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Abstract It is well known that for spatially flat FRW cos-
mologies, the holographic dark energy disfavors the Hubble
parameter as a candidate for the IR cutoff. For overcoming
this problem, we explore the use of this cutoff in holographic
ellipsoidal cosmological models, and derive the general ellip-
soidal metric induced by a such holographic energy density.
Despite the drawbacks that this cutoff presents in homoge-
neous and isotropic universes, based on this general met-
ric, we developed a suitable ellipsoidal holographic cosmo-
logical model, filled with a dark matter and a dark energy
components. At late time stages, the cosmic evolution is
dominated by a holographic anisotropic dark energy with
barotropic equations of state. The cosmologies expand in all
directions in accelerated manner. Since the ellipsoidal cos-
mologies given here are not asymptotically FRW, the devia-
tion from homogeneity and isotropy of the universe on large
cosmological scales remains constant during all cosmic evo-
lution. This feature allows the studied holographic ellipsoidal
cosmologies to be ruled by an equation of state ω = p/ρ,
whose range belongs to quintessence or even phantom matter.

1 Introduction

In the description of the early universe, spatially homoge-
neous and anisotropic cosmological models may be allowed.
These models via some mechanism, such for example dissi-
pation [1], could evolve to an homogeneous and isotropic
one. The evidence comes from the existence of small
anisotropy deviations from isotropy of the CMB radiation
and the presence of large angle anomalies, which represent
real features of the CMB map of the universe [2]. These
anomalies seem to indicate a preferred orientation in the
space, and it is unclear whether they originate from some
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unknown systematic error (present in both the COBE and
the WMAP data) or if they have a physical origin [3].

Using a Bianchi type-I metric, in [4] it was obtained a
model which becomes to be an almost FRW in time that
is consistent with current data of the CMB. In this work it
was assumed that the matter component forms the deviations
from isotropy in the CMB density fluctuations when matter
and radiation decouples. Some authors suggest that the ellip-
soidal cosmological model is a viable alternative that could
account for the detected large scale anomalies in the cos-
mic microwave anisotropies [5,6], although the description
of polarization modes, specifically B modes, are not properly
described in the framework Bianchi type-I cosmologies [7].

On the other hand, the anisotropy of the universe can be
associated with dark energy, since anisotropic stresses at
the perturbative level are characteristics of various cosmo-
logical models of dark energy, which are compatible with
the homogeneity and isotropy of the FRW geometry [8–11].
An explicit field theory for the anisotropically stressed dark
energy in a universe described by the Bianchi type-I metric
was formulated in [12], and the parameters were constrained
using the luminosity-redshift relationship of the SNIa data.
For an ellipsoidal universe, which is Bianchi Type I cosmo-
logical model with highest symmetry in the spacial sections
of the spacetime geometry, the actual skewness and shear of
the dark energy component were constrained using Union2
data for supernovae [13]. The EoS for dark energy described
by an energy density ρDE was assumed in this work of the
form p‖ = ω‖ρDE, p⊥ = ω⊥ρDE, with ω‖ and ω⊥ constants.

In more formal studies, Bianchi type-I anisotropic cosmo-
logical models have been extensively investigated for a wide
types of matter content. In terms of discussing properties of
the dark energy it is of interest the inclusion of a nonzero cos-
mological constant in this type of models. A detailed analysis
of the dynamical systems corresponding to a Bianchi type-I
anisotropic universe filled with a cosmological constant and
a fluid with bulk viscosity was realized in [14]. Anisotropic
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universes of this type filled with perfect fluid matter with
or without dissipative process and a cosmological constant
has been investigated in [15–20]. A variable cosmological
constant has also been taken into consideration in related
research. This is the case of a magnetized Bianchi I universe
that was investigated in [21]. The inclusion of a bulk viscous
fluid was considered in [22].

Anisotropic dark energy also has been investigated in the
framework of the holographic principle [23,24], which is
believed to be a fundamental principle for the quantum theory
of gravity. Based on this principle, holographic dark energy
models have been recently advanced [25–27]. Therefore
these models incorporate significant features of the under-
lying theory of dark energy. The holographic principle is a
conjecture stating that all the information stored within some
volume can be described by the physics at the boundary of
the volume and, in the cosmological context, this principle
will set an upper bound on the entropy of the universe. With
the Bekenstein bound in mind, it seems to make sense to
require that for an effective quantum field theory in a box of
size L with a short distance cutoff (UV cutoff: �), the total
entropy should satisfy the relation

L3�3 ≤ SBH = πL2M2
p, (1)

where Mp is the reduced Planck mass and SBH is the entropy
of a black hole of radius L which acts as a long distance cutoff
(IR cutoff: L). However, based on the validity of effective
quantum field theory Cohen et al. [25] suggested a more
stringent bound, requiring that the total energy in a region
of size L should not exceed the mass of a black hole of the
same size. Therefore, this UV-IR relationship gives an upper
bound on the zero point energy density

ρ� ≤ L−2M2
p, (2)

which means that the maximum entropy is Smax ≈ S3/4
BH . The

largest L is chosen by saturating the bound in Eq. (2) so that
we obtain the holographic dark energy density

