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Abstract A hyperunified field theory is built in detail based
on the postulates of gauge invariance and coordinate indepen-
dence along with the conformal scaling symmetry. All ele-
mentary particles are merged into a single hyper-spinor field
and all basic forces are unified into a fundamental interaction
governed by the hyper-spin gauge symmetry SP(1, Dh − 1).
The dimension Dh of hyper-spacetime is conjectured to have
a physical origin in correlation with the hyper-spin charge of
elementary particles. The hyper-gravifield fiber bundle struc-
ture of biframe hyper-spacetime appears naturally with the
globally flat Minkowski hyper-spacetime as a base space-
time and the locally flat hyper-gravifield spacetime as a fiber
that is viewed as a dynamically emerged hyper-spacetime
characterized by a non-commutative geometry. The gravita-
tional origin of gauge symmetry is revealed with the hyper-
gravifield that plays an essential role as a Goldstone-like field.
The gauge–gravity and gravity–geometry correspondences
bring about the gravitational gauge–geometry duality. The
basic properties of hyperunified field theory and the issue on
the fundamental scale are analyzed within the framework of
quantum field theory, which allows us to describe the laws of
nature in deriving the gauge gravitational equation with the
conserved current and the geometric gravitational equations
of Einstein-like type and beyond.
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1 Introduction

Since Einstein established the general theory of relativity
(GR) [1] in 1915, it has become a great challenge for many
physicists and mathematicians to unify the then-known basic
forces. Historically, the idea of unification was put forward
because of the dynamical theory of the electromagnetic field
formulated in 1864 by Maxwell, who combined electricity
and magnetism into a unifying theory of electromagnetism,
which is considered as the first successful classical unified
field theory. The constancy of the speed of light in Maxwell’s
theory led Einstein to unify the space and time into a four-
dimensional spacetime characterized by the global Lorentz
symmetry SO(1,3), which has laid the foundation for the
special theory of relativity (SR) [2]. Such a globally flat
four-dimensional Minkowski spacetime holding for SR was
extended by Einstein to a curved spacetime characterized by
the general linear group symmetry GL(4, R), which has laid
the foundation for GR [3]. Namely, the gravitational force is
characterized by a dynamic Riemannian geometry of curved
spacetime. Since then, an attempt to unify the gravity and
electromagnetism was pursued by many theoreticians. Some
interesting progress includes the work proposed by Kaluza
who extended GR to five-dimensional spacetime [4], and also
by Klein who proposed the fifth dimension to be curled up
into an unobservable small circle [5]. In such a Kaluza–Klein
theory, the gravitational curvature tensor corresponding to an
extra spatial direction behaves as an additional force analo-
gous to electromagnetism. Another interesting idea was pro-
posed by Weyl, who introduced the concept of gauge field as
the electromagnetic field via a local scaling transformation
[6]. Einstein extensively set on a quest for potential unified
models of the electromagnetism and gravity as a classical
unified field theory; he devoted nearly all his efforts to the
search for a unified field theory and spent the last two decades
of his life doing so.

On the other hand, the Dirac spinor theory [7] has pro-
vided a successful unity between quantum mechanics and
special relativity, which has led to the developments of rela-
tivistic quantum mechanics and quantum field theory (QFT).
The framework of QFT was firstly built up in the 1940s by
formulating the classical electromagnetism into the quan-
tum electrodynamics (QED) [9–16]. QED is characterized
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by an Abelian gauge symmetry U(1). In 1954, Yang and
Mills extended the U(1) gauge symmetry to a non-Abelian
gauge symmetry for characterizing the isotopic spin symme-
try SU(2) [8]. The electroweak theory with the gauge symme-
try group U(1) × SU(2) was developed in the 1960s [17–19],
which has been a great success in unifying the electromag-
netic and weak interactions. Such a theory was proven to
be consistent in the sense of renormalizability [20] under
the Higgs mechanism of spontaneous symmetry breaking
[21,22]. QFT has provided a successful unified description
not only for the electroweak interactions, but also for the
strong interaction characterized by the quantum chromo-
dynamics (QCD) [23,24] with the gauge symmetry group
SU(3). The quantum gauge field theory governed by the sym-
metry group U(1) × SU(2) × SU(3) with spontaneous sym-
metry breaking is referred to as the standard model (SM) in
elementary particle physics. In SM, the leptons and quarks
[25,26] are regarded as the basic building blocks of nature,
and three families of quarks were required to obtain a non-
trivial CP-violating phase [27]. To realize the spontaneous
breaking of the CP symmetry [28,29], it is necessary to go
beyond the SM. For instance, the general two-Higgs doublet
model as one of the simplest extensions to the SM can lead to
the spontaneous breaking of CP symmetry with rich induced
CP-violating sources [30].

The discovery of asymptotic freedom in QCD [23,24] has
indicated a potential unification between the strong interac-
tion and the electroweak interactions. As all the interactions
are governed by the Abelian and non-Abelian Yang–Mills
gauge symmetries, it is natural to search for unified field
theories with enlarged gauge symmetries. The unity of the
quark and lepton species was firstly initiated in the 1970s
[31]. Some minimal grand unified theories (GUTs) for the
electroweak and strong interactions were proposed based on
the gauge symmetry groups SU(5) [32] and SO(10) [33,34].
The key prediction of GUTs was the instability of the proton.
The current experiments have not yet observed any evidence
for the proton decay, only a lower bound of the order 1035

years for its lifetime has been reached. The enlarged gauge
model SO(1,13) [35] was proposed to unify the SO(1,3) spin
gauge symmetry and the SO(10) internal gauge symmetry.
The SO(1,13) and SO(3,11) gauge symmetries were consid-
ered as gravity GUT models in four-dimensional spacetime
[36–38].

On the other hand, the dynamical symmetry breaking
mechanism of QCD at low energies [39] reflects the color
confinement of the gluons and quarks. The light scalar and
pseudoscalar mesons as the bound states of the confined
quarks and antiquarks were shown to behave as compos-
ite Higgs bosons [40]. Such a color confining feature forms
stringlike degrees of freedom, i.e., the so-called QCD strings.
Inspired by the QCD strings, a string object was motivated
to be taken as a basic building block of nature as opposed to

a point-like elementary particle. A consistent string theory
was found to be realized either in 26-dimensional spacetime
for a bosonic string [41] or in ten-dimensional spacetime for
a superstring [42,43]. Some interesting string models that
are promising to realize the SM at low energies include the
perturbative heterotic string models [46] and the mysterious
M-theory [47]. It was shown that the six small extra dimen-
sions in superstring theory need to be compactified [48] on
the Calabi–Yau manifold [49,50] in order to obtain the N = 1
supersymmetry. Subsequently, string perturbation theory was
found to be divergent [51]. The theory was also demon-
strated to require the inclusion of higher-dimensional objects
called D-branes, which were identified with the black-hole
solutions of supergravity [52]. Practically, a full holographic
description of M-theory by using IIA D0 branes was formu-
lated as a matrix theory [53]. Furthermore, the anti-de Sit-
ter/conformal field theory (AdS/CFT) correspondence was
proposed to formulate string theory and study some inter-
esting properties [54–56], which provides a new insight into
the mathematical structures of string theory. Nevertheless,
the basic vacuum solution of string theory remains unknown
as there are 10500 possible solutions fitting the constraints
of the theory [57,58]. Therefore, it is necessary to explore
further how string theory can truly be realized as a theory of
everything.

Alternatively, some gravity gauge theories were proposed
to address the issue of the long-term outstanding problem
about the incompatibility between GR and SM. This is
because SM has successfully been described by the gauge
symmetries within the framework of QFT, which motivated
one to try a gauge theory description for the gravitational
interaction. Numerous efforts have been made to construct
gravity gauge theories, which may be found in some pioneer-
ing work [59–64] and review articles [65–67] and in the refer-
ences therein. Nevertheless, most of the gravity gauge theo-
ries were built relying on the Riemannian or non-Riemannian
geometry in a curved spacetime. Some basic issues concern-
ing the definitions of space and time as well as the quan-
tization of gravity gauge theories remain open questions.
Recently, a quantum field theory of gravity [68] was built
based on the spin and scaling gauge invariances by treat-
ing the gravitational interaction on the same footing as the
electroweak and strong interactions, which enables us to pro-
vide a unified description for the four basic forces within the
framework of QFT. The postulates of gauge invariance and
coordinate independence have been shown to be more gen-
eral and fundamental than the postulate of general covari-
ance under the general linear group GL(4,R) transforma-
tions of coordinates, so that all the basic forces are gov-
erned by gauge symmetries. The concept of biframe space-
time was found to play an essential role in such a gravita-
tional quantum field theory. Instead of the metric field in
GR, a bicovariant vector field defined in biframe spacetime

123



28 Page 4 of 36 Eur. Phys. J. C (2018) 78 :28

is necessarily introduced as a basic gravifield to character-
ize the gravitational interaction. Geometrically, one frame
spacetime is a globally flat coordinate Minkowski space-
time that acts as an inertial reference frame for describing
the motion of the basic fields, which enables us to derive
the well-defined conservation laws and to make a physi-
cally meaningful definition for space and time in such a
way that the differences of the spatial coordinates or time
coordinate can be directly measured by the standard ways
proposed in SR. The other frame spacetime is a locally
flat non-coordinate gravifield spacetime that functions as an
intrinsic interaction frame for characterizing the dynamics
of basic fields, which is characterized by a non-commutative
geometry and viewed as a dynamically emerging space-
time.

Inspired by the relativistic Dirac spinor theory and the
grand unified theories as well as the Einstein general the-
ory of relativity, we are motivated to assume the hypotheses
that all the spin-like charges of elementary particles should
be treated on the same footing as a hyper-spin charge and
the hyper-spinor structures of elementary particles are cor-
related with the geometric properties of hyper-spacetime.
To build a reliable unified field theory within the frame-
work of gravitational quantum field theory [68], we shall
work with the postulates that the basic theory should obey
the principles of gauge invariance and coordinate indepen-
dence. With such hypotheses and postulates, we have pre-
sented in Ref. [69] a brief description for a unified field
theory of all basic forces and elementary particles in hyper-
spacetime.

In this paper, we are going to carry out a general analysis
and a detailed construction for such a hyperunified field the-
ory. The paper is organized as follows: after Sect. 1 in which
a brief outline of various attempts in exploring unified theo-
ries is presented, we then show in Sect. 2 how all the quarks
and leptons as the point-like elementary particles in SM can
be merged into a column vector in the spinor representa-
tion of hyper-spacetime with a Majorana-type hyper-spinor
structure. In Sect. 3, we demonstrate how all the known basic
forces in nature can be unified into a fundamental interaction
governed by a hyper-spin gauge symmetry SP(1, Dh−1) with
a minimal dimension Dh = 19. An equation of motion for
the unified hyper-spinor field results characterizing a general
gravitational relativistic quantum theory with a conformal
scaling symmetry in hyper-spacetime. In Sect. 4, we con-
struct in detail a general action of hyperunified field theory
in a locally flat hyper-gravifield spacetime based on the pos-
tulates of gauge invariance and coordinate independence. By
projecting into a globally flat coordinate hyper-spacetime via
a bicovariant vector hyper-gravifield, we obtain in Sect. 5 the
general action of hyperunified field theory within the frame-
work of QFT. A set of equations of motion with the con-
served currents are obtained describing the dynamics of all

the basic fields. In Sect. 6, we derive various conservation
laws in hyperunified field theory and the master equation for
the dynamics of hyper-gravifield with the conserved hyper-
stress energy-momentum tensor. In Sect. 7, we demonstrate
the gravitational origin of the gauge symmetry and present
the general action of hyperunified field theory in a hidden
gauge formalism. An emergent general linear group sym-
metry GL(Dh , R) is shown to characterize a Riemannian
geometry of hyper-spacetime. A basic action of hyperunified
field theory with a general conformal scaling gauge invari-
ance results in Sect. 8, which enables us to demonstrate the
gravity–geometry correspondence and obtain an Einstein–
Hilbert-type action for the gravitational interaction in hyper-
spacetime, keeping the global and local conformal scaling
symmetries. In Sect. 9, we represent the basic action of hype-
runifield field theory in the locally flat hyper-gravifield space-
time, which allows us to show the gauge–gravity correspon-
dence based on the gravitational origin of gauge symmetry.
In such a hidden coordinate system, we further demonstrate
in Sect. 10 that the basic action of hyperunified field the-
ory is generally characterized by a non-commutative geome-
try of hyper-gravifield spacetime. The gravitational gauge–
geometry duality is corroborated based on various equivalent
formalisms of hyperunified field theory. A complete equiva-
lence requires one to set the gauge fixing condition in a flow-
ing unitary gauge. In Sect. 11, we present a general analysis
on the basic properties of hyperunified field theory within the
framework of QFT and address the issue on the fundamental
mass scale relying on the conformal scaling gauge symmetry,
which enables us to derive the gauge gravitational equation
of the hyper-gravifield with the conserved bicovariant vector
current and deduce the geometric gravitational equations of
Einstein-like type and beyond, corresponding to the symmet-
ric and antisymmetric hyper-stress energy-momentum tensor
in hyper-spacetime. Our conclusions and remarks are given
in the final section.

