante et al. have discussed the thermodynamic
properties of higher-dimensional black holes in detail. The
mass and charge of the hairy black hole are

M = 3π

8
m = 3π

(
e2l2 − ql2r+ + l2r4+ − r6+

)
8l2r2+

(11)

and

Q = −
√

3π

8
e, (12)
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respectively, where r+ is the event horizon, which is given
by the equation f (r+) = 0. The Hawking temperature and
black hole entropy are given by [7,25]

T = 1

πl2r4+

(
−32Q2l2

3π2r+
+ ql2

4
+ l2

2
r3+ + r5+

)
, (13)

S = π2

2

(
r3+ − 5

2
q

)
. (14)

Note that, for the hairy black hole solution to exist, q can
take three different values namely q = 0,± |q|. For q = 0
e2 = 4Q′2/3π2, we have

f (r) = 1 − 8M

3πr 2 − 4Q′2

3πr 4 + r 2

l 2 , (15)

T ′ = r+
πl2

+ 1

2πr+
− 2Q′2

3π2r+5
, (16)

S′ = π2

2
r3+. (17)

In this case, the solution reduces to the five-dimensional
Reissner–Nordström AdS black hole. The phase transition
of the Reissner–Nordström AdS black hole has been dis-
cussed extensively [13,28]. The critical values of the phase
transition are given as

SC
′ = π2

6
√

3
l3, (18)

QC
′ = π

6
√

5
l2, (19)

TC
′ = 4

√
3

5πl
. (20)

Here, we mainly focus on studying the phase structure for
the case q �= 0.

Now, we begin to explore the hairy black hole’s critical
behavior and phase transition in the temperature–entropy
plane. From Eqs. (13) and (14), we can get the function
T (S, Q, q) by eliminating r+,

T (S, Q, q) = 1

3 3
√

2l2π5/3(5π2q + 4S)5/3

[
75π4q2

−128l2π2Q2 + 120π2Sq + 48S2

+9 3
√

4l2π10/3q(5π2q + 4S)1/3

+6 3
√

4l2π4/3S(5π2q + 4S)1/3
]
. (21)

Note that the phase structure of a hairy black hole is not only
related to electric charge Q, but also the scalar hair param-
eter q. Based on the function T (S, Q, q) above, the phase
structure of the charged hairy black hole can be detected. We
find that, by choosing some proper hair parameters q, the
isocharges in the T –S plane can exhibit a Van der Waals-like
phase transition. For convenience, we keep the AdS radius
l = 1 throughout this paper. Here, we discuss the phase
transition in a fixed electric charged ensemble, and we take

Table 1 The critical values of the electric charge, temperature and
entropy for different q

q QC TC SC

−0.010 0.0486384 0.439591 1.03476

−0.005 0.0538006 0.440337 0.992571

0.005 0.0629513 0.441770 0.906233

0.010 0.0670977 0.442460 0.862219

q = ± 0.010 and q = ± 0.005 as examples. To plot the
isocharges in the T –S plane, firstly we should get the critical
values of phase transition by using the following relations:
(

∂T

∂S

)
Q

=
(

∂2T

∂2S

)
Q

= 0. (22)

For the complicated hairy black hole, it is hard to obtain
analytical values directly. We can get them numerically. In
Table 1, we tabulate the critical charge QC , critical entropy
SC and critical temperature TC for different hair parameter
q. From this table, we see that the critical entropy becomes
smaller as q increases. According to Eq. (14), we know that q
must satisfy q � 2r 3+/5 in order for the positivity condition
of entropy to hold.

Note that, for the very small values of the hair parame-
ter, one can get a perturbative solution of the critical values.
When q is very small, we expand Eq. (21) about the zero
point in terms of the hair parameter q, and we find

T (S, Q, q)

= −32π2Q2 + 321/3π4/3S4/3 + 12S2

l2

622/3π5/3S5/3

+π1/3
(
30S2 + l2(400π2Q2 − 321/3π4/3S4/3)

)
q

3622/3l2S8/3

−5
(
π7/3(1600l2π2Q2 + 321/3l2π4/3S4/3 + 30S2)

)
q2

432(22/3l2S11/3)

+O[q]3. (23)

This corresponds to

T =
(

− e2

2πr5+
+ 1

2πr+
+ r+

l2π

)
+ q

4πr4+
+ O[q]2. (24)

When q = 0 and e2 = 4Q′2/3π2, the temperature becomes
the temperature of the RN AdS black hole, which is consistent
with Eq. (16). Employing Eqs. (22) and (23), we can get

SC = l3π2

6
√

3
− 7π2q

8
+ O[q]2, (25)

|eC | = 8√
3

⎛
⎝ l2π

24
√

5
+

3
√

3
5πq

8l

⎞
⎠ + O[q]2, (26)

TC = 4
√

3

5lπ
+ 9q

20l4π
+ O[q]2. (27)
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When q = 0 and e2 = 4Q′2/3π2, these questions reduce to
Eqs. (18), (19) and (20). Obviously, for these small values,
these critical quantities are modified from the RN AdS values.