ρ� = 3c2M2
pL

−2, (3)

where c is a free dimensionless O(1) parameter and the coef-
ficient 3 is chosen for convenience. Interestingly, this ρ� is
comparable to the observed dark energy density 10−10 eV4

for H = H0 ∼ 10−33 eV, the Hubble parameter at the
present epoch. This means that if we choose the IR cutoff
as the current horizon size we obtain the current observed
dark energy scale. The fact that quantum field theory over-
counts the independent physical degrees of freedom inside
the volume explains the success of this estimate over the value
ρ� = O(M4

p). Therefore, holographic dark energy models
have the advantage over other models of dark energy in that

they do not need an ad hoc mechanism to cancel the O(M4
p)

zero point energy of the vacuum.
Nevertheless, as was pointed out by Hsu [26], the cur-

rent Hubble horizon as IR cutoff in the Friedmann equation
ρ = 3M2

P H
2 makes the dark energy behaves like matter

rather than a negative pressure fluid, and prohibits acceler-
ating expansion of the universe. In fact, in this case we have
ρm ∼ H2 and ρDE ∼ H2. This tracker behavior of dark com-
ponents implies that the dark matter and holographic dark
energy scale with the universe scale factor as a−3, leading to
a pressureless dark energy.

Due to the above limitation of taking current Hubble hori-
zon as IR cutoff, other cutoff has been investigated in the
framework of an homogeneous and isotropic cosmology,
such as the Ricci scalar [28] associated to the causal connec-
tion scale for perturbations, the event horizon [27], and the
proposed in [29], which is of the form ρ ≈ αH2 + β Ḣ2,
where α, β are constants. In the holographic framework,
Bianchi Type I has been analyzed for a universe filled with
matter and generalized holographic or generalized Ricci dark
energy, using the statefinder parameters [30]. Exact solutions
for a homogeneous axially symmetric Bianchi type-I uni-
verse filled with matter and holographic dark energy were
found in [31]. In this work it was used the cutoff proposed
in [29] and a constant deceleration parameter was assumed.

The main aim of this paper consists of studying Bianchi
type-I cosmologies filled with a holographic dark energy by
choosing the IR cutoff as the size of our universe. For doing
this we derive the general ellipsoidal metric induced by a
holographic energy density of the form (3), when L = H−1.
It is remarkable that the generated metric allows one to con-
sider accelerated expansion in all directions, which is in
agreement with observations. This behavior is not typical
for all Bianchi type-I cosmologies since often there are solu-
tions where simultaneously some directional scale factors
expand while others contract. Another aspect that deserves
consideration is that the obtained holographic metric is not
asymptotically FRW since it is always anisotropic due to the
presence of a constant parameter, which can be constrained
by observations.

This holographic ellipsoidal metric is coupled to compat-
ible matter sources. We consider accelerating cosmological
models filled with an isotropic dark matter component and an
anisotropic holographic dark energy, satisfying the relations
ρm ∼ H2 and ρDE ∼ H2 during all cosmic evolution (or at
late times), where now H is the mean Hubble parameter (see
Eq. (10)).

Ellipsoidal metrics are homogeneous and anisotropic
Bianchi type-I models with the highest (planar) symmetry in
the spatial sections of the geometry. As we stated above, we
consider the Hubble length as the IR cutoff. Despite the draw-
backs with this cutoff in obtaining a well behaved EoS for
the dark energy FRW cosmologies, we explore their proper-
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ties and consequences in anisotropic metrics, and constraint
them by using the values obtained for the present level of
anisotropy of the large scale geometry of the universe.

The organization of the paper is as follows: in Sect. 2 we
present the field equations for a spatially homogeneous and
anisotropic Bianchi type-I universe with planar symmetry,
and derive the general ellipsoidal metric induced by the con-
sidered holographic energy density. In Sect. 3, we discuss
an ellipsoidal cosmological solution filled with an isotropic
dark matter component and an anisotropic holographic dark
energy. This model, as well as the model with the holographic
dark energy dominating the expansion, are constrained using
the data for the actual shear and skewness of the universe.
Finally, in Sect. 4 we present the conclusion of our results.

2 Anisotropic holographic model and Einstein field
equations

We shall consider a particular case of spatially homogeneous
and anisotropic Bianchi type-I models described by the line
element

ds2 = dt2 − a2(t)(dx2 + dy2) − b2(t)dz2, (4)

where a(t) and b(t) are the directional scale factors and are
functions of the cosmic time t. This spacetime possesses spa-
tial sections with planar symmetry, with axis of symmetry
directed along the z-axis. The metric (4) describes a space
that has an ellipsoidal rate of expansion at any moment of
the cosmological time.

In this case the Einstein field equations are given by

κρ = ȧ2

a2 + 2
ȧ ḃ

a b
, (5)

κp1 = −
(
ä

a
+ ȧ ḃ

a b
+ b̈

b

)
, (6)

κp3 = −
(

2
ä

a
+ ȧ2

a2

)
, (7)

where κ = 8πG = M−2
p . Note that we have put for the

longitudinal and transversal pressures px = py = p1 and
pz = p3.