2 Unification of elementary particles and maximal
symmetry in hyper-spacetime

The SM has been tested by ever more precise experiments
including the currently running LHC. In SM, the fermionic
spinors, quarks and leptons, are thought to be the basic build-
ing blocks of nature. In the electromagnetic and strong inter-
actions, the quarks and charged leptons are the Dirac spinors.
In the weak interaction, the quarks and leptons behave as the
Weyl spinors. The smallness of the neutrino masses indi-
cates that the neutrinos are likely Majorana-type spinors. In
this section, we are going to show how all the quarks and lep-
tons as elementary particles in SM are unified into a single
hyper-spinor field.
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2.1 Unity of hyper-spin charges for each family of quarks
and leptons

The Dirac equation as a combination of quantum mechanics
and special relativity has led to the successful development of
relativistic quantum mechanics and quantum field theory. Let
us begin with revisiting the Poincaré covariant Dirac equation
[7] in four-dimensional spacetime,
(
γ μi∂μ − m

)
ψ = 0 ; or (ημν∂μ∂ν + m2)ψ = 0,

{γμ γν} = ημν , ημν = diag.(1,− 1,− 1,− 1) , (1)

where ∂μ = ∂/∂xμ denotes the coordinate derivative oper-
ator, and γμ (μ = 0, 1, 2, 3) are the 4 × 4 γ -matrices
satisfying anticommutation relations. The unity of quan-
tum mechanics and special relativity with the Lorentz sym-
metry SO(1,3) leads to a complex four-component entity
ψT = (ψ1 , ψ2 , ψ3 , ψ4), which is referred to as the Dirac
spinor field. It indicates that the four-dimensional spacetime
that describes the movement and rotation in coordinate sys-
tems correlates to the four-component entity that reflects the
boost spin and helicity spin of the Dirac spinor field.

The Dirac equation reveals an interesting correlation
between the basic quantum numbers of fermionic spinor and
the geometric features of coordinate spacetime at a more pro-
found level. Specifically, the dimensions of spacetime are
coherently related with the degrees of freedom of the Dirac
spinor. A massless Dirac spinor generates new symmetries
corresponding to the chirality spin and conformal scaling
transformations. Recently, we have shown that treating the
chirality spin on the same footing as the boost spin and helic-
ity spin of the Dirac spinor field enables us to obtain a gener-
alized Dirac equation in six-dimensional spacetime with the
Lorentz symmetry SO(1,5) [70]. It has been demonstrated
that the chirality spin of the Dirac spinor field does correlate
to a rotation in the extra two spatial dimensions.

Inspired by the relativistic Dirac equation, and treating all
the spin-like charges of the quarks and leptons on the same
footing as a hyper-spin charge Qh , all the degrees of freedom
in each family of quarks and leptons can be written into a
column vector in a spinor representation of hyper-spacetime
with the dimension Dh = 2Qh = 14.

Let us first introduce a Dirac-type hyper-spinor field �

defined in 14-dimensional hyper-spacetime,

� ≡ �(x̂), x̂ ≡ xM , M = 0, 1, 2, 3, 5, . . . , 14. (2)

An action for a freely moving massless hyper-spinor field
�(x̂) is simply given as follows:

IH =
∫

[dx̂] 1

2
[ �̄(x̂)�A δ M

A i∂M�(x̂) + H.c. ] , (3)

with A,M = 0, 1, 2, 3, 5, . . . , 14, and δ M
A the Kronecker

symbol. ∂M = ∂/∂xM is the partial derivative and �A is

the vector γ -matrix defined in the spinor representation of
14-dimensional spacetime. The Latin alphabet A,B . . . and
the Latin alphabet starting from M,N are used to distin-
guish vector indices in non-coordinate spacetime and coor-
dinate spacetime, respectively. All the Latin indices are
raised and lowered by the constant metric matrices, i.e.,
ηAB or ηAB = diag.(1,−1, . . . ,−1), and ηMN or ηMN =
diag.(1,−1, . . . ,−1). The system of units is chosen such
that c = h̄ = 1.

The action of Eq. (3) is invariant under global Lorentz
transformations of the symmetry group SO(1,13). The coor-
dinates xM and hyper-spinor field �(x̂) transform in the vec-
tor and spinor representations, respectively,

xM → x
′M = LM

N xN, �(x̂) → � ′(x̂ ′) = S(L)�(x̂),

(4)

with

LM
N ∈ SO(1, 13), S(L) = eiαAB�AB/2 ∈ SP(1, 13),

S(L)�AS−1(L) = LA
B �B , �AB = i

4
[�A, �B], (5)

where �AB are the generators of the hyper-spin group
SP(1,13) in the spinor representation; they satisfy the group
algebra,

[�AB, �CD] = i(�ADηBC − �BDηAC

− �ACηBD + �BCηAD)

[�AB, �C] = i(�AηBC − �BηAC). (6)

The Lorentz invariance requires that the symmetry groups
SP(1,13) and SO(1,13) should coincide with each other, i.e.,
SP(1,13)∼= SO(1,13).

The action of Eq. (3) is also invariant under parallel trans-
lations of the coordinates,

xM → x
′M = xM + aM (7)

with aM a constant vector.
In general, the Dirac-type hyper-spinor field � in 14-

dimensional spacetime contains N f = 2[Dh/2] = 27 = 128
complex degrees of freedom. Geometrically, one can explic-
itly construct the spinors and show how they transform under
the operations of relevant symmetry groups. For instance, the
massive Dirac spinors and Weyl spinors as well as Majorana
spinors in four-dimensional spacetime possess the maximal
Lorentz symmetry SO(1,3) that characterizes the boost spin
SU∗(2) and the helicity spin SU(2). A massless Dirac spinor
was shown to have the maximal Lorentz symmetry SO(1,5) in
six-dimensional spacetime [70]. This is because an additional
chiral symmetry emerges for the massless Dirac spinors,
which reflects the degrees of freedom corresponding to the
chirality spin. As a consequence, a massless Dirac spinor can
be treated as a Weyl-type spinor or a Majorana-type spinor
with an intrinsic W-parity in six-dimensional spacetime [70].
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To specify the typical structure of the hyper-spinor field
� so as to characterize the internal features of the quarks and
leptons, let us first identify the spinor structure for each fam-
ily of the quarks and leptons. In SM, each family of the quarks
and leptons has 64 independent degrees of freedom, which
can be written in terms of a single field with the following
hyper-spinor structure:

�T
W i = [(Ur

i ,Ub
i ,Ug

i ,Uw
i , Dr

ic, D
b
ic, D

g
ic, D

w
ic,

Dr
i , D

b
i , D

g
i , Dw

i ,−Ur
ic,−Ub

ic,−Ug
ic,−Uw

ic )L ,

(Ur
i ,Ub

i ,Ug
i ,Uw

i , Dr
ic, D

b
ic, D

g
ic, D

w
ic,

Dr
i , D

b
i , D

g
i , Dw

i ,−Ur
ic,−Ub

ic,−Ug
ic,−Uw

ic )R]T ,(8)

with i = 1, . . . , n f for families. The superscript T denotes
as the transposition of a column matrix. We have denoted the
Dirac spinors of the quarks and leptons in four-dimensional
spacetime Qα

i = (Uα
i , Dα

i ) with α = (r, b , g , w) repre-
senting the trichromatic (red, blue, green) and white colors,
respectively. Qα

ic = (Uα
ic, D

α
ic) are defined as follows with a

charge-conjugated operation acting on the Dirac spinors:

Qα
i c = C4 Q̄

T
i = C4γ0Q

∗
i , C†

4 = −C4, (9)

with C4 the charge conjugation matrix defined in four-
dimensional spacetime C4 = iγ2γ0. The subscripts “L” and
“R” in Qα

i L ,R = (Uα
i , Dα

i )L ,R denote the left-handed and
right-handed Dirac spinors, respectively,

Qα
i L ,R = 1

2
(1 ∓ γ5)Q

α
i , γ5Q

α
i L ,R = ∓Qα

i L ,R . (10)

Explicitly, the γ -matrices defined in four-dimensional space-
time take the following forms:

γ0 = σ1 ⊗ σ0, γi = iσ2 ⊗ σi , γ5 = σ3 ⊗ σ0, (11)

where σi (i = 1, 2, 3) are the Pauli matrices and σ0 ≡ I2
denotes the 2 × 2 unit matrix.

The hyper-spinor field �Wi satisfies the Majorana–Weyl-
type condition defined in the spinor representation of 14
spacetime dimensions,

� c̄
Wi = C̄14�̄

T
Wi = �Wi , γ15�Wi = −�Wi , (12)

with the explicit forms

C̄14 = σ1 ⊗ σ2 ⊗ σ2 ⊗ σ0 ⊗ σ0 ⊗ C4 ,

γ15 = σ3 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ γ5 ≡ γ11 ⊗ γ5. (13)

The independent degrees of freedom of �Wi are counted
as Nh = 2[Dh/2]+1/4 = 28/4 = 64, which does equal those
in each family of the quarks and leptons. The spinor structure
of the Dirac-type hyper-spinor field � can be expressed in
the following form:

� ≡ �W + �E ≡ 1√
2
(�1 + i�2)

≡ �W1 + i�W2 + �E1 + i�E2, (14)

with

�W,E = 1

2
(1 ∓ γ15)�, � c̄

W,E = 1

2
(1 ∓ γ15)�

c̄ ,

�1 = 1√
2
(� + � c̄), �2 = 1√

2i
(� − � c̄), (15)

and

�W1 = 1

2
(�W + � c̄

W ), �W2 = 1

2i
(�W − � c̄

W ) ,

�E1 = 1

2
(�E + � c̄

E ), �E2 = 1

2i
(�E − � c̄

E ) ,

�1 = �W 1 + �E1, �2 = �W 2 + �E2 ; � c̄
i = �i ,

(16)

where �W,E are regarded as a pair of mirror hyper-spinor
fields defined in 14-dimensional spacetime. In order to dis-
tinguish them from the left-handed and right-handed chiral
Weyl spinors in four-dimensional spacetime, we may name a
pair of mirror hyper-spinor fields �W and �E westward and
eastward hyper-spinor fields, respectively.

With a given hyper-spinor structure, the vector γ -matrix
�A should be specified to characterize the symmetry relations
between the degrees of freedom in the hyper-spinor field �.
In SM, the quarks and leptons are characterized by the sym-
metry groups U(1) × SU(2) × SU(3) × SP(1,3) which should
be contained in the hyper-spin symmetry group SP(1,13) as
subgroups. From the well-known structure of the gauge mod-
els SU(4) × SU(2)L× SU(2)R and SO(10), we can construct
the vector γ -matrix �A with the following explicit forms:

�0 = σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ1 ⊗ σ0 ,

�1 = iσ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ2 ⊗ σ1 ,

�2 = iσ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ2 ⊗ σ2 ,

�3 = iσ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ2 ⊗ σ3 ,

�5 = iσ1 ⊗ σ0 ⊗ σ1 ⊗ σ0 ⊗ σ2 ⊗ σ3 ⊗ σ0 ,

�6 = iσ1 ⊗ σ0 ⊗ σ2 ⊗ σ3 ⊗ σ2 ⊗ σ3 ⊗ σ0 ,

�7 = iσ1 ⊗ σ0 ⊗ σ1 ⊗ σ2 ⊗ σ3 ⊗ σ3 ⊗ σ0 ,

�8 = iσ1 ⊗ σ0 ⊗ σ2 ⊗ σ2 ⊗ σ0 ⊗ σ3 ⊗ σ0 ,

�9 = iσ1 ⊗ σ0 ⊗ σ1 ⊗ σ2 ⊗ σ1 ⊗ σ3 ⊗ σ0 ,

�10 = iσ1 ⊗ σ0 ⊗ σ2 ⊗ σ1 ⊗ σ2 ⊗ σ3 ⊗ σ0 ,

�11 = iσ2 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ3 ⊗ σ0 ,

�12 = iσ1 ⊗ σ1 ⊗ σ3 ⊗ σ0 ⊗ σ0 ⊗ σ3 ⊗ σ0 ,

�13 = iσ1 ⊗ σ2 ⊗ σ3 ⊗ σ0 ⊗ σ0 ⊗ σ3 ⊗ σ0 ,

�14 = iσ1 ⊗ σ3 ⊗ σ3 ⊗ σ0 ⊗ σ0 ⊗ σ3 ⊗ σ0 , (17)

which enables us to write down explicitly the generators
of the hyper-spin symmetry group SP(1,13), i.e., �AB =
i[�A �B]/4.
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2.2 Discrete symmetries (CPT) and hyper-spinor structure
in hyper-spacetime

To further reveal the intrinsic properties of the hyper-spinor
field and hyper-spacetime, we shall investigate the symmetry
properties of the action of Eq. (3) under the operations of
discrete symmetries of hyper-spacetime: charge conjugation
(C), parity inversion (P) and time reversal (T ).

Let us first show the transformation property under the
charge-conjugated operation C̄ on the Majorana-type hyper-
spinor field of the quarks and leptons in each family. The
vector γ -matrix �A ≡ (�a , �A) (a = 0, 1, 2, 3, A =
5, . . . , 14) transforms as

C̄�aC̄−1 = −(�a)T ; C̄�AC̄−1 = (�A)T , (18)

which implies that the ordinary four-dimensional spacetime
distinguishes from the other ten dimensions under the charge-
conjugated operation C̄. For convenience, let us express both
the vector coordinate xM and the γ -matrix �A into two parts,

xM = (xμ, xM ) , μ = 0, 1, 2, 3 , M = 5, . . . , 14,

�A = (�a, �A) , a = 0, 1, 2, 3 , A = 5, . . . , 14. (19)

In order to keep the action, Eq. (3), invariant and nontrivial
under the charge-conjugated operation C̄, the hyper-spinor
field has to transform as follows:

C̄�(x̂)C̄−1 = C̄�̄T (xμ,−xM ). (20)

Unlike the ordinary four-dimensional spacetime coordinates,
the signs of the ten spatial dimensions flip under the charge-
conjugated operation C̄. This is because if the ten spatial
dimensions do not undergo a flip in sign under the charge-
conjugated operation C̄, the action will not be invariant due
to the following identities:

C̄�̄(x̂)�A�( x̂)C̄−1 = �̄ c̄(x̂)�A� c̄(x̂) = �̄(x̂)�A�(x̂) ,

C̄�̄(x̂)�Aδ M
A i∂M�(x̂)C̄−1 = �̄ c̄(x̂)�Aδ M

A i∂M� c̄(x̂)

= i∂M (�̄(x̂)) �Aδ M
A �(x̂) ,

which has an opposite sign in comparison with the term
required from the hermiticity of the action in Eq. (3).