According to the relation in Eq. (21) and these critical
values, we plot the isocharges in the T –S plane for different
q in Fig. 1. Each curve corresponds to a different electric
charge. Remarkably, as can be seen from these plots, a Van
der Waals-like phase transition is clearly present in the T –S
plane. For different q, the phase structure is similar. When
Q > QC , the temperature is monotonically larger as entropy
increases, and the system is thermodynamically stable. As
Q decreases and arrives at the critical value QC , an inflec-
tion point appears and the heat capacity is divergent at this
point, which corresponds to a second order phase transition.
In the Q < QC case, in addition to two stable branches, the
isocharge has an unstable branch with negative heat capacity,

CQ = T

(
∂S

∂T

)
Q

, (28)

which corresponds to a first order phase transition.
Like the Van der Waals phase transition of the liquid–gas

system, this unstable portion should be replaced by using an
isotherm T = T ∗ which obeys Maxwell’s equal-area pre-
scription. The subcritical temperature T ∗ can be obtained
from the plot of the free energy F = M − T S versus
the temperature. The plots in Fig. 2 show that the relations
between the temperature and free energy for different q, and
for Q < QC , we always observe a classic swallowtail struc-
ture in each plot, which is responsible for the first order phase
transition in Fig. 1. We indicate the transition temperature T ∗
by a red dashed line in Fig. 2, which corresponds to the hor-
izontal coordinate of the junction.

Next, in order to further characterize the Van der Waals-
like phase transition, we turn to checking the Maxwell equal-
area law for the first order phase transition and the corre-
sponding statement can be written as

A1 ≡
∫ Smax

Smin

T (S, Q, q) dS = T ∗(Smax − Smin) ≡ A2,

(29)

where T (S, Q, q) is defined in Eq. (21), Smin and Smax are
the smallest and largest roots of the equation T (S, Q, q) =
T ∗. Now, we take q = −0.010 as an example to show how
to verify the Maxwell equal-area law. Numerically, using
q = −0.010, Q = 0.0286384 and l = 1, we obtain T ∗ from
the plot (a) in Fig. 2. Then, substituting T ∗ = 0.4506 into
Eq. (21), we obtain the smallest value Smin = 0.306264 and
largest value Smax = 2.628909 by resolving the equation
T (S,−0.01, 0.0286384) = 0.4506. Thus,using the values
of T ∗, Smin and Smax, we can get A2 = 1.04658 at the right
side of Eq. (29), and we obtain A1 = 1.04538 by integrating
the left side of Eq. (29). Namely, A1 equals A2 within our
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Fig. 1 Plots of the temperature versus the black hole entropy for differ-
ent q. The red dash line corresponds to the temperature of the first order
phase transition. The values of the electric charge chosen (from top to
bottom) are as follows. a Q = 0.0286384 < QC , Q = 0.0486384 =
QC , Q = 0.0686384 > QC . b Q = 0.0338006 < QC , Q =
0.0538006 = QC , Q = 0.0738006 > QC . c Q = 0.0429513 < QC ,
Q = 0.0629513 = QC , Q = 0.0829513 > QC . d Q = 0.0470977 <

QC , Q = 0.0670977 = QC , Q = 0.0870977 > QC
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Fig. 2 Plots of the temperature versus the free energy for different q
in the case of Q < QC . In each graph, the red dash line indicates
a first order phase transition temperature T ∗. a Q = 0.0286384 and
T ∗ = 0.4506. b Q = 0.0338006 and T ∗ = 0.4524. c Q = 0.0429513
and T ∗ = 0.4552. d Q = 0.0470977 and T ∗ = 0.4561

Table 2 Check of the Maxwell equal-area construction in the T –S
plane

q T ∗ Smin Smax A1 A2

−0.010 0.4506 0.3062640 2.6289090 1.04538 1.04658

−0.005 0.4524 0.2371192 2.6989999 1.11250 1.11375

0.005 0.4552 0.1098390 2.7624530 1.20665 1.20747

0.010 0.4561 0.0488927 0.7663060 1.22943 1.22924

numeric accuracy with these values. Repeating the procedure
above, we can obtain A1 and A2 for other q, and we tabulate
these values in Table 2. From this table, it is obvious that the
Maxwell equal-area construction holds in the T –S plane.