Now on we shall consider that the energy density filling
this universe has a holographic character. At this point we
assume that the IR cutoff for anisotropic universes is the
mean Hubble parameter H , i.e. L = H−1, therefore the
holographic energy density given by Eq. (3) becomes

κρH = 3c2H2. (8)

For the metric (4) we can define the average scale factor ā(t)
as

ā(t) = (a2(t) b(t))1/3, (9)

and the mean Hubble parameter takes the form

H = ˙̄a
ā

= 1

3

(
2
ȧ

a
+ ḃ

b

)
, (10)

obtaining for the holographic energy the relation

κρH = c2

3

(
2
ȧ

a
+ ḃ

b

)2

. (11)

Thus from Eqs. (5) and (11) we have the following differential
equation:

ȧ2

a2 + 2
ȧ ḃ

a b
= c2

3

(
2
ȧ

a
+ ḃ

b

)2

, (12)

which implies that the directional scale factors are related by

a(t) = b(t)α, (13)

where

α = 3 − 2c2 ± 3
√

1 − c2

4c2 − 3
, (14)

and, without any loss of generality, the integration constant
has been set equal to 1, since we can rescale the coordinates
x and y.

Note that in order to have real values for the parameter
α the condition 0 ≤ c2 ≤ 1 must be required. Thus from
Eq. (14) we obtain 0 ≤ α ≤ 1 for the minus sign, while for
the plus sign we have α ≥ 1 for

√
3/4 < c ≤ 1, and α ≤ −2

for 0 ≤ c <
√

3/4. Besides, for c2 = 3/4, α becomes infinity
for the plus sign, while α → 1/4 for the minus sign.

The holographic metric takes the following form:

ds2 = dt2 − b(t)2α(dx2 + dy2) − b(t)2dz2. (15)

Clearly this metric becomes isotropic for α = 1, or equiva-
lently for c2 = 1. For 0 ≤ c2 < 1 we can have models which
expands (or contracts) at different rates at different directions
(for α > 0), or, as well as occur with vacuum Kasner cos-
mology, expands (contracts) only along two perpendicular
axes, and contracts (expands) along the z-axis (for α ≤ −2).

It is interesting to note that the metric (15) is characterized
by the condition that expansion scalar 	 = uα

;α = (2+α)Ha

is proportional to shear scalar σ 2 = 1
2σabσ

ab.
Let us now consider solutions to these spacetimes in terms

of the pressures of the dark energy fluid.

2.1 Isotropic pressure

We begin studying the simplest case where the holographic
dark energy has isotropic pressure. For doing this we put
p1 = p3 = p into the field equations (5)–(7), and by taking
into account Eq. (13), the metric function takes the form

b(t) = (c1t + c2)
1

(2α+1) , (16)
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where c1 and c2 are integration constants. In this case the
energy density and pressure are given by

ρH = p = α(α + 2)c2
1

κ(2α + 1)2(c1t + c2)2 . (17)

This means that the isotropic requirement for the pressure
implies that the holographic matter filling the universe is a
stiff one, and the holographic dimensionless parameter may
be written through the relevant model parameter α as

c2 = 3α(α + 2)

(2α + 1)2 . (18)

The energy density is positive for α < −2 or α > 0. The
metric of Bianchi Type I in this case of isotropic pressure
takes the form

ds2 = dt2 − (c1t + c2)
2α

2α+1 (dx2 + dy2)

− (c1t + c2)
2

2α+1 dz2. (19)

This one-parametric family of anisotropic metrics is the Kas-
ner metric for a stiff fluid. The scale factor of the sym-
metric plane increases as tα/(2α+1), which means that for
α > 0 and α < −1 there is no accelerated expansion.
For −1 < α < −1/2 there is an accelerated expansion of
the symmetric plane and a contraction along the z-axis. For
α > 0 there is no accelerated expansion in all directions.

In order to consider more general solutions than those
provided by stiff holographic energy, we can require for the
pressures the following isotropic barotropic equation of state
(EoS):

p1 = p3 = ωρH , (20)

where ω is a constant state parameter. From Eqs. (5), (6)
and (20) we obtain

b(t) = (c1t + c2)
α+1

α2ω+α2+2ωα+α+1 , (21)

while from Eqs. (5), (7) and (20) we have that

b(t) = (c1t + c2)
2

3α+ωα+2ω . (22)

Thus the power-law expressions (21) and (22) imply the fol-
lowing constraint:

α2ω − α2 + ωα − α − 2ω + 2 = 0. (23)

From this relation we obtain ω = 1 for any α, or α = 1,−2
for any ω. The case ω = 1 for any α was discussed before
and describes a stiff holographic energy. The second case
α = 1 for any ω describes the standard isotropic FRW models
with scale factor given by a(t) = b(t) = a0t2/(3ω+3). The
third case α = −2 describes a vacuum Kasner anisotropic
spacetime given by

ds2 = dt2 − t4/3(dx2 + dy2) − t−2/3dz2. (24)

In conclusion, the only relevant non-vacuum solution with
anisotropic pressure is described by the metric (19) and the
stiff holographic energy (17). The condition a(t) = b(t)α

is fundamental to obtaining this result. Therefore, it is not
possible to describe accelerated expansion in ellipsoidal cos-
mologies filled with isotropic dark energy.