The action of Eq. (3) has a similar intrinsic discrete sym-
metry under the operation W ,

W�(x̂)W−1 = W�(xμ,−xM ) , W = iγ 5,

W−1�aW = −�a, W−1�AW = �A. (21)

Such an operation defines an intrinsic W-parity [70]. Under
the combined operation C ≡ WC̄, all the coordinates in
hyper-spacetime do not need to flip in sign, i.e.,

�c ≡ C�(x̂)C−1 = C14�̄
T (x̂) = C14�0�

∗(x̂) , (22)

where C14 can simply be written as a product of the γ -
matrices

C14 ≡ WC̄14 = i�2�0�6�8�10�12�14,

C−1
14 �AC14 = (�A)T , (23)

which defines the charge conjugation operation C in 14-
dimensional hyper-spacetime. C14 can be regarded as a nat-
ural extension of the charge conjugation matrix C4 in four
dimensional spacetime as shown in Eq. (115). Such a charge
conjugation operation C has the following feature:
(
�c(x̂)

)c = C�c(x̂)C−1 = −�(x̂), (24)

which reflects a discrete Z4 property.
Unlike the charge-conjugated operation C̄, which is intro-

duced as the Majorana-type condition to figure out the
degrees of freedom in each family of the quarks and lep-
tons, the newly defined charge conjugation operation C in 14-
dimensional hyper-spacetime leads the Majorana-type con-
dition of hyper-spinor field to be modified with the intrinsic
W-parity,

C�Wi (x̂)C−1 ≡ �c
Wi (x̂) = C14�̄

T
Wi (x̂)

= C14�0�
∗
Wi (x̂) = γ5�Wi (x̂). (25)

To ensure the action of Eq. (3) to be invariant and nontrivial
under the discrete symmetries P and T in hyper-spacetime,
the hyper-spinor field should transform as follows:

P�(x̂)P−1 = P14�(x̃) , x̃ = (x0,−x1, . . . ,−x14),

P−1
14 �AP14 = (�A)†, P14 = �0, (26)

for parity inversion, and

T �(x̂)T −1 = T14�(−x̃); T−1
14 �AT14 = (�A)T , (27)

for time reversal. The matrix T14 is found to have an explicit
form,

T14 = �1�3�5�7�9�11�13γ15, (28)

which can be regarded as an extension to the time reversal
matrix T4 = iγ1γ3 defined in four-dimensional spacetime.

In general, the action of Eq. (3) is invariant under the joint
operation � ≡ CPT , where the hyper-spinor field trans-
forms as

��(x̂)�−1 = 
�̄T (−x̂),


−1�A
 = (�A)†, 
 = CPT = �0 . (29)

2.3 Family and mirror hyper-spin charges with additional
dimensions

In terms of the charge conjugation operation C, the action
Eq. (3) can be rewritten as

IH =
∫

[dx̂] 1

2
[ �̄(x̂)�A δ M

A i∂M�(x̂) + H.c. ]

=
∫

[dx̂] 1

2
¯̂
�(x̂)�A δ M

A i∂M�̂(x̂), (30)
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where we have introduced a new type of the hyper-spinor
field,

�̂(x̂) ≡
(

�(x̂)

�c(x̂)

)
, (31)

which satisfies the Majorana-type condition,

�̂c(x̂) ≡ C�̂(x̂)C−1 = C16
¯̂
�T (x̂) = �̂(x̂) . (32)

C16 defines a new charge conjugation operation,

C16 = −iσ2 ⊗ C14. (33)

Such a charge conjugation operation in hyper-spacetime
enables us to rewrite the hyper-spinor field �(x̂) with 128
complex degrees of freedom into the Majorana-type hyper-
spinor field �̂(x̂) with 256 real type degrees of freedom. The
resulting action of Eq. (30) becomes self-hermitian.

The real and imaginary parts in the decomposition of the
hyper-spinor field shown in Eq. (14) reflect a family hyper-
spin charge between the pairs of the conjugated hyper-spinor
fields �(x̂) and �c(x̂), which results the action of Eq. (30)
to have an internal SU(2) symmetry. For the massless hyper-
spinor field �̂(x̂), the action of Eq. (30) possesses an addi-
tional U(1) symmetry that characterizes the mirror hyper-spin
charge between the westward hyper-spinor field �W (x̂) and
the eastward hyper-spinor field �E (x̂). Such new spin-like
charges are presumed to relate coherently with extra dimen-
sions of hyper-spacetime.

Let us now extend the action of Eq. (30) by requiring a
maximal symmetry. Indeed, the action of Eq. (30) can be
reconstructed to be a more general one in 18-dimensional
hyper-spacetime,

IH =
∫

[dx̂] 1

2
¯̂
�(x̂)�A δ M

A i∂M�̂(x̂), (34)

with A,M = 0, 1, 2, 3, 5, . . . , 18. The vector γ -matrix �A

has the following explicit structure:

�A = σ0 ⊗ �A ,

�15 = iσ3 ⊗ γ 15 ,

�16 = iσ2 ⊗ γ 15 ,

�17 = iσ1 ⊗ γ 15 ,

�18 = I256, (35)

with �A (A = 0, 1, 2, 3, 5, . . . , 14) presented in Eq. (17).
I256 is the 256 × 256 unit matrix. The action of Eq. (34)
possesses an extended maximal symmetry,

SP(1, 17) ∼= SO(1, 17), (36)

with the generators �AB defined as

�AB = −�BA = i

4
[�A , �B],

�A18 = −�18A = i

2
Γ A,

A,B = 0, 1, 2, 3, , 5, . . . , 17 . (37)

The extra four dimensions lead to the rotational symmetry
SO(4) = SU(2) × SU(2), which characterizes both the fam-
ily hyper-spin symmetry SU(2) and the mirror hyper-spin
symmetry SU(2).

2.4 Unification of all quarks and leptons as elementary
particles in hyper-spacetime with minimal dimension
and maximal symmetry

In SM, there are three families of quarks and leptons. The
Majorana-type hyper-spinor field defined in 16-dimensional
hyper-spacetime contains at most two families of quarks and
leptons. To unify all the quarks and leptons in SM into a single
hyper-spinor field, we need to introduce an additional fam-
ily hyper-spin charge and extend the 16-dimensional hyper-
spacetime to a higher-dimensional hyper-spacetime.

Let us consider a Majorana-type hyper-spinor field Ψ (x̂)
defined in a spinor representation of 18-dimensional hyper-
spacetime,

Ψ (x̂) =
(

�̂(x̂)

�̂
′
(x̂)

)
=

⎛

⎜⎜
⎝

�(x̂)
�c(x̂)
� ′(x̂)

−�
′c(x̂)

⎞

⎟⎟
⎠ , (38)

which satisfies both the Majorana-type and the Majorana–
Weyl-type conditions,

CΨ (x̂)C−1 = ĈΨ̄ T (x̂) = Ψ (x̂) ,

CΨ∓(x̂)C−1 = ĈΨ̄ T∓ (x̂) = Ψ∓(x̂) ,

γ19Ψ∓(x̂) = ∓Ψ∓(x̂) , γ 2
19 = 1 , (39)

with

Ĉ = −iσ3 ⊗ σ2 ⊗ C14 ; γ19 = σ3 ⊗ σ0 ⊗ γ15 . (40)

Taking a freely moving massless Majorana-type hyper-
spinor field Ψ (x̂) as an irreducible spinor representation in
hyper-spacetime, we arrive at an action in hyper-spacetime,

IH =
∫

[dx̂] 1

2
Ψ̄ (x̂)Γ A δ M

A i∂MΨ (x̂), (41)

with the minimal dimensionA ,M = 0, 1, 2, 3, 5, . . . , Dh =
19. The vector γ -matrix Γ A takes the following explicit
form:

Γ A ≡ (Γ A, Γ ã) ,

Γ A = σ0 ⊗ σ0 ⊗ �A ,

Γ 15 = iσ2 ⊗ σ3 ⊗ γ 15 ,

Γ 16 = iσ1 ⊗ σ0 ⊗ γ 15 ,

Γ 17 = iσ2 ⊗ σ1 ⊗ γ 15 ,

Γ 18 = iσ2 ⊗ σ2 ⊗ γ 15 ,

Γ 19 = I512, (42)
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with A = 0, 1, 2, 3, 5, . . . , 14, ã = 15, . . . , 19. I512 is a
512 × 512 unit matrix. The above action possesses the max-
imal symmetry,

SP(1, Dh − 1) ∼= SO(1, Dh − 1) , Dh = 19 . (43)

The generators of the symmetry group SP(1, Dh − 1) are
defined as follows:

ΣAB = −ΣBA = i

4
[Γ A , Γ B],

ΣA19 = −Σ19A = i

2
Γ A, (44)

with A,B = 0, 1, 2, 3, 5, . . . , 18.
The action of Eq. (41) is invariant under the discrete

symmetries C, P and T defined in 19-dimensional hyper-
spacetime. The hyper-spinor field transforms as

Ψ c(x̂) ≡ CΨ (x̂)C−1 = C19Ψ̄
T (x̂) = C19Γ0Ψ

∗(x̂) ,

C−1
19 Γ AC19 = (Γ A)T , (45)

for charge conjugation with C19 given by

C19 ≡ Ĉ = Γ2Γ0Γ6Γ8Γ10Γ12Γ14Γ16Γ18 (46)

and

PΨ (x̂)P−1 = P19Ψ (x̃) ,

P−1
19 Γ AP19 = (Γ A)†, P19 = Γ 0, (47)

for parity inversion with x̃ = (x0,−x1, . . . ,−x18, x19), as
well as

T Ψ (x̂)T −1 = T19Ψ (−x̃) ; T−1
19 Γ AT19 = (Γ A)T , (48)

for time reversal with T19 defined as

T19 = iΓ1Γ3Γ5Γ7Γ9Γ11Γ13Γ15Γ17γ19 . (49)

In general, the spin-like charges as the basic quantum
numbers of elementary particles determine the dimensions
of hyper-spacetime with the maximal symmetry which iden-
tifies the structure of hyper-spinor field. Without considering
symmetry breaking and dimension reduction, the Majorana-
type hyper-spinor field in 19-dimensional hyper-spacetime
contains in general four families of vector-like quarks and
leptons. Such a hyper-spinor structure allows us to define
explicitly the Majorana–Weyl-type hyper-spinor fields in
hyper-spacetime,

Ψ (x̂) = Ψ+(x̂) + Ψ−(x̂), Ψ∓(x̂) = 1

2
(1 ∓ γ19)Ψ (x̂) ,

CΨ∓(x̂)C−1 = Ψ∓(x̂) ; C−1
19 γ19C19 = −γ T

19 . (50)

From the action of Eq. (41), we are able to obtain the
Dirac-type equation of the massless hyper-spinor field,

Γ A δ M
A i∂MΨ (x̂) = 0 , ηMN∂M∂NΨ (x̂) = 0 ,

ηMN = ηMN = diag.(1,−1, . . . ,−1), (51)

which is regarded as an equation of motion for a general-
ized relativistic quantum theory in hyper-spacetime with the
dimension Dh = 19.

3 Unification of basic forces with hyper-spin gauge
symmetry and dynamics of the hyper-spinor field

To merge the three families of quarks and leptons as the basic
building blocks of nature into a single Majorana-type hyper-
spinor field in the irreducible spinor representation of hyper-
spacetime, one requires the minimal dimension of hyper-
spacetime to be Dh = 19. We are now going to show how the
four basic forces of nature can be unified into a fundamental
interaction governed by a hyper-spin gauge symmetry.

3.1 Unification of basic forces with hyper-spin gauge
symmetry

To ensure the action of Eq. (41) to be invariant under the trans-
formations of the global hyper-spin symmetry SP(1, Dh −1)
for the freely moving massless hyper-spinor field and the
global hyper-spacetime Lorentz symmetry SO(1, Dh − 1)
for the coordinates, the symmetry transformations of SP(1,
Dh − 1) and SO(1, Dh − 1) have to coherently incorporate
each other, i.e., SP(1, Dh − 1) ∼= SO(1, Dh − 1).

Based on the gauge principle of interactions, let us pro-
pose that the hyper-spin symmetry SP(1, Dh − 1) is gauged
as a local symmetry and the hyper-spacetime Lorentz sym-
metry SO(1, Dh − 1) remains as a global symmetry. So
that a fundamental interaction is governed by the hyper-spin
gauge symmetry SP(1, Dh − 1). In this case, the hyper-spin
gauge symmetry SP(1, Dh −1) distinguishes from the global
Lorentz symmetry SO(1, Dh−1) in hyper-spacetime. To real-
ize that, it is essential to introduce the bicovaraint vector field
χ̂ M
A (x̂) and the hyper-spin gauge field AM(x̂) to preserve

both the local hyper-spin gauge symmetry SP(1, Dh −1) and
the global Lorentz symmetry SO(1, Dh − 1). Explicitly, the
kinematic term of the hyper-spinor field has to be extended
as follows:

�Aδ M
A i∂M → �Aχ̂ M

A (x̂)iDM, (52)

with A,M = 0, 1, 2, 3, 5, . . . , Dh (Dh = 19). The constant
vector δ M

A is replaced by thebicovaraint vector field χ̂ M
A (x̂),

and the ordinary derivative ∂M is generalized to the covariant
derivative DM,

iDM ≡ i∂M + AM , AM(x̂) ≡ A BC
M (x̂)

1

2
ΣBC, (53)

with the hyper-spin gauge field AM(x̂) as a hyper-spin con-
nection in the language of differential geometry.