3 Phase transition and Maxwell’s equal-area law for
two-point correlation function

In this section, we proceed to discuss on the phase structure
of two-point correlation function. In recent years, the two-
point correlation function has appeared to be a useful tool
which can be used to explore some physical phenomena such
as holographic singularities [29,30], holographic thermal-
ization [31,32], holographic CFTs on maximally symmetric
spaces [33], holographic butterfly effect [34–37] and quan-
tum phase transition [38]. Motivated by the above-mentioned
issues, we attempt to detect whether the two-point correla-
tion function can present a Van der Waals-like behavior for
the charged hairy black hole.

According to the Anti-de Sitter space/Conformal Field
Theory dictionary, in the large � limit, the equal-time two-
point correlation function can be holographically expressed
as [39]
〈
O(t0, xi ) O(t0, x j )

〉 ≈ e−�L , (30)

where � is the conformal dimension of the scalar operator
O , and L is the length of the buck geodesic between the point
(t0, xi ) and (t0, x j ) on the Anti-de Sitter boundary. Due to
the charged hairy black hole’s symmetry in five-dimensional
AdS spacetime, we can simply set (θ = θ 0, ϕ = π/2, ψ =
0) and (θ = θ 0, ϕ = π/2, ψ = π) as the two boundary
points.

By utilizing θ to parameterize the trajectory, the proper
length takes the form

L =
∫ θ0

0
L(r(θ), θ) dθ, L =

√
r ′ 2(θ)

g(r)
+ r 2(θ); (31)

here r ′ ≡ dr/dθ . Taking L as the Lagrangian and imagining
θ as time, with the Euler–Lagrange equation

∂L
∂r

= d

dθ

(
∂L
∂r ′(θ)

)
, (32)
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we arrive at the equation of motion of r(θ),

g ′(r)r ′(θ) 2 − 2g(r)r ′′(θ) + 2g 2(r)r(θ) = 0 (33)

with the boundary condition

r(0) = r0, r ′(0) = 0. (34)

By using the condition above and resolving Eq. (33), we
obtain the numeric result of r(θ). Notice that the geodesic
length is divergent for a fixed θ0, therefore, it needs to be
regularized. Here, we do it by subtracting the geodesic length
of the minimal surface in pure AdS with the same boundary
θ = θ0 (denoted by L ′). In order to accomplish this, we first
obtain L by integrating the length function in Eq. (31) from
zero to UV cutoff θC � θ 0. Then, by turning off the hair
parameter q, mass M and electric charge Q of the charged
hairy black hole background, we get a pure AdS in global
coordinates,

ds 2 = −
(

1 + r 2

l 2

)
dt2 +

(
1 + r 2

l 2

)−1

dr 2 + r 2dΩ2
3 ,

(35)

with this metric, repeating the same procedure as calculation
L , numerically, we obtain L ′. Thus, subtracting this quantity
from the hairy black hole, we get the renormalized geodesic
length δL = L − L ′. Here, we take θ 0 = 0.45 and θ 0 =
0.50 as an example to discuss the charged hairy black hole’s
phase structure, and the corresponding cutoffs are chosen to
be θC = 0.449 and 0.499 in the numerical computations.
For the θ 0 = 0.45 case, in Fig. 3, we present the plots of the
isocharges generated for the two-point correlation function
for different hair parameters q. In each panel, the isocharges
in the T –δL plane from top to bottom correspond to Q <

QC , Q = QC and Q > QC , respectively. From these plots,
we see that the T versus δL plots are qualitatively similar to
the ones in Fig. 1. We confirm that there exists indeed a Van
der Waals-like phase transition in the T –δL plane, and the
critical temperature and critical charge are the same as the
ones obtained from Fig. 1.

In order to further characterize a Van der Waals-like phase
transition for the two-point correlation function, we choose
two different θ0 to verify the equal-area law in the T –δL
plane, similarly defined as

A1 ≡
∫ δLmax

δLmin

T (δL , q, Q) dδL

= T ∗(δLmax − δLmin) ≡ A2, (36)

where δLmin and δLmax are the smallest and largest roots of
the equation T (δL , q, Q) = T ∗. T (δL , q, Q) is an inter-
polating function which can be given by our numeric result.