3 Ellipsoidal universes with anisotropic pressure

Now we shall consider anisotropic holographic models with
anisotropic pressures p1 
= p3. In general the Einstein field
equations for a Bianchi type-I metric may be written in the
following form [32]:

3H2 = κρ + σ 2

2
, (25)

−2Ḣ = κ(ρ + p) + σ 2, (26)

ρ̇ + 3H(ρ + p) = �σ · ��, (27)

�̇σ + 3H �σ = ��, (28)

where κ = 8πG (we will consider κ = 1 from now on), H
and p are the average expansion rate and the average pressure.
The new physical quantities �σ and �� are the shear vector and
the transverse pressure vector respectively, and are defined
as

σi = Hi − H, (29)

�i = pi − p, (30)

where i = 1, 2, 3. From Eqs. (29)–(30) we see that the quan-
tities �σ and �� satisfy the constraints

σ1 + σ2 + σ3 = 0, (31)

�1 + �2 + �3 = 0, (32)

respectively.
From the ellipsoidal metric (4) we have

σ 2 = 2

3
(H1 − H3)

2, (33)

�σ · �� = 2

3
(p3 − p1)(H3 − H1). (34)

In the following subsections we shall consider different holo-
graphic models, filled with an isotropic and anisotropic dark
components, and we will contrast them with observational
data.

3.1 Tracker ellipsoidal holographic solution with dark
matter and dark energy

First, we shall study the ellipsoidal version of the tracker
FRW holographic cosmology for which the IR cutoff is
the Hubble parameter [26,27]. In order to do this, we shall
use the holographic spacetime (15) filled with an isotropic
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dark matter component and a holographic dark energy with
anisotropic pressures. It becomes clear that if the total energy
includes the dark matter and dark energy density, we can
develop a tracker cosmological model by writing for dark
components the relations

ρm = 3c2
1H

2, (35)

ρDE = 3c2
2H

2, (36)

then the total energy density is given by

ρ = ρm + ρDE = 3c2H2, (37)

where c2 = c2
1 + c2

2.
We shall suppose that the dark matter and dark energy are

not interacting and then the isotropic and anisotropic compo-
nents are conserved separately. These conditions are imposed
by requiring for the conservation equation (27) that

ρ̇m + 3Hρm = 0, (38)

ρ̇DE + 3H(ρDE + pDE) + 2

3
(p1 − p3)(H1 − H3) = 0.

(39)

For the metric (15) the anisotropic pressures have the form

p1 = − (α + 1)b̈

b
− α2 ḃ

2

b2 , (40)

p3 = −α(3α − 2)
ḃ2

b2 − 2
b̈

b
. (41)

Notice that the dark matter is a pressureless perfect fluid, then
p1 and p3 are the pressures of the anisotropic dark energy.

From Eq. (38) we have

ρm(t) = ρm0b
−1−2α, (42)

where ρm0 is a constant of integration. From Eqs. (39)–(41)
we have ρDE(t) = C̃b−1−2α + α(2 + α) ḃ2

b2 , where C̃ is an
integration constant. The Friedmann equation (25) imposes
the requirement that C̃ = −ρm0, and then we see that the
energy density of the dark component is given by

ρDE(t) = α(2 + α)
ḃ2

b2 − ρm0b
−1−2α. (43)

We can find the tracker ellipsoidal version for the considered
holographic cosmology (15) by imposing on energy densities
the conditions (35) and (36). In such a way, from Eqs. (35)
and (42) we see that the scale factor is given by

b(t) =
(

3ρm0 (t + C)2

4c2
1

) 1
2α+1

, (44)

where C is a constant of integration. Then we have

ρm = 4c2
1

3(t + C)2 . (45)

From Eqs. (36) and (43) we also obtain b(t) ∼ (t +
C)2/(2α+1), but the solution must be self consistent, then we
shall put the scale factor (44) into Eq. (43), obtaining

ρDE = 4α(α + 2)

(2α + 1)2(t + C)2 − 4c2
1

3(t + C)2 . (46)

For dark energy pressures we obtain

p1 = 2(α − 1)

(2α + 1)2(t + C)2 , (47)

p2 = 4(3α − 1)(1 − α)

(2α + 1)2(t + C)2 . (48)

Let us now suppose that the longitudinal and transversal pres-
sures of the dark energy are given by

p1 = ω1DEρDE, (49)

p3 = ω3DEρDE, (50)

respectively, where ω1DE and ω3DE are state parameters,
which in general are functions of the cosmological time. The
pressures p1 and p3 represent the longitudinal and transver-
sal pressures of the holographic dark energy, since the dark
matter is a pressureless cosmic fluid. In this case the state
parameters are constant and are given by

ω1DE = 3(1 − α)

2(−3α(α + 2) + c2
1(1 + 2α)2)

, (51)

ω3DE = 3(1 − α)(1 − 3α)

−3α(α + 2) + c2
1(1 + 2α)2

. (52)

Note that for α = 1 we obtain the FRW model, with b(t) ∼

t2/3 and p1 = p2 = 0 (or equivalently ω1DE = ω3DE = 0),
so the holographic energy density behaves like pressureless
fluid as we would expect. For α 
= 1 the pressures p1 
= 0 and
p3 
= 0, and the holographic energy becomes anisotropic.