We are able to generalize the action of Eq. (41) for
the freely moving massless hyper-spinor field to a gauge-
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invariant action with the hyper-spin gauge symmetry SP(1,
Dh − 1) and the hyper-spacetime Lorentz symmetry SO(1,
Dh − 1),

IH =
∫

[dx̂] 1

2
Ψ̄ (x̂)Γ A χ̂ M

A (x̂)iDMΨ (x̂), (54)

with A ,M = 0, 1, 2, 3, 5, . . . , Dh (Dh = 19). The bold
font Latin alphabet (A,B, . . .) and (M,N, . . .) are adopted
to distinguish the vector indices defined in the vector repre-
sentations of the hyper-spin gauge group SP(1, Dh − 1) and
the hyper-spacetime Lorentz group SO(1, Dh − 1), respec-
tively.

AM(x̂) is introduced as the hyper-spin gauge field that
belongs to the adjoint representation of the hyper-spin gauge
group SP(1, Dh−1). The action of Eq. (54) is invariant under
the global Lorentz transformations,

xM → x
′M = LM

N xN, Ψ (x̂) → Ψ ′(x̂ ′) = Ψ (x̂) ,

χ̂ M
A (x̂) → χ̂

′ M
A (x̂ ′) = LM

Nχ̂ N
A (x̂) ,

AM(x̂) → A′
M(x̂ ′) = L N

M AN(x̂), (55)

and also under the local hyper-spin gauge transformations,

A′
M(x̂) = S(�)AM(x̂)S−1(�) + S(�)i∂MS−1(�),

Ψ ′(x̂) = S(�)Ψ (x̂) , S(�) = eiαAB(x̂)ΣAB/2, (56)

with

S(�)Γ AS−1(�) = �A
B(x̂) Γ B; S(�) ∈ SP(1, Dh − 1) ,

LM
N ∈ SO(1, Dh − 1); �A

B(x̂) ∈ SP(1, Dh − 1) , (57)

where S(�) and �A
B(x̂) are the local group elements in the

spinor and vector representations of the hyper-spin gauge
group SP(1, Dh −1), respectively. The action Eq. (54) is also
invariant under the transformations of parallel translation of
coordinates

xM → x
′M = xM + aM , aM ∈ P1,Dh−1 , (58)

with aM a constant vector of the translation group P1,Dh−1.
In general, the action, Eq. (54), possesses a joined bimax-

imal symmetry

GS ≡ PO(1, Dh − 1) �� SP(1, Dh − 1), (59)

where PO(1, Dh − 1)1 denotes the global Poincaré sym-
metry (or non-homogeneous Lorentz symmetry) of hyper-
spacetime,

PO(1, Dh − 1) ≡ P1,Dh−1
� SO(1, Dh − 1), (60)

which characterizes the globally flat Minkowski hyper-
spacetime.

Note that the above global and local symmetry groups can-
not be defined as a direct product group. The hyper-spinor

1 A new notation PO(1, Dh − 1) is adopted to replace the old one P(1,
Dh − 1) used before in Refs. [68–70].

field and the hyper-spin gauge field as well as the gauge-
type hyper-gravifield belong to the spinor and adjoint as well
as vector representations of the hyper-spin gauge symme-
try group SP(1, Dh − 1), respectively. The basic forces are
characterized by the hyper-spin gauge field AM(x̂) with the
associated bicovaraint vector field χ̂ M

A (x̂).

3.2 Equation of motion of the hyper-spinor field in a
general gravitational relativistic quantum theory with a
conformal scaling symmetry

Let us further extend the action of Eq. (54) to be invariant
under the global conformal scaling transformations,

xM → x
′M = λ−1xM; AM(x̂)→A′

M(x̂ ′) = λAM(x̂),

Ψ (x̂) → Ψ ′(x̂ ′) = λ3/2Ψ (x̂) , (61)

with λ a constant scaling factor, and also under the local
conformal scaling transformations,

Ψ (x̂) → Ψ ′(x̂) = ξ3/2(x̂)Ψ (x̂),

χ̂ M
A (x̂) → χ̂

′ M
A (x̂) = ξ(x̂)χ̂ M

A (x̂). (62)

with ξ(x̂) a functional scaling factor. To realize that, it is
useful to introduce a scaling scalar field φ(x̂) that transforms
as follows:

φ(x̂) → φ′(x̂) = ξ(x̂)φ(x̂), φ(x̂) → φ′(x̂ ′) = λφ(x̂).

(63)

So that we obtain a self-hermitian and conformal scaling
gauge-invariant action,

IH =
∫

[dx̂] φDh−4(x̂)χ(x̂)
1

2
Ψ̄ (x̂)Γ A χ̂ M

A (x̂)iDMΨ (x̂),

(64)

where χ(x̂) is an inverse of the determinant of bicovaraint
vector field χ̂ M

A (x̂),

χ(x̂) = 1/χ̂(x̂) , χ̂(x̂) = det χ̂ M
A (x̂). (65)

The extended action of Eq. (64) possesses an additional
joined symmetry,

GS = S(1) �� SG(1), (66)

where S(1) and SG(1) denote the global conformal scaling
symmetry and the local conformal scaling gauge symmetry,
respectively.

From the gauge-invariant action of Eq. (64), we can derive
the equation of motion for the Majorana-type hyper-spinor
field,

Γ Aχ̂ M
A (x̂)i(DM + VM(x̂))Ψ (x̂) = 0, (67)

where VM is regarded as an induced-gauge field

VM(x̂) = 1

2
∂M ln(χφDh−3) − 1

2
χ̂ N
B D̂Nχ B

M , (68)
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with the covariant derivative defined as

D̂Mχ A
N = ∂̂Mχ A

N + AA
MBχ B

N ,

∂̂M ≡ ∂M + SM , SM(x̂) ≡ ∂M ln φ(x̂) , (69)

which ensures the above equation of motion to be conformal
scaling gauge invariant. SM(x̂) is viewed as a pure conformal
scaling gauge field.

The vector field χ A
M (x̂) is a dual bicovaraint vector field

defined through the following orthonormality conditions:

χ A
M (x̂) χ̂ M

B (x̂) = χ A
M (x̂)χ̂BN(x̂)ηMN = η A

B ,

χ A
M (x̂)χ̂ N

A (x̂) = χMA(x̂)χ̂ N
B (x̂)ηAB = η N

M , (70)

and χ(x̂) is the corresponding determinant,

χ(x̂) = det χ A
M (x̂) = χ̂−1(x̂) . (71)

The dual bicovariant vector field χ A
M will characterize

the gravitational interaction in hyper-spacetime. For conve-
nience, we shall refer χ A

M as a hyper-gravifield. The equation
of motion Eq. (67) describes the dynamics of the Majorana-
type hyper-spinor field, which is viewed as the basic equa-
tion of a general gravitational relativistic quantum theory in
hyper-spacetime.

Let us deduce the quadratic derivative form for the above
equation of motion Eq. (67). The explicit form is found to
be,

χ̂MN(∇̂M + VM)(DN + VN)Ψ = ΣABχ̂ M
A χ̂ N

B

·[FMN − GC
MNχ̂ P

C i(DP + VP) + iVMN ]Ψ, (72)

which is Lorentz and gauge invariant as well as global and
local conformal scaling invariant. We have used the following
definitions:

χ̂MN = χ̂ M
A χ̂ N

B ηAB , χ̂ M
A = χ̂MNχ A

N , (73)

for the symmetric tensor, and

∇̂M(DN + VN) ≡ DM(DN + VN) − �P
MN(DP + VP),

�P
MN ≡ χ̂ P

A D̂Mχ A
N = χ̂ P

A (∂̂Mχ A
N + AA

MBχ B
N ), (74)

for the covariant derivative.
On the right-hand side of Eq. (72), FMN(x̂) defines the

field strength of the hyper-spin gauge field AM(x̂)

FMN(x̂) ≡ FAB
MN(x̂)

1

2
ΣAB = i[DM,DN]

= ∂MAN(x̂) − ∂NAM(x̂) − i[AM(x̂),AN(x̂)], (75)

and GA
MN defines the field strength of the gauge-type hyper-

gravifield χ A
M (x̂),

GA
MN = D̂Mχ A

N − D̂Nχ A
M ≡ GA

MN(x̂)
1

2
�A , (76)

where the covariant derivative D̂Mχ A
N is defined in Eq. (69).

For the field strength VMN of the induced-gauge field VM,
we have

VMN = ∂MVN − ∂NVM ≡ 1

2
(∂N�P

PM − ∂M�P
PN). (77)

The equation of motion of the hyper-spinor field Ψ is gen-
erally characterized by the hyper-spin gauge field AAB

M and
the gauge-type hyper-gravifield χ A

M as well as the scaling
scalar field φ. The dynamics of the hyper-spinor field is gov-
erned by the hyper-spin gauge field strength FAB

MN and the
hyper-gravifield strength GA

MN. Note that the induced-gauge
field strength VMN distinguishes from other field strengths
due to an imaginary factor, which can cause the hyper-spinor
field to be scaled by a real scaling factor.

4 Fiber bundle structure of hyper-spacetime and
hyperunified field theory in hyper-gravifield
spacetime

The single Majorana-type hyper-spinor field Ψ (x̂) defined in
hyper-spacetime transforms in the spinor representation of
the hyper-spin gauge symmetry SP(1, Dh − 1) and the real
coordinate vector x̂ ≡ xM in hyper-spacetime transforms
in the vector representation of the global Lorentz symmetry
SO(1, Dh − 1) (Dh = 19). The hyper-spin gauge field asso-
ciated with the gauge-type hyper-gravifield is introduced to
characterize the basic forces. We are going to investigate fur-
ther the structure of hyper-spacetime and construct a general
action of hyperunified field theory based on the postulates of
gauge invariance and coordinate independence.

4.1 Hyper-gravifield fiber bundle structure

A globally flat Minkowski hyper-spacetime Mh is an affine
spacetime, which possesses the Poincaré symmetry PO(1,
Dh − 1) = P1,Dh−1

� SO(1, Dh − 1). The derivative vector
operator ∂M ≡ ∂/∂xM at point x̂ of Mh defines a tangent
basis {∂M} ≡ {∂/∂xM} for a tangent hyper-spacetime Th
over Mh .

Accordingly, a field vector χ̂A(x̂) at point x̂ of Mh respec-
tive to the derivative vector operator ∂M is introduced via the
bicovaraint vector field χ̂ M

A (x̂) as follows:

ðA ≡ χ̂A(x̂) = χ̂ M
A (x̂)∂M, (78)

which forms a non-coordinate basis {ðA} or a field basis
{χ̂A(x̂)} for a locally flat non-coordinate hyper-spacetime
over a globally flat Minkowski hyper-spacetime Mh .

In the coordinate spacetime, a displacement vector dxM

at point x̂ of Mh defines a dual tangent basis {dxM} for dual
tangent hyper-spacetime T ∗

h over a globally flat Minkowski
hyper-spacetime Mh . The tangent basis and dual tangent
basis satisfy the dual condition,

〈dxM, ∂/∂xN〉 = ∂xM

∂xN
= η M

N . (79)
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In correspondence to the displacement vector dxM, a field
basis {χ A(x̂)} at point x̂ of Mh is introduced as a dual basis
of the field basis {χ̂A(x̂)}. Such a dual basis {χ A(x̂)} is
defined via the dual bicovariant vector fieldχ A

M (x̂) shown in
Eq. (70). χ A

M (x̂) is the inverse of χ̂ M
A (x̂), which exists once

the determinant of χ̂ M
A (x̂) is nonzero, i.e., det χ̂ M

A (x̂) �= 0.
A dual field vector χ A(x̂) is explicitly defined through the
dual bicovariant vector field χ A

M (x̂) associated with the dis-
placement vector dxM,

δχA ≡ χ A(x̂) = χ A
M (x̂)dxM, (80)

which forms a dual non-coordinate basis {δχA} or field basis
{χA(x̂)}. The dual non-coordinate bases of field bases satisfy
the dual condition,

〈δχA, ðB〉 ≡ 〈χ A(x̂), χ̂B(x̂)〉 = χ A
M (x̂)χ̂ N

B (x̂)〈dxM, ∂N〉
= χ A

M (x̂)χ̂ N
B (x̂)η M

N = η A
B . (81)

A pair of the dual non-coordinate bases {ðA} and {δχA}, or
field bases {χ̂A(x̂)} and {χ A(x̂)}, form a pair of dual locally
flat non-coordinate hyper-spacetimes over the globally flat
Minkowski hyper-spacetime Mh . For convenience, we shall
call such dual locally flat non-coordinate hyper-spacetimes
dual hyper-gravifield spacetimes, denoted Gh for a tangent-
like and G∗

h for a dual tangent-like, respectively. {ðA} and
{δχA}, or {χ̂A(x̂)} and {χ A(x̂)}, are referred to as a pair of
dual hyper-gravifield bases.