Besides θ 0 = 0.45, in Fig. 4, for the case θ 0 = 0.50, we
also plot the isocharge in the T –δL plane when the charge
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Fig. 3 Plots of isocharges in the T –δL plane for θ 0 = 0.45. The
blue dash line corresponds to the temperature of the first order phase
transition. The values of the electric charge chosen (from top to bottom)
are the same as the ones in Fig. 1

123



Eur. Phys. J. C (2018) 78 :49 Page 7 of 11 49

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025
0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49
T

(a) q 0 010

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035
0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49
T

(b) q 0 005

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025
0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49
T

(c) q 0 005

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025
0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49
T

(d) q 0 010

δL

δL

δL

δL

Fig. 4 Plots of isocharges in the T –δL plane for θ 0 = 0.50. The
blue dash line corresponds to the temperature of the first order phase
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QC . c Q = 0.0429513 < QC . d Q = 0.0470977 < QC
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Fig. 5 Plots of isocharges in the T –�S plane for ϕ 0 = 0.45. The
red dash line corresponds to the temperature of the first order phase
transition. The values of the electric charge chosen (from top to bottom)
are the same as the ones in Fig. 1
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QC . c Q = 0.0429513 < QC . d Q = 0.0470977 < QC
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satisfies Q < QC . In Table 3, for different q and θ 0, we tabu-
late the values of δLmin, δLmax, A1 and A2. Obviously, for the
two-point correlation function, the equal-area law hods for
the five-dimensional charged hairy black hole. This strength-
ens our conclusion that, indeed, the isocharges in the T –δL
plane can present the same Van der Waals-like phase transi-
tion as the black hole entropy.

4 Holographic phase transition for entanglement
entropy

Now, we move on to take into account the entanglement
entropy case. According to the Ryu–Takayanagi description,
the holographic entanglement entropy for a region A can be
expressed as [40,41]

S = Area(ΓA)

4
, (37)

where ΓA is a codimension-2 minimal surface with boundary
condition ∂ΓA = ∂A. Here, we choose ϕ = ϕ0 as the hairy
black hole’s entangling surface and employ r(ϕ) to parame-
terize the minimal surface.

With the symmetry, in this static AdS background, the
entanglement entropy is given by

S = π

∫ ϕ 0

0
r 2 sin2 ϕ

√
r ′ 2(ϕ)

f (r)
+ r 2(ϕ) dϕ, (38)

in which r ′(ϕ) ≡ dr/dϕ.
Adopting a similar procedure to the two-point correlation

function case, we first arrive at the equation of motion of
r(ϕ) by utilizing the Euler–Lagrange equation, and with the
boundary condition, the numerical result of r(ϕ) is obtained.
Then we integrate the entropy function S in Eq. (38) up to the
UV cutoff ϕC (that is, ϕC ≈ ϕ 0). Thus, subtracting the pure
AdS entanglement entropy (which is denoted by S0), we are
able to get the regularized entanglement entropy�S = S−S0

of a charged hairy black hole.
Specifically, choosing ϕ 0 = 0.45, we present the

isocharges in the T –�S plane for different hair parameters
q in Fig. 5. Comparing with Figs. 1 and 3 again, we find
that, like the black hole entropy and two-point correlation
function, the entanglement entropy also exhibits a Van der
Waals-like phase transition; moreover, the critical charge and
critical temperature are also identified with them.

We go on to verify whether the Maxwell construction
works for the entanglement entropy in the T –�S plane. The
analogous equal-area law becomes

A1 ≡
∫ �Smax

�Smin

T (�S, q, Q) d�S

= T ∗(�Smax−�Smin) ≡ A2, (39)

where �Smin and �Smax are the smallest and largest roots of
T (�S, q, Q) = T ∗, T (�S, q, Q) is an interpolating func-
tion which is given by our numeric result, and T ∗ is a transi-
tion temperature, which is equal to the first order phase tran-
sition temperature T ∗ found for black hole entropy in Sect.
2. In order to verify the equal-area law, we take ϕ 0 = 0.45
and ϕ 0 = 0.50 as example, we also present the isocharges
in the T –�S plane for ϕ 0 = 0.50 in Fig. 6. For different q
and ϕ0, the numeric results of �Smin, �Smax, A1 and A2 are
listed in Table 4. According to this table, we conclude that the
Maxwell equal-area construction in the T –�S plane is valid
within a reasonable error. Again, the result shows that like
the black hole entropy, the entanglement entropy can indeed
present a Van der Waals-like phase transition for the charged
hairy black hole.