In order to have an accelerated expansion in all directions
Eq. (44) and a(t) = b(t)α imply that

2

2α + 1
> 1, (53)

2α

2α + 1
> 1. (54)

It is clear that the α-parameter must be positive for hav-
ing increasing scale factors. Then from Eq. (53) we have
0 < α < 1/2, while condition (54) cannot be satisfied since
0 ≤ 2α

2α+1 < 1 for 0 ≤ α < ∞. This implies that we have
for 0 < α < 1/2 an accelerated expansion only in the x-
and y-directions, while in the z-direction the expansion is
decelerated.

In conclusion, the tracker ellipsoidal version is mathemat-
ically self-consistent with non-vanishing pressures for the
holographic energy, however this solution is ruled out since
we have an accelerated expansion only in two directions: in
the third direction the expansion is decelerated.
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3.2 Ellipsoidal scenarios with dominating holographic dark
energy

Now we shall consider anisotropic scenarios where the holo-
graphic dark energy component dominates over the dark mat-
ter content. In such a way, this model will describes late time
stages in the evolution of an ellipsoidal cosmology where
the contribution of the dark matter density is neglected,
and the anisotropic behavior will be kept due to the pres-
ence of anisotropic holographic dark energy with barotropic
anisotropic pressure, satisfying (8).

Let us suppose that the longitudinal and transversal pres-
sures of the holographic dark energy are given by

p1 = ω1ρ, (55)

p3 = ω3ρ, (56)

respectively, where ω1 and ω3 are a constant state parameters
(from now on in this section we use the notation ω1DE ≡ ω1

and ω3DE ≡ ω3). Thus, by taking into account that a(t) =
b(t)α , from Eqs. (5) and (6) we obtain

b(t) = (c1t + c2)
α+1

α2ω1+α2+2αω1+α+1 , (57)

and the metric (15) takes the following form:

ds2 = dt2 − t
α(α+1)

α2ω1+α2+2αω1+α+1 (dx2 + dy2)

− t
α+1

α2ω1+α2+2αω1+α+1 dz2. (58)

The energy density and the pressure p3 are given by

ρDE = α(α + 2)(α + 1)2

(α2ω1 + α2 + 2αω1 + α + 1)2 t2 , (59)

p3 = 1 + 2αω1 − α

1 + α
ρDE, (60)

respectively. From Eq. (60) we conclude that the state param-
eter of the transversal pressure is given by

ω3 = 1 + 2αω1 − α

1 + α
. (61)

Let us now study the deviation of this model from the
assumed homogeneity and isotropy of the universe on large
cosmological scales. From Eqs. (61) and (69) we conclude
that the dark energy skewness parameter takes the form

δDE = (1 − ω1)(1 − α)

1 + α
. (62)

It is interesting to note that Eq. (33) may be rewritten with
the help of Eqs. (62) and (68) in the following form:

�σ · �� = 2δDEHρDE. (63)

Then the conservation equation for the dark energy compo-
nent (39) may be rewritten as

ρ̇DE + 3H

(
1 + ωeff + 2

3
δDE 

)
ρDE = 0, (64)

where ωeff = (2ω1 + ω3)/3. Since the state parameters,
skewness and cosmic shear are constant, then for scaling
scenarios where the dark energy is the dominating component
the quantity δDE  is constant, and from Eq. (64) we have

ρ = ρ0 ā
−3(1+ωeff )−2δDE. (65)

Thus, the quantity δDE characterizes the deviation from the
standard isotropic FRW model, remaining constant during
all evolution of the anisotropic holographic cosmology. Note
that if ω1 = 1, then ωeff = 1, ω3 = 1 and δDE = 0, and we
obtain the anisotropic stiff holographic solution discussed in
the previous section. For α = 1 we have  = δDE = 0,
obtaining the standard isotropic FRW model.

Now we shall assume that the ranges of current shear and
skewness values, obtained in Ref. [13], characterize the devi-
ation from the isotropy of a universe dominated, at late times,
by an anisotropic dark energy. Then we shall use these values
to constraint the parameters of our holographic dark energy
model. With these constraints upon our model we can find its
degree of consistence in terms of the range allowed for the
effective EoS of the holographic dark energy component. As
we will show below the corresponding EoS lies in the range
of quintessence or even phantom dark energy.

However, it is important to note that here we deal with
an exact solution, and it can be shown that , δDE and ωeff

are not all independent quantities. In general, in ellipsoidal
cosmologies each of these three cosmological parameters
may be written as functions of the scale factors with their
derivatives and constants of integration. In the specific case
of the holographic ellipsoidal cosmology (58), we have that
the relation

ωeff = 1 + 2δDE

3
(66)

is fulfilled.
As we stated above, Bianchi type-I cosmologies are very

useful to test possible anisotropies of the universe. So, it
is interesting to contrast with observations, the deviation
of considered by us anisotropic models from the assumed
homogeneity and isotropy of the universe on large cosmolog-
ical scales. In Ref. [13] an ellipsoidal universe is considered,
assuming that the mater source is composed by a noninter-
acting isotropic pressureless dark matter and an anisotropic
dark energy component. Solving numerically the Einstein
field equations and analyzing the magnitude–redshift data
of type-Ia supernovae, it was shown that supernova data are
compatible with a large level of anisotropy, both in the geom-
etry of the universe and in the EoS of dark energy: best-fit
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values are given, and the 1σ and 2σ confidence level intervals
derived from the Union2 data analysis, for the cosmologically
relevant parameters , δ, weff , and �m .