The hyper-gravifield χ̂ M
A (x̂), which is defined on the

hyper-gravifield spacetime Gh and valued on the tangent
Minkowski hyper-spacetime Th , transforms as a bicovariant
vector field under the transformations of both the hyper-spin
gauge symmetry SP(1, Dh − 1) and the global Lorentz sym-
metry SO(1, Dh − 1). Such a hyper-gravifield basis does not
commute and it satisfies a non-commutation relation,

[ðA, ðB] = f C
AB ðC , or [χ̂A(x̂), χ̂B(x̂)] = f C

AB(x̂) χ̂C(x̂),

f C
AB ≡ −χ̂ M

A χ̂ N
B G C

MN ;
G C

MN(x̂) ≡ ∂Mχ C
N (x̂) − ∂Nχ C

M (x̂), (82)

which indicates that the locally flat hyper-gravifield space-
time Gh is associated with a non-commutative geometry.
Such a commutation relation generates a Lie algebra with
a non-constant structure factor f C

AB(x̂), which is character-
ized by the hyper-gravifield strength G A

MN(x̂) of the hyper-
gravifield χ A

M (x̂). Such a hyper-gravifield behaves as a
gauge-type hyper-gravifield that may be denoted

�M(x̂) ≡ χ A
M (x̂)

1

2
�A , (83)

which is sided on the dual tangent Minkowski hyper-
spacetime T ∗

h and valued on the dual hyper-gravifield space-
time G∗

h .
In general, we are led to a biframe hyper-spacetime

Th × Gh with its dual biframe hyper-spacetime T ∗
h × G∗

h

over the coordinate hyper-spacetime Mh . Mathematically,
the nature of globally and locally flat vector spacetimes
allows for a canonical identification of vectors in the tan-
gent Minkowski hyper-spacetime Th at points with vectors
(points) in the Minkowski hyper-spacetime itself Mh , and
also for a canonical identification of vectors at points with
its dual vectors at the same points. Physically, the globally
flat Minkowski hyper-spacetime is considered as a vacuum
hyper-spacetimeVh . With such a canonical identification for
the vector spacetime, we arrive at a simplified structure of
hyper-spacetime,

Th ∼= T ∗
h

∼= Mh ≡ Vh ,

Gh ∼= G∗
h ≡ Gh . (84)

The whole structure of biframe hyper-spacetime forms a
hyper-gravifield fiber bundle Eh with the hyper-gravifield
spacetime as a fiber Gh and the vacuum hyper-spacetime as
a base spacetime Vh . The fiber bundle Eh and the product
Vh × Gh as a biframe hyper-spacetime are correlated with a
continuous surjective map �χ which projects the bundle Eh

to the base spacetimeVh, i.e., �χ :Eh → Vh. Geometrically,
the hyper-gravifield fiber bundle structure of biframe hyper-
spacetime is expressed as (Eh,Vh,�χ,Gh) with a trivial
case,

Eh ∼ Vh × Gh . (85)

4.2 Hyperunified field theory with postulates of gauge
invariance and coordinate independence

It is more general to postulate that the laws of nature governed
by the gauge symmetry should be independent of any choice
of coordinate systems and scaling factors. We shall work out
a general action of hyperunified field theory based on the
principles of gauge invariance and coordinate independence
along with a conformal scaling symmetry.

The pairs of the hyper-gravifield bases {δχA} and {ðA} or
{χA(x̂)} and {χ̂A(x̂)} allow us to define an exterior differen-
tial operator in hyper-gravifield spacetime Gh

dχ ≡ δχA ∧ ðA = χA(x̂) ∧ χ̂A(x̂), (86)

which enables us to express gauge fields and their field
strengths as one-form and two-form, respectively, in terms
of the hyper-gravifield basis vector δχA and the exterior dif-
ferential operator dχ . There are in general three types of
gauge fields and their corresponding field strengths involved
in hyperunified field theory,

A = − iAA δχA; F = dχ A + A ∧ A = 1

2i
FAB δχA ∧ δχB ,

� = − i�A δχA; G = dχ � + A ∧ � + W ∧ �
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= 1

2i
GAB δχA ∧ δχB ,

W = −iWA δχA; W = dχ W = 1

2i
WAB δχA ∧ δχB, (87)

which are defined on the locally flat hyper-gravifield space-
timeGh. With the projection of the hyper-gravifield χ̂ M

A , we
are able to yield their relations with the usual gauge fields
and field strengths defined in the globally flat vacuum hyper-
spacetime Vh,

AA = χ̂ M
A AM(x̂); FAB = χ̂ M

A χ̂ N
B FMN(x̂),

�A = χ̂ M
A �M(x̂); GAB = χ̂ M

A χ̂ N
B GMN(x̂). (88)

Here the field strength of the gauge-type hyper-gravifield
�M(x̂) is generally defined as

GMN(x̂) = D̂M�N − D̂N�M

= [ D̂Mχ A
N (x̂) − D̂Nχ A

M (x̂) ] 1

2
�A , (89)

with the covariant derivative given in Eq. (69).
To describe the dynamics of the scaling scalar field with a

conformal scaling gauge invariance, it is necessary to intro-
duce a conformal scaling gauge field WM ≡ gwWM with a
gauge coupling constant gw. The conformal scaling gauge
field WM transforms as an Abelian gauge field

WM(x̂) → W′
M(x̂) = WM(x̂) + ∂M ln ξ(x̂) . (90)

The conformal scaling gauge-invariant field strengthWMN(x̂)
is defined as

WMN(x̂) = ∂MWN(x̂) − ∂NWM(x̂). (91)

Such a conformal scaling gauge field describes a basic force
of scaling gauge interaction. The scaling gauge symmetry
was proposed by Weyl [6] for a purpose of electromagnetic
field, though it was not successful since the electromagnetic
field is characterized by the U(1) gauge symmetry as is well
known by now. In the hyper-gravifield basis, it is expressed
as

WA = χ̂ M
A (x̂)WM(x̂) ,

WAB = χ̂ M
A (x̂) χ̂ N

B (x̂)WMN(x̂). (92)

To construct a general action of hyperunified field theory,
let us express the covariant derivative as one-form in the
hyper-gravifield spacetime Gh

D = χA(x̂)DA ≡ δχA (ðA − iAA) , (93)

and define the Hodge star “∗” in Dh-dimensional hyper-
gravifield spacetime Gh

∗ F = 1

2!(Dh − 2)!2i εA1A2A3···ADh

ηA1A′
1ηA2A′

2FA′
1A

′
2
δχA3 ∧ · · · ∧ δχADh . (94)

We are now in the position to construct a general gauge-
invariant and coordinate-independent action of hyperunified
field theory in hyper-gravifield spacetime Gh by applying
for the exterior differential operator dχ and the dual hyper-
gravifield basis vectors δχA and ðA. Explicitly, we arrive at
the following general form:

IH =
∫

φDh−4{ iΨ̄ � ∧ ∗DΨ − 1

2g2
w

W ∧ ∗W

− 4

Dh

Dh−3∑

k=0

αkTr(F ∧ �
k) ∧ ∗(F ∧ �

k)

+ 2

Dh
φ2[

Dh−3∑

k=0

βkTr(G ∧ �
k) ∧ ∗(G ∧ �

k)

− 2αE Tr F ∧ ∗(� ∧ �) ] − 1

2
dφ ∧ ∗dφ

+ 4

Dh
βE φ4 Tr (� ∧ �) ∧ ∗(� ∧ �) }, (95)

where αk , βk (k = 0, . . . , Dh − 3), αE and βE are constant
couplings. We will show that the independent numbers of
couplings are actually determined by all possible indepen-
dent structures of gauge interactions.

We have used the following definitions and relations:

� ≡ η B
A

1

2
ΓB δχA, dφ ≡ (dχ − W)φ ,

�
2 ≡ (� ∧ �) ≡ η A′

A η B′
B

1

2i
ΣA′B′ δχA ∧ δχB ,

�
k ≡ � ∧ · · · ∧ � =

(
η
B1
A1

1

2
ΓB1

)
· · ·

(
η
Bk
Ak

1

2
ΓBk

)

× δχA1 ∧ · · · ∧ δχAk ,

∗(� ∧ �) = 1

2!(Dh − 2)!2i εABA3···ADh
ηAA

′
ηBB

′ 1

2i
ΣA′B′

× δχA3 ∧ · · · ∧ δχADh ,

∗dφ = 1

(Dh − 1)! (ðA − WA)φ εAA2···ADh

× δχA2 ∧ · · · ∧ χADh , (96)

where εA1···ADh ( ε01···Dh = 1, εA1···ADh = −εA1···ADh
) is a

totally antisymmetric Levi–Civita tensor with the following
general properties:

εA1···An ε
B1...Bn = −n! ηB1[A1

· · · ηBn
An ] , εA1···An ε

A1···An = −n! ,
εA1···AkAk+1···An ε

A1···AkBk+1···Bn = −k!(n − k)! ηBk+1
[Ak+1

· · · ηBn
An ] ,

εA1···An εB1···Bn MA1B1 · · · MAnBn = n! det M, (97)

for M being a n × n matrix M = (MAB).
As the general action of Eq. (95) of hyperunified field the-

ory is constructed based on the hyper-gravifield fiber bundle
structure of biframe hyper-spacetime, it has a joined bimax-
imal global and local symmetry,
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GS = PO(1, Dh − 1) × S(1) �� SP(1, Dh − 1) × SG(1).

(98)

To unify all the quarks and leptons as elementary particles in
SM into a single hyper-spinor field, such a hyper-gravifield
spacetime Gh as a non-coordinate hyper-spacetime requires
the same minimal dimension Dh = 19.

5 Hyperunified field theory within the framework of
QFT and dynamics of basic fields with conserved
currents

The general action of hyperunified field theory, Eq. (95), is
obtained based on the postulates of gauge invariance and
coordinate independence in the locally flat hyper-gravifield
spacetime Gh . In this section, we are going to reformulate
such a general action of hyperunified field theory within the
framework of QFT in the globally flat Minkowski hyper-
spacetime and make a general analysis on the dynamics of
basic fields with the conserved currents.

5.1 Hyperunified field theory within the framework of QFT

To show explicitly the hyper-gravifield fiber bundle structure
of biframe hyper-spacetime and yield the general action of
hyperunified field theory within the framework of QFT, we
shall reformulate the general action of Eq. (95) by projecting
the locally flat hyper-gravifield spacetime Gh into the glob-
ally flat vacuum hyper-spacetime Vh . It is simply realized by
transferring the dual hyper-gravifield bases {δχA} and {ðA}
(or {χA(x̂)} and {χ̂A(x̂)}) into the corresponding dual coor-
dinate bases {dxM} and {∂M}. The explicit form is found to
be

IH ≡
∫

[dx̂] χL =
∫

[dx̂] χ φDh−4

×
{

1

2
χ̂MNΨ̄ (x̂)ΓAχ A

M iDNΨ (x̂)

− 1

4

[
χ̂MNM′N′
ABA′B′ FAB

MNFA′B′
M′N′

+ χ̂MM′
χ̂NN′WMNWM′N′

]

+ 1

4
φ2

[
χ̂MNM′N′
AA′ GA

MNGA′
M′N′

− 4αE χ̂ M
A χ̂ N

B FAB
MN

]

+ 1

2
χ̂MNdMφdNφ − βE φ4

}
. (99)

Where we have introduced the following definitions and
notations:

χ̂MNM′N′
ABA′B′ ≡ g1χ̂

MM′
χ̂NN′

ηAA′ηBB′

+1

2
g2

(
χ̂ M
A′ χ̂ N

B′ χ̂ M′
A χ̂ N′

B + χ̂ N
A′ χ̂ M

B′ χ̂ N′
A χ̂ M′

B

)

+ 1

2
g3[ηAA′

(
χ̂MM′

χ̂ N
B′ χ̂ N′

B + χ̂NN′
χ̂ M
B′ χ̂ M′

B

)

+ (A ↔ B,A′ ↔ B′)]
+ 1

2
g4[ηAA′

(
χ̂MM′

χ̂ N
B χ̂ N′

B′ + χ̂NN′
χ̂ M
B χ̂ M′

B′
)

+ (A ↔ B,A′ ↔ B′)]
+ 1

2
g5[χ̂ M′

A χ̂M
A′ χ̂ N

B χ̂ N′
B′ + χ̂ N′

A χ̂N
A′ χ̂ M

B χ̂ M′
B′

+ (A ↔ B,A′ ↔ B′) ]
+ 1

2
g6

(
χ̂ M
A χ̂ N

B χ̂ M′
A′ χ̂ N′

B′ + χ̂ N
A χ̂ M

B χ̂ N′
A′ χ̂ M′

B′
)

, (100)

χ̂MNM′N′
AA′ ≡ αG χ̂MM′

χ̂NN′
ηAA′

+βG

(
χ̂MM′

χ̂ N
A′ χ̂ N′

A + χ̂NN′
χ̂ M
A′ χ̂ M′

A

)

− 2γG

(
χ̂MM′

χ̂ N
A χ̂ N′

A′ + χ̂NN′
χ̂ M
A χ̂ M′

A′
)

,(101)

dMφ = (∂M − gwWM)φ, (102)

where gi (i = 1, . . . , 6) as combinations of the coupling
constants αk (k = 0, . . . , Dh − 3) are the general coupling
constants associated with all the possible structures of the
hyper-spin gauge interactions. The coupling constants αG ,
βG and γG relevant to βk (k = 0, . . . , Dh − 3) reflect all the
possible structures of the gauge-type hyper-gravifield inter-
actions. It is noticed that the symmetric tensor field χ̂MN(x)
defined in Eq. (73) couples to all fields.

5.2 Equations of motion of basic fields in hyper-spacetime

The general action of Eq. (99) of hyperunified field theory
enables us to derive equations of motion for various basic
fields including the hyper-spin gauge field, the gauge-type
hyper-gravifield, the conformal scaling gauge field and the
scaling scalar field. Such equations of motion are considered
as the basic equations of a general gravitational relativistic
quantum theory in hyper-spacetime.