5 Discussion and conclusion

Note that recent work has indicated that the equal-area law
is only valid very near the critical point [42]. Here, for the
equal-area law of the entanglement entropy and two-point
correlation function, by employing the same equal-area law
as that used in Ref. [42], we perform numerical computations
to explore this problem with the different ratios Q/QC =
0.9 and 0.5. The relevant numerical results have been put
in Tables 5, 6, 7 and 8. Here, the relative error is taken to
be the difference between A (I) and A (II) divided by their
average. From these tables, it is obvious that Maxwell equal-
area law is only valid near the critical point. Away from the
critical point, the relative error becomes significantly large,
and the Maxwell equal-area law cannot hold on these planes,
which supports the point in the light of [42]. As far as the
entanglement entropy and the two-point correlation function
are concerned, a holographic equal-area law is still an open
question.

In this paper, in the framework of holography, we discuss
the phase structure of a charged hairy black hole in five-
dimensional AdS background (in the fixed electric charge
ensemble). The result shows that a Van der Waals-like phase
transition can be observed in the T –S plane, T –δL plane and
T –�S plane, and the critical charge and critical temperature
are equal. Notice that, for some q value, where the grav-
ity background exhibits a negative entropy, there no longer
exists a reasonable phase transition. In order to guarantee
that the entropy is positive, the scalar hair parameter q must
satisfy the condition q � 2r 3+/5. Since the corresponding
expression for the critical values are too complicated in this
charged hairy AdS background, here, we proceed to compute
numerically.

It is interesting to note that, for the charged hairy black
hole, in Ref. [7], Hennigar and Mann have first revealed a
reentrant phase transition, and they have carefully studied
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Table 4 Check of the Maxwell equal-area construction in the T –�S plane

ϕ 0 = 0.45 ϕ 0 = 0.50

q = −0.010 T ∗ = 0.4506 �Smin = 0.002343243 A1 = 0.0052170 �Smin = 0.00321284 A1 = 0.0081764

�Smax = 0.013932195 A2 = 0.0052220 �Smax = 0.02136945 A2 = 0.0081814

q = −0.005 T ∗ = 0.4524 �Smin = 0.00227335 A1 = 0.0055859 �Smin = 0.00302369 A1 = 0.0087256

�Smax = 0.01463187 A2 = 0.0055910 �Smax = 0.02232081 A2 = 0.0087300

q = 0.005 T ∗ = 0.4552 �Smin = 0.00201383 A1 = 0.0061112 �Smin = 0.00273341 A1 = 0.0095445

�Smax = 0.01544459 A2 = 0.0061137 �Smax = 0.02369990 A2 = 0.0095440

q = 0.010 T ∗ = 0.4561 �Smin = 0.00193166 A1 = 0.0062515 �Smin = 0.00261655 A1 = 0.0097623

�Smax = 0.01563169 A2 = 0.0062486 �Smax = 0.02400015 A2 = 0.0097531

Table 5 Check of the
Maxwell’s area law in the T –δL
plane for q = 0.010 and
θ0 = 0.45

T ∗ Q Q/Qc A (I) A (II) Relative error

0.447060 0.0603879 0.9 2.42670 × 10−7 2.61054 × 10−7 0.0182480

0.464856 0.0335489 0.5 9.12172 × 10−6 6.55055 × 10−6 0.0820291

Table 6 Check of the Maxwell
equal-area law in the T–δL
plane for q = −0.010 and
θ0 = 0.50

T ∗ Q Q/Qc A(I) A (II) Relative error

0.442300 0.0437746 0.9 1.24830 × 10−7 1.35112 × 10−7 0.0197772

0.451123 0.0243192 0.5 3.55393 × 10−6 2.44831 × 10−6 0.0921010

Table 7 Check of the Maxwell
equal-area law in the T–�S
plane for q = −0.010 and
ϕ0 = 0.45

T ∗ Q Q/Qc A (I) A (II) Relative error

0.442300 0.0437746 0.9 1.54531 × 10−6 1.70203 × 10−6 0.0241305

0.451123 0.0243192 0.5 4.50689 × 10−5 3.12496 × 10−5 0.0905374

Table 8 Check of the Maxwell
equal-area law in the T–�S
plane for q = 0.010 and
ϕ0 = 0.50

T ∗ Q Q/Qc A (I) A (II) Relative error

0.447060 0.0603879 0.9 8.04075 × 10−6 7.81503 × 10−6 0.00711788

0.464856 0.0335489 0.5 2.73991 × 10−4 1.93884 × 10−4 0.08560700

the criticality and the Van der Waals behavior in the P–V
plane. Here, in the T –S plane, by choosing some proper val-
ues of q, we also present the Van der Waals-like phase tran-
sition, thereby strengthening the conclusion of Ref. [7]. It is
worth emphasizing that, motivated by holography, besides
the black hole entropy, we also make use of the two-point
correlation function and entanglement entropy to detect the
Van der Waals-like phase transition.
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