In such a way, for constraining the model parameters, we
shall consider the deviation from isotropy of the EoS, and
the amount of anisotropy in the geometry (15) by calculating
the cosmic shear , the skewness δ and the effective state
parameter ωeff .

Let us introduce the cosmic shear , defined by [13]

 = H1 − H

H
, (67)

where H = ˙̄a/ā is the mean Hubble parameter defined by
Eq. (10), and H1 = ȧ/a is the Hubble parameter for the
spatial section of metric (4). The parameter  characterizes
the amount of anisotropy in the geometry since from Eq. (67)
we obtain  ∼ (ȧ/a − ḃ/b)/H .

For the holographic metric (15), the cosmic shear (67)
takes the form

 = α − 1

2α + 1
. (68)

It must be noticed that in general the cosmic shear is time
dependent, however in this case it is constant thanks to the
relation a(t) = b(t)α . With the help of Eqs. (14) and (68) we
can constraint the holographic parameter c.

The deviation from isotropy of the EoS of the dark energy
we shall characterize with the help of the skewness parameter
δDE defined by

δDE = ω3DE − ω1DE . (69)

It becomes clear that the deviation from isotropy depends
only on the anisotropic character of the dark energy, since
the dark matter fluid is a pressureless one.

From the analysis made in Ref. [13] we see that the present
level of anisotropy of the large scale geometry of the uni-
verse, the actual shear 0, and the amount of deviation from
isotropy of the EoS of dark energy, the skewness δDE, are
constrained in the ranges

−0.012 < 0 < 0.012, (70)

−0.016 ≤ δDE ≤ 0.12, (71)

respectively.
From Eqs. (68) and (70), and Eqs. (62) and (71), we obtain

the constraints in the form

− 0.012 <
α − 1

2α + 1
< 0.012, (72)

−0.016 <
(1 − ω1)(1 − α)

1 + α
< 0.012, (73)

respectively.
On the other hand, we are interested in describing an accel-

erated stage of the universe, so we need to require that this

model expands in all directions in an accelerated way, by
requiring α > 0 and

α(α + 1)

α2ω1 + α2 + 2αω1 + α + 1
> 1,

α + 1

α2ω1 + α2 + 2αω1 + α + 1
> 1.

These inequalities imply that

ω1 < − 1

α(α + 2)
, (74)

ω1 < − α

α + 2
, (75)

respectively.
In order to constraint the model parameters we must use

the inequalities (72), (73), (74), (75) and (83).
From Eq. (72) we see that the parameter α is constrained

as follows:

0.96484 < α < 1.03688. (76)

The constraint on the ω1-parameter follows from Eqs. (73),
(74), (75) and (83). By taking into account the constraint (76)
on the α-parameter Eqs. (74) and (75) give

ω1 < −0.3496. (77)

Now, the constraint (73) allows ω1-parameter to take any
value satisfying Eq. (77). Effectively, we can see that for a
given value of ω1 (even for too big values |ω1|) always there
exist values for α-parameter, very close to 1 such that Eq. (73)
will be satisfied.

Therefore, we have shown that for the considered ellip-
soidal holographic universe (58), filled with an holographic
energy with density (8) and anisotropic pressures (55)
and (56), the deviation from the assumed homogeneity and
isotropy of the universe on large cosmological scales remains
constant during all evolution of this type of anisotropic cos-
mology if the state parameter ω1 satisfies the constraint (77).
Note that Eqs. (76) and (77) imply that the transversal pres-
sure satisfies the constraint ω3 < −0.3256, and then in gen-
eral the holographic energy is characterized by a quintessence
or phantom anisotropic dark energy EoS.

Now from Eqs. (62), (66) and (68) we find that

ωeff = 2ω1 − α + 1 + 4αω1

3(1 + α)
. (78)

Therefore, from Eqs. (76) and (77) we conclude that the effec-
tive state parameter has the upper bound ωeff < −0.3415, so
the effective parameter of state may describe a dark energy
component with a negative pressure. To find the lower bound
we consider that in this case the average scale factor is given
by ā(t) = tm , where m = (2α+1)(α+1)

3(α2ω1+α2+2αω1+α+1)
. For α in

the range (76) the average scale factor describes an accel-
erated expansion if −√

3/4 < ω1 < −0.3496 (in this case
m > 1.0122 and the expression α2ω1 + α2 + 2αω1 + α + 1
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does not vanish). For α satisfying the constraint (76) and
ω1 < −√

3/4 the average scale factor also may describe
accelerated expansion. In this case the expression α2ω1 +
α2 + 2αω1 + α + 1 vanishes at α± = − 2ω1+1±

√
4ω2

1−3

2(1+ω1)
and

we need to study each case separately. However, despite this,
it can be shown that there exist regimes with m > 1 for

−1.0122 < ω1 < −
√

3
4 .

This result imposes the lower bound −1.0243 on the effec-
tive state parameter, implying finally that this parameter sat-
isfies the constraint −1.0243 < ωeff < −0.3415, allowing
one to have holographic ellipsoidal universes driven by a
quintessence or phantom matter component.