The equations of motion for the hyper-spin gauge field
AAB

M and the scaling gauge field WM are found to be

DN

(
φDh−4χ χ̂

[MN]M′N′
[AB]A′B′ F A′B′

M′N′
)

= J M
AB , (103)

∂N

(
φDh−4χχ̂MM′

χ̂NN′WM′N′
)

= JM , (104)

with

χ̂
[MN]M′N′
[AB]A′B′ = 1

2

(
χ̂

[MN]M′N′
ABA′B′ − χ̂

[MN]M′N′
BAA′B′

)

χ̂
[MN]M′N′
ABA′B′ = 1

2

(
χ̂MNM′N′
ABA′B′ − χ̂NMM′N′

ABA′B′
)

. (105)

The covariant currents have the following explicit forms:

J M
AB = −1

2
χφDh−4Ψ̄ χ̂ M

C {Γ C 1

2
ΣAB}Ψ
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−αEDN

(
φDh−2χχ̂MN[AB]

)

+ 1

2
φDh−4χ χ̂M M′N′

[AB]A′ GA′
M′N′ , (106)

JM = −gwχχ̂MNφDh−3dNφ, (107)

with the definitions and notations,

χ̂M M′N′
[AB]A′ ≡ χNA χ̂

[MN]M′N′
BA′ − χNB χ̂

[MN]M′N′
AA′ ,

χ̂
[MN]M′N′
AA′ = 1

2

(
χ̂MNM′N′
AA′ − χ̂NMM′N′

AA′
)

,

χ̂MN[AB] ≡ χ̂ M
A χ̂ N

B − χ̂ M
B χ̂ N

A . (108)

The equation of motion for the gauge-type hyper-gravifield
χ A
M is given by

D̄NG MN
A = J M

A , (109)

with

G MN
A ≡ φDh−2χχ̂

[MN]M′N′
AA′ GA′

M′N′ , (110)

for the covariant tensor, and

D̄NG MN
A ≡ ∂̄NG MN

A + A B
NA G MN

B ,

∂̄N ≡ ∂N − SN = ∂N − ∂N ln φ, (111)

for the covariant derivative. The bicovariant vector current
has an explicit form

J M
A = −χχ̂ M

A L + χφDh−4χ̂ P
A

×
[

1

2
χ̂ M
A′′ Ψ̄ Γ A′′

iDPΨ − WPQWMQ

−χ̂
[MQ]M′N′
A′′B A′B′ FA′′B

PQ FA′B′
M′N′

+φ2 χ̂
[MQ]M′N′
A′′A′ GA′′

PQGA′
M′N′ + dPφdMφ

− 2αEχφ2χ̂ M
A′ χ̂ N′

B′ FA′B′
PN′

]
. (112)

The equation of motion for the scaling scalar field is given
by

dM(χχ̂MNφDh−4dNφ) = J, (113)

with the scalar current,

J = (Dh − 4)φDh−5χ

[
1

2
χ̂MNΨ̄ (x̂)ΓAχ A

M iDNΨ (x̂)

+1

2
χ̂MN∂Mφ∂Nφ − 1

4
( χ̂MM′

χ̂NN′WMNWM′N′

+χ̂MNM′N′
ABA′B′ FAB

MNFA′B′
M′N′ )

]
+ 1

4
(Dh − 2)φDh−3χ

×
[
χ̂MNM′N′
AA′ GA

MNGA′
M′N′ − 4αEgs χ̂

M
A χ̂ N

B FAB
MN

]

−∂M(φDh−2G MN
A χ A

N )/φ − βE Dh χφDh−1. (114)

It is noticed that all the equations of motion are conformal
scaling gauge invariant.

5.3 Conserved currents in hyperunified field theory

Noether’s theorem [71] states that, for every differentiable
symmetry generated by a local action, there exists a corre-
sponding conserved current. We shall show that the currents
generated by the hyper-spin gauge symmetry SP(1,18) and
the scaling gauge symmetry SG(1) are conserved currents.

For the hyper-spin gauge symmetry SP(1, Dh−1), its con-
served current can be checked from the equation of motion
of the hyper-spin gauge field,

DM J M
AB = DMDN(φDh−4χχ̂

[MN]M′N′
[AB]A′B′ F A′B′

M′N′ ) = 0, (115)

which holds due to the identity

DMDN(φDh−4χχ̂
[MN]M′N′
[AB]A′B′ F A′B′

M′N′ )

= ∂M∂N(φDh−4χχ̂
[MN]M′N′
[AB]A′B′ )F A′B′

M′N′

+ ∂M(φDh−4χχ̂
[MN]M′N′
[AB]A′B′ )DNF A′B′

M′N′

+ ∂N(φDh−4χχ̂
[MN]M′N′
[AB]A′B′ )DMF A′B′

M′N′

+ φDh−4χχ̂
[MN]M′N′
[AB]A′B′ DMDNF A′B′

M′N′

= φDh−4χχ̂
[MN]M′N′
[AB]A′B′ (F A′

MNCF CB′
M′N′ −F B′

MNCF CA′
M′N′ ) = 0,

where we have used the symmetric and antisymmetry prop-
erties of the tensors to show the vanishing due to a total
cancellation.

When applying the conserved current equationDM JMAB =
0 to the explicit form of the current in Eq. (106), we arrive at
a correlation equation between a hyper-spin angular momen-
tum tensor SM

AB and an antisymmetric current tensor J[AB],

DMSM
AB = −J[AB] + 2αEφDh−2χ(χ̂ M

A F C
MNB

− χ̂ M
B F C

MNA)χ̂ N
C , (116)

with the definitions

SM
AB = −χ φDh−4χ̂ M

C Ψ̄ {Γ C 1

2
ΣAB}Ψ ,

J[AB] = JMA χMB − JMB χMA. (117)

Such a correlation equation reflects the fact that the hyper-
spin gauge invariance of the general action requires one to
introduce both the hyper-spin gauge fieldAAB

M and the gauge-
type hyper-gravifield χ A

M , so that their associated currents
SM
AB and J M

A are correlated.
Similarly, the local scaling gauge symmetry leads to the

conserved current,

∂M JM = ∂M∂N(φDh−4 χχ̂MM′
χ̂NN′WM′N′) ≡ 0, (118)

which leads to the equation for a bosonic tensor when apply-
ing the explicit form of the current of Eq. (107),

∂M{χχ̂MNφDh−3dNφ } = 0. (119)
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The bicovariant vector current J M
A appearing in the equa-

tion of motion of the gauge-type hyper-gravifield χ A
M is in

general not homogeneously conserved. Explicitly, we obtain
the following equation for the covariant derivative of the cur-
rent:

D̄M J M
A = D̄MD̄NG MN

A = ∂̄M[ φDh−2χχ̂
[MN]M′N′
AA′ ]D̂NGA′

M′N′

+ ∂̄N[ φDh−2χχ̂
[MN]M′N′
AA′ ]D̂MGA′

M′N′

+ φDh−2χχ̂
[MN]M′N′
AA′ D̂MD̂NGA′

M′N′

= 1

2
φDh−2χF A′

MNB′GB′
M′N′ χ̂MNM′N′

AA′ . (120)

with D̂M and D̄M defined in Eqs. (69) and (111), respectively.

6 Conservation laws and dynamics of hyper-gravifield
in hyperunified field theory

According to Noether’s theorem that every differentiable
symmetry of an action has a corresponding conservation law
[71], we shall investigate the conservation laws correspond-
ing to the global Poincaré symmetry and scaling symmetry.

6.1 Conservation law of translational invariance in
hyperunified field theory

Let us first consider the conservation law under a translational
transformation of coordinates in hyper-spacetime,

xM → x
′M = xM + aM.

Applying the variational principle to a translational invariant
action,

�IH =
∫

[dx̂] ∂P(T P
M )aM = 0,

we arrive at a hyper-stress energy-momentum conservation
by ignoring surface terms,

∂PT P
M = 0. (121)

From the general action of Eq. (99) of hyperunified field
theory, we obtain a gauge-invariant hyper-stress energy-
momentum tensor,

T P
M = −η P

MχL + χφDh−4
[

1

2
χ iΨ̄ Γ ADMΨ χ̂ P

A − WMNWPN

−FAB
MNF

A′B′
M′N′ χ̂

[PN]M′N′
ABA′B′ + φ2GA

MNG
A′
M′N′ χ̂

[PN]M′N′
AA′

− 2αEφ2F AB
MN χ̂ P

A χ̂ N
B + dMφdNφχ̂NP

]
. (122)

In obtaining the above gauge-invariant hyper-stress energy-
momentum tensor, we have applied the equations of motion
for the basic fields AM, WM, and χ A

M .
Note that the hyper-stress energy-momentum tensor

TMN = T P
M ηPN is in general not symmetric,

TMN �= TNM. (123)

6.2 Conservation laws of global Lorentz and conformal
scaling invariances

We now discuss the conservation law under a global Lorentz
transformation of coordinates in hyper-spacetime. Consider
an infinitesimal transformation,

x ′M = xM + δLM
N xN ,

and adopt the principle of least action, we arrive at the follow-
ing conservation law for the global Lorentz transformation
invariance in hyper-spacetime:

∂PLP
MN − T[MN] = 0, (124)

with the definitions

LP
MN ≡ T P

M xN − T P
N xM,

T[MN] ≡ T N′
M ηN′N − T M′

N ηM′M. (125)

LP
MN defines an orbital angular momentum tensor in

hyper-spacetime. As the hyper-stress energy-momentum ten-
sor TMN is in general not symmetric, the orbital angular
momentum tensor is not homogeneously conserved, i.e.,
∂PLP

MN �= 0.
Let us now reformulate the conserved current equation,

Eq. (116), for the hyper-spin gauge invariance in hyper-
spacetime as follows:

∂PSP
MN + T[MN] = SP

AB(χ A
M DPχ B

N − χ A
N DPχ B

M )

+ 2αEφDh−2χχ̂ M′
A χ̂ N′

C F C
M′N′Bχ

[AB]
MN ,

(126)

with the definitions

SP
MN = SP

ABχ A
M χ B

N = −gsχφDh−4χ̂ P
C Ψ̄

×
{
Γ C ,

1

2
ΣAB

}
Ψ χ A

M χ B
N ,

T[MN] = J[AB]χ A
M χ B

N ≡ TMN − TNM (127)

and

χ
[AB]
MN = χ A

M χ B
N − χ B

M χ A
N . (128)

TMN is defined from the conformal scaling gauge-invariant
hyper-stress energy-momentum tensor T P

M , i.e.,

TMN ≡ T P
M χPN, (129)

with

χMN = χ A
M χ B

N ηAB, (130)

which is dual to the symmetric tensor field χ̂MN defined in
Eq. (73). χMN and χ̂MN are referred to as the dual hyper-
gravimetric fields.
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In terms of the rotational and spinning angular momentum
tensors LP

MN and SP
MN, respectively, let us introduce a total

angular momentum tensor in hyper-spacetime,

J P
MN ≡ LP

MN + SP
MN. (131)

From the conservation law of the Lorentz invariance Eq. (125)
and the conserved current of the hyper-spin gauge invariance
Eq. (126), we find an alternative conservation law,

∂PJ P
MN = T[MN] − T[MN] + SP

AB(χ A
M DPχ B

N

−χ A
N DPχ B

M )

+ 2αEφDh−2χχ̂ M′
A χ̂ N′

C F C
M′N′Bχ

[AB]
MN , (132)

which shows that such a total angular momentum tensor is
not homogeneously conserved, i.e., ∂PJ P

MN �= 0, due to the
presence of local gauge interactions.

When turning the local gauge symmetry into a global sym-
metry, i.e.,

AAB
M → 0 , χ̂ M

A → η M
A , (133)

we obtain the following relations:

∂PSP
MN = −T[MN]; ∂PLP

MN = T[MN], (134)

which reproduces the well-known conservation law for the
total angular momentum tensor,

∂PJ P
MN = ∂P(LP

MN + SP
MN) = 0, (135)

due to the cancellation.
In conclusion, the hyper-stress energy-momentum tensor

is in general asymmetric because of the existence of the
hyper-spinor field as the basic building blocks of nature. Nei-
ther the angular momentum tensor nor the spinning momen-
tum tensor is conserved homogeneously due to the antisym-
metric part of the hyper-stress energy-momentum tensor. In
the absence of the local gauge interactions, both the hyper-
spinning momentum tensor and the hyper-angular momen-
tum tensor are governed by the antisymmetric part of the
hyper-stress energy-momentum tensor, but with an opposite
sign. The total angular momentum becomes homogeneously
conserved when the cancellation of the antisymmetric part
of the hyper-stress energy-momentum tensor occurs in the
absence of gauge interactions.

The conservation law for the global scaling invariance is
found to have the following general form:
(
xM

∂

∂xM
+ Dh

)
(χ L) + ∂MT M − T = 0, (136)

with the definitions

T M ≡ T M
N xN, T ≡ T N

M η M
N = T M

M . (137)

T M is regarded as a scaling current and T = T M
M is the trace

of the hyper-stress energy-momentum tensor. It is noticed

that the integral
∫ [dx̂]λDh χ(λx)L(λx) is actually indepen-

dent of λ, the differentiation with respect to λ at λ = 1 leads
to the following identity:
∫

[dx̂]
(
xM

∂

∂xM
+ Dh

)
(χL) = 0.

The conservation law for the conformal scaling invariance is
simply given by

∂MT M − T = 0. (138)

Only when the hyper-stress energy-momentum tensor beco-
mes traceless, i.e., T = 0, the conservation law for the con-
formal scaling invariance becomes homogeneous: ∂MT M =
0.

6.3 Dynamics of hyper-gravifield with conserved
hyper-stress energy-momentum tensor

Although the bicovariant vector current is not a homoge-
neously conserved current as shown in Eq. (120), it is actually
correlated to the conserved hyper-stress energy-momentum
tensor T N

M , Eq. (122). Explicitly, there exists a simple rela-
tion,

χ A
M J N

A = T N
M . (139)

With such a relation, the equation of motion for the hyper-
gravifield, Eq. (109), can be rewritten in terms of the con-
served hyper-stress energy-momentum tensor as follows:

∇̂PG NP
M = T N

M , (140)

with the covariant derivative

∇̂PG NP
M ≡ ∂PG NP

M − �
Q
PMG NP

Q , (141)

and �
Q
PM defined in Eq. (74). We have introduced the covari-

ant tensor,

G NP
M ≡ φDh−2χχ̂

[NP]M′N′
AA′ χ A

M GA′
M′N′ , (142)

which may be regarded as a hyper-gravifield tensor.
From the conservation law of the hyper-stress energy-

momentum tensor Eq. (121), we arrive at the following con-
served equation:

∂NG N
M = 0, (143)

with

G N
M ≡ �

Q
PMG NP

Q , (144)

which may be referred to as a conserved hyper-gravifield
tensor current.

The equation of motion for the hyper-gravifield can be
expressed as

∂PG NP
M − G N

M = T N
M . (145)
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7 Gravitational origin of gauge symmetry and
hyperunified field theory in hidden gauge formalism
with emergent general linear group symmetry
GL(Dh, R)

The general action of Eq. (99) formulated within the frame-
work of QFT in the globally flat vacuum hyper-spacetimeVh

enables us to derive various conserved currents and conser-
vation laws in hyperunified field theory. As the initial action
Eq. (95) of hyperunified field theory is constructed based
on the postulates of gauge invariance and coordinate inde-
pendence, we shall further investigate some profound corre-
lations between the gauge interaction and the gravitational
interaction and show the gravitational origin of gauge sym-
metry. The gauge-type hyper-gravifield is found to play a
basic role as a Goldstone-like boson, which allows us to
define a hyper-spacetime gauge field from the hyper-spin
gauge field and present an equivalent action of hyperunified
field theory in a hidden gauge formalism. Such a formalism
relates the field dynamics of gauge-type hyper-gravifield with
the geometric dynamics of hyper-spacetime in coordinate
systems. We shall also demonstrate explicitly that the gravi-
tational interaction in hyperunified field theory can equiv-
alently be described by the Riemann geometry of hyper-
spacetime with an emergent general linear group symmetry
GL(Dh , R).

7.1 Hyper-spin gravigauge field and gravitational origin of
gauge symmetry

Let us first decompose the hyper-spin gauge field AM into
two parts ΩM and AM, i.e.,

AM = ΩM + AM, (146)

so that ΩM obeys an inhomogeneous transformation of the
hyper-spin gauge symmetry and AM transforms homoge-
neously under the hyper-spin gauge transformation. Namely,

ΩM → Ω ′
M = S(�)i∂MS−1(�) + S(�)ΩMS−1(�),

AM → A′
M = S(�)AMS−1(�) , (147)

with S(�) ∈ SP(1, Dh − 1).
For an ordinary internal gauge symmetry, one can choose

a configuration in which an inhomogeneous gauge transfor-
mation part can be eliminated by a gauge transformation to
only keep the independent degrees of freedom. Namely, ΩM

can generally be taken as a pure gauge field in an ordinary
internal gauge field, so that its field strength becomes zero.
For the hyper-spin gauge symmetry SP(1, Dh − 1), the sit-
uation becomes distinguishable. In constructing the general
action of hyperunified field theory based on the hyper-spin
gauge symmetry, a gauge-type hyper-gravifield χ A

M has to
be introduced as an accompaniment of the hyper-spin gauge

field AM. Namely, once turning the hyper-spin gauge sym-
metry to coincide with the global Lorentz symmetry, both
the hyper-spin gauge field AM and the hyper-gravifield χ A

M
become unnecessary. The gauge field part ΩM with inhomo-
geneous transformations is presumed to correlate with the
hyper-gravifield χ A

M .
Indeed, ΩM is found to be determined solely by the hyper-

gravifield χ A
M with the following explicit form:

ΩAB
M = 1

2

[
χ̂ANGB

MN − χ̂BNGA
MN − χ̂APχ̂BQGC

PQχMC

]
,

(148)

with the antisymmetric tensor GA
MN defined as

GA
MN ≡ ∂Mχ A

N − ∂Nχ A
M , (149)

where GA
MN is viewed as the field strength of the gauge-type

hyper-gravifield χ A
M . When the hyper-gravifield χ A

M trans-
forms in a vector representation of the hyper-spin gauge sym-
metry SP(1, Dh −1), ΩAB

M does transform as a gauge field in
an adjoint representation of the hyper-spin gauge symmetry
SP(1, Dh −1). Explicitly, we have the following transforma-
tion properties under the hyper-spin gauge transformations:

Ω
′AB
M = �A

C�B
DΩCD

M + i

2
(�A

C∂M�BC − �B
C∂M�AC)

χ
′ A
M = �A

Cχ C
M ; �A

C ∈ SP(1, Dh − 1) , (150)

where ΩAB
M is completely governed by the hyper-gravifield

χ A
M .

From such a decomposition of the hyper-spin gauge field
AM, it involves not any extra independent degrees of free-
dom. For convenience, we may refer by ΩAB

M to the hyper-
spin gravigauge field and by AAB

M to the hyper-spin homo-
gauge field. Unlike the usual internal gauge field, there exists
not any gauge transformation that can make the hyper-spin
gravigauge field ΩAB

M to vanish. In general, the hyper-spin
gauge field strength consists of two parts,

FAB
MN ≡ RAB

MN + FAB
MN, (151)

with

RAB
MN = ∂MΩAB

N − ∂NΩAB
M + ΩA

MCΩCB
N − ΩA

NCΩCB
M ,

(152)

FAB
MN = DMAAB

N − DNAAB
M + AA

MCA
CB
N − AA

NCA
CB
M ,

(153)

where the covariant derivative is defined as

DMAAB
N = ∂MAAB

N + ΩA
MCA

CB
N + ΩB

MCA
AC
N . (154)

As the hyper-spin gauge symmetry SP(1, Dh−1) is essen-
tially characterized by the gauge-type hyper-gravified χ A

M ,
which displays the gravitational origin of gauge symmetry.
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7.2 Hyper-spacetime gauge field and Goldstone-like
hyper-gravifield

The hyper-gravifield χ A
M allows us to project tensors defined

in the locally flat hyper-gravifield spacetime into those
defined in the globally flat vacuum hyper-spacetime and to
formulate the general action of hyperunified field theory in a
hidden gauge formalism. So that the hyper-spin gauge sym-
metry is transmuted into a hidden gauge symmetry.

The hidden gauge-invariant hyper-spacetime gauge field
can be constructed from the hyper-spin gauge field and the
hyper-gravifield. Explicitly, we make the following definition
for the hyper-spacetime gauge field:

AP
MQ ≡ χ̂ P

A ∂Mχ A
Q + χ̂ P

A AA
MBχ B

Q . (155)

As the hyper-spin gauge field AAB
M consists of two parts as

shown in Eqs. (146)–(148), the hyper-spacetime gauge field
AP

MQ is decomposed, correspondingly, into two parts,

AP
MQ ≡ Γ P

MQ + AP
MQ, (156)

where Γ P
MQ defines the hyper-spacetime gravigauge field and

AP
MQ represents the hyper-spacetime homogauge field. Their

explicit forms are found to be

Γ P
MQ ≡ χ̂ P

A ∂Mχ A
Q + χ̂ P

A ΩA
MBχ B

Q

= 1

2
χ̂PL( ∂MχQL + ∂QχML − ∂LχMQ ), (157)

AP
MQ ≡ χ̂ P

A AAB
M χQB. (158)

Where the hyper-gravifield χ A
M plays an essential role as

a Goldstone-like field of gauge symmetry. The dual tensor
fields χ̂MN and χMN defined in Eqs. (73) and (129) as the
composite fields of the hyper-gravifield with a hidden gauge
symmetry are regarded as the dual Goldstone-like hyper-
gravimetric fields. The symmetric hyper-spacetime gravi-
gauge field Γ P

MQ = Γ P
QM is described by the dual Goldstone-

like hyper-gravimetric fields χMN and χ̂MN. Note that both
Γ P
MQ and AP

MQ are not conformal scaling gauge invariant.
We can apply the dual Goldstone-like hyper-gravimetric

fields χMN and χ̂MN to make redefinitions for the hyper-
spacetime homogauge field AP

MQ,

AMPQ ≡ AP′
MQχP′P = AAB

M χPAχQB,

A PQ
M ≡ AP

MNχ̂NQ = AAB
M χ̂ P

A χ̂
Q

B , (159)

so that the hyper-spacetime homogauge field shows the
explicit antisymmetry property,

AMPQ = −AMQP, A PQ
M = −A QP

M . (160)

In such definitions, the hyper-gravimetric fields χMN and
χ̂MN have been adopted to lower and raise the indices of
the hyper-spacetime tensors, respectively, in a hidden gauge
formalism.

As the dual Goldstone-like hyper-gravimetric field χMN

(or χ̂MN) is symmetric and the hyper-spacetime homogauge
field AMPQ (or APQ

M ) is antisymmetric, the total independent
degrees of freedom in a hidden gauge formalism are reduced
by amounts of Dh(Dh − 1)/2 in bosonic gauge interactions.
This reflects the fact that the hyper-spin gauge symmetry
SP(1, Dh − 1) is transmuted, through the Goldstone-like
hyper-gravifield χ A

M , into a hidden gauge symmetry.

7.3 Field strength of hyper-spacetime gauge field in
hidden gauge formalism

From the hyper-spacetime gauge field, we can define the
corresponding hyper-spacetime field strength. Explicitly, we
have

R P
MNQ = ∂MΓ P

NQ − ∂NΓ P
MQ + Γ P

MLΓ L
NQ − Γ P

NLΓ L
MQ,

(161)

for the hyper-spacetime gravigauge field strength, and

F P
MNQ = ∇MAP

NQ − ∇NAP
MQ + AP

MLA
L
NQ − AP

NLA
L
MQ,

∇MAP
NQ = ∂MAP

NQ − Γ L
MQA

P
NL + Γ P

MLA
L
NQ. (162)

for the hyper-spacetime homogauge field strength.
In terms of the antisymmetric hyper-spacetime homo-

gauge field, the corresponding field strength is given by

FPQ
MN = ∇MAPQ

N − ∇NA
PQ
M + AP

MLA
LQ
N − AP

NLA
LQ
M ,

∇MAPQ
N = ∂MAPQ

N + Γ P
MLA

LQ
N + Γ

Q
MLA

PL
N , (163)

or

FMNPQ = ∇MANPQ − ∇NAMPQ

−AL
MQANPL + AL

NQAMPL,

∇MANPQ = ∂MANPQ − Γ L
MPANLQ − Γ L

MQANPL. (164)

Their symmetry properties lead to the following relations:

FPQ
MN ≡ F P

MNQ′ χ̂Q′Q = −FQP
MN,

FMNPQ ≡ F P′
MNQχP′P = −FMNQP. (165)

Similarly, we can apply the hyper-gravimetric fields χMN and
χ̂MN to lower and raise the indices of the hyper-spacetime
gravigauge field strength,

RPQ
MN ≡ R P

MNQ′ χ̂Q′Q = −RQP
MN,

RMNPQ ≡ R P′
MNQχP′P = −RMNQP . (166)

In such a hidden gauge formalism, the gauge covariant
field strength of the hyper-gravifield is given by the hyper-
spacetime homogauge field and the scalar field,

GP
MN ≡ AP[MN] + SP[MN] ≡ ÃP[MN],

AP[MN] = AP
MN − AP

NM , SP[MN] = SPMN − SPNM,

SPMN = χMNχ̂PQSQ − η P
MSN; SM ≡ ∂M ln φ, (167)
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or

GMNP ≡ −A[MN]P − S[MN]P ≡ −Ã[MN]P,

SMNP = χMPSN − χMNSP,

S[MN]P = −SMχNP + SNχMP, (168)

which leads to a general relation between the hyper-spin
homogauge field AMPQ and the gauge covariant hyper-
gravifield strength GMPQ,

AMPQ = 1

2

(
A[MP]Q − A[MQ]P − A[PQ]M

)

ÃMPQ = 1

2

(
Ã[MP]Q − Ã[MQ]P − Ã[PQ]M

)

= AMPQ + 1

2

(
S[MP]Q − S[MQ]P − S[PQ]M

)

= −1

2

(
GMPQ − GMQP − GPQM

)
. (169)

The hyper-spacetime gravigauge field strength R P
MNQ is

characterized by the Goldstone-like hyper-gravimetric field
χMN. Thus χMN is considered as a basic field for the hyper-
spin gravigauge interaction in a hidden gauge formalism. In
general, the field strength of the hyper-spin gauge field is
related to the field strength of the hyper-spacetime gauge
field via the following relations:

FAB
MN ≡ RAB

MN + FAB
MN = 1

2
FPQ
MN χ

[AB]
PQ , (170)

and

RAB
MN = 1

2
RP

MNL χ
[AB]
PQ χ̂LQ = 1

2
RPQ

MN χ
[AB]
PQ ,

FAB
MN = 1

2
FP
MNL χ

[AB]
PQ χ̂LQ = 1

2
FPQ
MN χ

[AB]
PQ , (171)

with χ
[AB]
PQ defined in Eq. (127).