It is interesting to note that CMB data provide tighter con-
straints on the anisotropy than the SNe-Ia data. Specifically,
for Bianchi type-I models the present shear is constrained by
σ/θ � 10−9 [4], and since for metric (58) is valid σ/θ =√

2
3

H1−H3
2H1+H3

, we see that 1 ≤ α ≤ 1.000000004. Therefore

we have for the cosmic shear 0 ≤  ≤ 1.33333 × 10−9

and ω1 ≤ ω3 ≤ 1.000000002 ω1 − 2 × 10−9. This implies
that ω3 � ω1. Note that from Eqs. (74) and (75) we see that
ω1 < −1/3, thus ω3 < −1/3 (including ωeff ), and then
the holographic ellipsoidal model may describe accelerated
expansion driven by dark energy or even phantom matter.
This is possible due to the metric (58) not belonging to an
asymptotically FRW spacetime.

3.3 Ellipsoidal cosmology with asymptotic behavior
determined by the holographic dark energy

Now, we are interested in constructing an ellipsoidal cos-
mological solution, filled with dark matter and dark energy,
whose asymptotic metric for late times is of the form of
Eq. (15). In order to do this we shall impose the following
condition on energy densities and longitudinal pressure:

p1 = ω1 (ρm + ρDE) , (79)

where ω1 is a constant parameter.
By taking into account that a(t) = b(t)α , from Eqs. (5),

(6) and (79) we see that the directional scale factor b(t) and
the ellipsoidal metric are given by Eqs. (57) and (58), respec-
tively. The energy densities and transversal pressure in this
case are given by

ρm(t) = ρm0t
− (α+1)(2 α+1)

α2ω1+α2+2 ω1 α+α+1 , (80)

ρDE(t) = α (α + 1)2 (α + 2)(
α2ω1 + α2 + 2 ω1 α + α + 1

)2
t2

−ρm0t
− (α+1)(2 α+1)

α2ω1+α2+2 ω1 α+α+1 , (81)

p3(t) = α (α + 1) (α + 2) (1 + 2αω1 − α)(
α2ω1 + α2 + 2 ω1 α + α + 1

)2
t2

, (82)

respectively.
It is interesting to note that the dark matter compo-

nent (80) satisfies the conservation equation (38), while the
dark energy (82) satisfies Eq. (39), so they are conserved sep-
arately and there is not change of energy between these dark
components.

Notice that in order to find the obtained holographic solu-
tion we have not used Eqs. (26) and (28). In this regard, we can
see that by taking into account the metric (4), and imposing on
Eq. (26) the holographic condition (8) we obtain Eqs. (13)
and (14), which implies that the line element (4) becomes
metric (15). Therefore, the use of Eq. (26) will finally give a
result consistent with those obtained by using the metric (15)
with Eqs. (25) and (27). On the other hand, it can be shown
that Eq. (28) is satisfied identically by the metric (15), and
Eqs. (40) and (41) (and therefore by the obtained holographic
solution).

From Eq. (82), we can see that there exist scenarios with
holographic energy dominating over the matter component
by requiring (α+1)(2 α+1)

α2ω1+α2+2 ω1 α+α+1
> 2. This relation may be

rewritten as 2α2ω1 + 4ω1α − α + 1 < 0 or equivalently

ω1 <
α − 1

2α(α + 2)
, (83)

implying that in general the parameters α and ω1 vary in the
ranges α > 0 and ω1 < 1

4(
√

3+2)
, respectively.

It is clear that for the metric (58) the cosmic shear is given
by (68). In this ellipsoidal cosmology the state parameters of
dark energy ω1DE and ω3DE are not constants and its effective
parameter of state is given by

ωeffDE = α(α + 1)(α + 2)(4αω1 + 2ω1 − α + 1)(
α2ω1 + α2 + 2 ω1 α + α + 1

)2
t2−γ ρm0 − α(α+1)2(α + 2)

,

(84)

while the skewness parameter takes the form

δDE = α(α + 1)(α + 2)(α − 1)(ω1 − 1)(
α2ω1 + α2 + 2 ω1 α + α + 1

)2
t2−γ ρm0 − α(α + 1)2(α + 2)

,

(85)

where γ = (α+1)(2 α+1)

α2ω1+α2+2 ω1 α+α+1
.

Now, we shall use the best fit values given in Ref. [13],
which can be considered reasonable ones in observationally
testing the viability of this holographic tracking cosmology.
From Eqs. (68), (84) and (85), we see that the model param-
eters must take the values α = 0.98809, ω1 = 0.13501,
t0ρ0 = 1.13869, in order to satisfy the best fit values 0 =
−0.004, δDE = −0.05, ωeffDE = −1.32 of Ref. [13]. Note
that the value α = 0.98809 implies that the free dimension-
less parameter in Eq. (8) is constrained as 1 ≤ c2 < 0.99986,
implying that the bound (2) will be nearly saturated.

It must be remarked that the best fit values of Ref. [13] are
obtained for ellipsoidal cosmological models with constant
state parameters of the dark energy component. So strictly
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Fig. 1 The figure shows the qualitative behavior of energy densities of
dark matter (dotted and dash-dotted lines for −1 < ω << −1/3 and
ω � −1/3 respectively) and holographic dark energy (solid and dashed
lines for −1 < ω << −1/3 and ω � −1/3 respectively). We see that
at t0 the expansion is dominated by dark matter, and at some t > t0 the
holographic dark energy begins dominate

speaking, we must have constant ω1DE and ω3DE . It can be
seen that these state parameters become constant at stages
when the holographic dark energy is dominating the cosmic
evolution.

Lastly, as in the previous subsection, we shall use more
tighter constraints provided by CMB data. We see that the
present shear is constrained by σ/θ � 10−9 [4], which
implies for the metric (58) that 1 ≤ α ≤ 1.000000004, and
0 ≤  ≤ 1.33333 × 10−9. Note that Eq. (83) implies that
ω1 < 6.7 × 10−10, so values ω1 < −1/3 (for which the
expansion is accelerated in all directions) are allowed.

In Figs. 1 and 2 we show the qualitative behavior of dark
energies and effective state parameter of dark energy for
−1 < ω1 < −1/3. For doing this we have imposed on dark
energy the condition ρDE(t0) = ρDE0, where t0 is a con-
stant. Notice that for ω1 < −1 the holographic dark energy
becomes negative, so we have excluded this case of our study.

4 Conclusion

In this paper we have studied spatially homogeneous and
anisotropic ellipsoidal models of a universe filled with an
holographic dark energy with the Hubble length as the IR
cutoff. Despite the drawbacks with this cutoff (for obtaining
a well behaved EoS for the dark energy in FRW universes)
we explored their properties and consequences in anisotropic

Fig. 2 The figure shows the qualitative behavior of effective state
parameter of holographic dark energy for −1/3 > ω1 > 0 (solid line),
ω1 = −1/3 (dotted line), and ω < −1/3 (dashed line). It can be seen
that for ω < −1/3 at t0 we have ωeff < −1, so the holographic dark
energy initially behaves like phantom matter

universes, and we have shown that in the framework of ellip-
soidal cosmologies it is possible to develop observationally
testable cosmologies.

The main result consists of the derivation of the general
ellipsoidal metric induced by a holographic energy density of
the form (8). Essentially, the dark energy density (8) imposes
a specific relation on the directional scale factors of the ellip-
soidal metric (4), giving the spacetime (15). For saturated
holographic dark energy c = 1 (or equivalently α = 1)
the flat isotropic space is obtained. It is remarkable that for
0 ≤ c2 < 1 the obtained metric (15) allows one to consider
anisotropic accelerated expansion in all directions, which is
in agreement with observations. This behavior is not typical
for all Bianchi type-I cosmologies since often there are solu-
tions where simultaneously some directional scale factors
expand while others contract.

Based on the derived metric (15), we develop a tracker
ellipsoidal holographic cosmology, filled with a dark matter
and a dark energy components. This solution is the ellipsoidal
version of the FRW tracker solution, for which the Fried-
mann equations impose the requirement that the holographic
dark energy behaves like pressureless fluid. The ellipsoidal
tracker version allows one to consider cases with α 
= 1, so
in general the holographic dark energy does not behave like
a pressureless fluid. We show that this ellipsoidal cosmology
expands in an accelerated way only in two directions; in the
third direction the expansion is decelerated.
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We study also accelerated cosmic regimes where the dark
matter is neglected and the holographic dark energy domi-
nates the expansion. Finally, we construct an exact ellipsoidal
solution, filled with dark matter and dark energy, which has
the form of the derived metric (15) with variable state param-
eters of the holographic dark energy.

We apply to considered holographic models the constraint
values on the shear and skewness parameters, obtained by
Campanelli et al. by using Union2 data for supernovae [13].
These constraints characterize the deviation from the isotropy
of ellipsoidal cosmological models, and allow our holo-
graphic models to be ruled by an equation of state, whose
range belongs to quintessence or even phantom matter, when
the dark energy is dominating the expansion. The range (76),
imposed by observations on the relevantα-parameter, implies
that the free dimensionless parameter in Eq. (8) is constrained
as follows: 1 ≤ c2 < 0.99986, then the bound (2) will be
nearly saturated.

By construction, for considered holographic ellipsoidal
cosmologies, the deviation from the assumed homogeneity
and isotropy of the universe on large cosmological scales
remains constant during all evolution. This means that if the
bound (2) is nearly saturated today, then it remains nearly
saturated for all cosmic time.

It is interesting to note that CMB data provide tighter con-
straints on the anisotropy than the SNe-Ia data. Specifically,
for Bianchi type-I models the present shear is constrained by
σ/θ � 10−9 [4]. We also used it for constraining models of
Sects. 3.2 and 3.3.

Another aspect that deserves consideration is that the
obtained holographic anisotropic metric (15) is not asymp-
totically FRW for α 
= 1. Observational constraints allow
this parameter to be α 
= 1, although α � 1 (c � 1). This
implies that observations do not exclude the possibility of
having an anisotropic expansion, characterized by the rela-
tion a(t) = b(t)α for the scale factors. In such a way, the
drawbacks with the used IR cutoff present in holographic
FRW cosmologies are substantially alleviated in ellipsoidal
scenarios.
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