In obtaining the above relations, we have used the follow-
ing identities:

∇Mχ A
N = ∂Mχ A

N + ΩA
MBχ B

N − Γ P
MNχ A

P = 0 ,

∇Mχ̂ P
B = ∂Mχ̂ P

B − ΩA
MBχ̂ P

A + Γ P
MNχ̂ N

A = 0 ,

∇MχPQ = ∂MχPQ − Γ N
MPχNQ − Γ N

MQχPN = 0 ,

∇Mχ̂PQ = ∂Mχ̂PQ + Γ P
MNχ̂NQ + Γ

Q
MNχ̂PN = 0. (172)

7.4 General covariance and Riemannian geometry of
hyper-spacetime

Geometrically, considering the gauge-invariant tensor field
χMN(x̂) as the hyper-gravimetric field of hyper-spacetime,
the hyper-spacetime gravigauge field Γ P

MQ(x̂) given in
Eq. (157) is regarded as the Levi–Civita connection or the
Christoffel symbols in hyper-spacetime. The Christoffel sym-
bols of the first kind is obtained by lowering the index of
the second kind Γ P

MQ(x̂) through the hyper-gravimetric field
χMN(x̂),

ΓMPQ = Γ P′
MQχP′P

= 1

2
( ∂MχQP + ∂QχMP − ∂PχMQ ) = ΓQPM . (173)

There are general contracting relations for the Christoffel
symbols,

Γ P
MP = η

Q
P Γ P

MQ = ∂M ln χ,

χ̂MQΓ P
MQ = −χ̂ ∂M(χχ̂MP) . (174)

Such Christoffel symbols in hyper-spacetime define a
principal connection of general linear symmetry group
GL(Dh , R), which allows us to extend the global non-
homogeneous Lorentz transformations of the Poincaré sym-
metry PO(1, Dh − 1) in the globally flat Minkowski hyper-
spacetime to the general coordinate transformations of the
local symmetry GL(Dh , R) in the Riemannian curved hyper-
spacetime. A general coordinate transformation is defined
as an arbitrary reparametrization of coordinate systems, i.e.,
x̂ ′ ≡ x̂ ′(x̂), which is a local transformation for describing a
distinct reparametrization at every point in hyper-spacetime.
It obeys the following transformation laws:

∂M → ∂ ′
M = T N

M ∂N, T N
M ≡ ∂xN

∂x ′M ;

dxM → dx
′M = TM

N dxN , TM
N ≡ ∂x

′M

∂xN
, (175)

which enables us to provide a general definition for a covari-
ant vector field AM(x̂), with lower index, and a contravari-
ant vector field VM(x̂), with upper index, from the following
transformation properties:

A′
M(x̂ ′) = T N

M AN(x̂); V
′M(x̂ ′) = TM

N VN(x̂). (176)

The hyper-gravifield χ A
M (x̂) is a covariant vector field and its

dual vector χ̂ M
A (x̂) is a contravariant vector field in hyper-

spacetime. The hyper-gravimetric field χMN(x̂) is a covariant
tensor field, its transformation law is given by

χ ′
MN(x̂ ′) =

(
∂xP

∂x ′M
∂xQ

∂x ′N

)
χPQ(x̂) = T P

M T Q
N χPQ(x̂).

(177)

With such transformation laws, the Christoffel symbols in
hyper-spacetime transform as follows:

Γ
′P
MN(x̂ ′) =

(
∂xM

′

∂x ′M
∂xN

′

∂x ′N

) (
∂x

′P

∂xP′ Γ
P′
M′N′(x̂) − ∂2x

′P

∂xM′
∂xN′

)

≡ T M′
M T N′

N T P
P′

(
Γ P′
M′N′(x̂) − T P′

Q∂M′TQ
N′

)
.

(178)

The covariant derivatives for both the covariant vector
field AN(x̂) and the contravariant vector field VN(x̂) are
defined as

∇MAN = ∂MAN − Γ P
MNAP,
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∇MVN = ∂MVN + Γ N
MPV

P. (179)

Their transformation laws are given by

(∇MAN)
′ =

(
∂xP

∂x ′M
∂xQ

∂x ′N

)
(∇PAQ) ≡ T P

M T Q
N (∇PAQ) ,

(∇MVN)
′ =

(
∂xP

∂x ′M

) (
∂x

′Q

∂xN

)

(∇PV
Q) ≡ T P

M TN
Q(∇PV

Q),

(180)

which generates the general covariance under the general
coordinate transformations.

The field strength R P
MNQ of the hyper-spacetime gravi-

gauge field defines the Riemann curvature tensor in hyper-
spacetime. Lowering indices with the hyper-gravimetric
field, i.e., RMNPQ = χPP′R P′

MNQ, we have

RMNPQ = 1

2
(∂M∂QχNP + ∂N∂PχMQ

−∂N∂QχMP − ∂M∂PχNQ)

+χLL′(Γ L
MQΓ L′

NP − Γ L
NQΓ L′

MP) , (181)

which has symmetry properties,

RMNPQ = −RNMPQ, RMNPQ = −RMNQP ,

RMNPQ = RPQMN , (182)

and satisfies two Bianchi identities,

RMNQP + RNQMP + RQMNP = 0,

∇LR P
MNQ + ∇MR P

NLQ + ∇NR P
LMQ = 0 . (183)

A unique nontrivial way of contracting the Riemann tensor
results in the Ricci curvature tensor,

RMN = R P
MQNη

Q
P = −R P

QMNη
Q
P = −RP

PMN, (184)

which is a symmetric tensor with the following explicit form:

RMN = RNM = ∇M∂N ln χ − ∂PΓ P
MN + Γ P

MLΓ L
PN. (185)

The trace of the Ricci curvature tensor yields the Ricci scalar
curvature in hyper-spacetime

R = χ̂MNRMN = χ̂MNR P
MQNη

Q
P = −χ̂MNχ̂PQRMQNP.

(186)

7.5 Hyperunified field theory in hidden gauge formalism
and emergent general linear group symmetry GL(Dh ,
R)

With the above analysis, we are able to rewrite the general
action Eq. (99) in a hidden gauge formalism,

IH ≡
∫

[dx̂] χφDh−4

×
{
Ψ̄ �

M
[
i∂M + (

ΓMPQ + AMPQ + ΞMPQ
) 1

2
ΣPQ

]
Ψ

− 1

4

[ (
χ̂MNM′N′PQP′Q′

FMNPQFM′N′P′Q′ + WMNWMN
)

+ (g1 + g2 + g3)
(
RMNPQRMNPQ + 2RMNPQFMNPQ

)

+ (g4 + g5)
(
RMNRMN + 2RMNFMN

)

+ g6(R2 + 2RF)
]

+ 1

4
φ2

[
(αG − βG)Ã[MQ]PÃ[MQ]P

+ 2(αE − βG)ÃMPQÃ[PQ]M ]

+ φ2(αE − γG)(ηM
P ÃP

MN)(ηM′
P′ ÃP′

M′N′)χ̂NN′

+ αE

[
φ2R − (Dh − 1)(Dh − 2)∂Mφ∂Mφ

− φ2χ̂MPχ̂NQ∇̂[MAN]PQ
]

+ 1

2
dMφdMφ − βE φ4

}
,

(187)

with the definitions

�
M ≡ χ̂ M

C
1

2
Γ C , ΣPQ ≡ ΣABχ̂ P

A χ̂
Q
B , (188)

ΞMPQ ≡ 1

2
[(∂Mχ C

P )χQC − (∂Mχ C
Q )χPC], (189)

and

∇̂MANPQ = ∇MANPQ + SLMQANPL − SLMPANQL,

∇̂[MAN]PQ ≡ ∇̂MANPQ − ∇̂NAMPQ . (190)

The general tensor χ̂MNM′N′PQP′Q′
is defined as

χ̂MNM′N′PQP′Q′ ≡ g1χ̂
MM′

χ̂NN′
χ̂PP′

χ̂QQ′

+ 1

2
g2

(
χ̂MP′

χ̂NQ′
χ̂M′Pχ̂N′Q + χ̂NP′

χ̂MQ′
χ̂N′Pχ̂M′Q

)

+ 1

2
g3

[
χ̂PP′ (

χ̂MM′
χ̂NQ′

χ̂N′Q + χ̂NN′
χ̂MQ′

χ̂M′Q
)

+ χ̂ (P,P′↔Q,Q′)
]

+ 1

2
g4

[
χ̂PP′ (

χ̂MM′
χ̂NQχ̂N′Q′ + χ̂NN′

χ̂MQχ̂M′Q′)

+ χ̂ (P,P′↔Q,Q′)
]

+ 1

2
g5

[
χ̂M′Pχ̂MP′

χ̂NQχ̂N′Q′ + χ̂N′Pχ̂NP′
χ̂MQχ̂M′Q′

+ χ̂ (P,P′↔Q,Q′)
]

+ 1

2
g6

(
χ̂MPχ̂NQχ̂M′P′

χ̂N′Q′ + χ̂NPχ̂MQχ̂N′P′
χ̂M′Q′)

.

(191)

In obtaining the above action, we have used the general prop-
erties of the Riemann curvature tensors shown in Eqs. (182)–
(185) and the following identities:

RMNPQRMQPN = 1

2
RMNPQRMNPQ,

RMNPQFMQPN = 1

2
RMNPQFMNPQ , (192)
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as well as the symmetry properties of the hyper-spacetime
homogauge field with the following relevant identity:

Ã[MP]QÃ[MQ]P = −1

2
Ã[MP]QÃ[MP]Q − ÃMPQÃ[PQ]M.

(193)

The general action of Eq. (95) of hyperunified field the-
ory is constructed based on the postulates of gauge invari-
ance and coordinate independence in a locally flat hyper-
gravifield spacetime Gh . By projecting it into the globally
flat vacuum hyper-spacetimeVh through the dual bicovariant
hyper-gravifield χ A

M (x̂) (χ̂ M
A (x̂)), we find the general action

of Eq. (99) within the framework of QFT in the globally flat
Minkowski hyper-spacetime. As the postulate of coordinate
independence is considered to be more general and funda-
mental in the construction of hyperunified field theory, the
resulting action is expected to hold in any frame of coordi-
nates. By taking the dual bicovariant vector hyper-gravifield
χ A
M (x̂) as the Goldstone-like field of gauge symmetry, we

arrive at the general action Eq. (187) in a hidden gauge for-
malism.

Such a general action of Eq. (187) can be shown to be
invariant under the general coordinate transformation that is
defined as an arbitrary reparametrization in coordinate sys-
tems, i.e.,

x̂ ′ ≡ x̂ ′(x̂); dxM → dx
′M = TM

N dxN,

∂ ′
M = T N

M ∂N; T N
M , TM

N ∈ GL(Dh, R). (194)

The tensor transformation laws, Eqs. (176)–(180), lead the
scalar product of all the tensors to be invariant under the gen-
eral coordinate transformations. So that the general action of
Eq. (187) generates an emergent general linear group sym-
metry,

GS = GL(Dh, R), (195)

which is considered to be a natural deduction of the postulate
of coordinate independence in the construction of hyperuni-
fied field theory.

8 Hyperunified field theory with general conformal
scaling gauge invariance and Einstein–Hilbert-type
action with essential gauge massless condition and
gravity–geometry correspondence

The general action of Eq. (187) of hyperunified field the-
ory in a hidden gauge formalism shows an emergent general
coordinate transformation invariance though such a hyper-
unified field theory is initially built based on the postulate of
gauge invariance in a hyper-gravifield spacetime. The grav-
itational interaction is described by the Riemann and Ricci
curvature tensors of hyper-spacetime. Here we are going to
explore some intriguing properties by imposing a general

conformal scaling gauge invariance and requiring an essen-
tial gauge massless condition for gauge fields. In particu-
lar, we shall demonstrate how the gravitational interaction in
hyperunified field theory is described solely by a conformal
scaling gauge-invariant Einstein–Hilbert-type action. Con-
sequently, the basic action of hyperunified field theory in a
hidden gauge formalism enables us to reveal the gravity–
geometry correspondence.

8.1 Hyperunified field theory with general conformal
scaling gauge invariance and essential gauge massless
condition

The general action of Eq. (99) of hyperunified field theory for-
mulated in the hyper-gravifield fiber bundle has the explicit
conformal scaling gauge invariance with the introduction of
the scaling gauge field and scalar field. In the general action
Eq. (187) expressed in a hidden gauge formalism, the gauge
interactions are described by the field strengthRMNPQ of the
hyper-spacetime gravigauge field Γ P

MN and the field strength

FMNPQ of the hyper-spacetime homogauge field APQ
M . Each

term of the gauge interactions is in general not conformal
scaling gauge invariant though the sum of those interaction
terms as a whole is conformal scaling gauge invariant. This
is because both the hyper-spacetime gravigauge field Γ P

MN
as the Christoffel symbols and the hyper-spacetime homo-
gauge field AP

MN are no longer invariant though the hyper-
spin gauge field AAB

M carries no charge under the conformal
scaling gauge transformations. Explicitly, they transform as
follows:

Γ P
MN → Γ P

MN − η P
M∂N ln ξ − η P

N ∂M ln ξ + χMN∂P ln ξ,

AP
MN → AP

MN + (η P
Mη

Q
N − χMNχ̂PQ)∂Q ln ξ . (196)

The combination of the Riemann curvature tensor and the
Ricci curvature tensor allows us to obtain the conformal scal-
ing gauge-invariant Weyl curvature tensor,

CMNPQ = RMNPQ + 1

(Dh − 1)(Dh − 2)

× (χMPχNQ − χNPχMQ)R

+ 1

Dh − 2
(χMQRNP − χNQRMP

+χNPRMQ − χMPRNQ), (197)

which leads to the following conformal scaling gauge-
invariant interaction:

CMNPQCMNPQ = RMNPQRMNPQ − 4

Dh − 2
RMNRMN

+ 2

(Dh − 1)(Dh − 2)
R2. (198)
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When the couplings satisfy the relations,

g4 + g5 = − 4

Dh − 2
gC ,

g6 = 2

(Dh − 1)(Dh − 2)
gC ,

gC ≡ g1 + g2 + g3, (199)

we are able to simplify the gauge interaction terms in
Eq. (187) to the following form:

(g1 + g2 + g3)(RMNPQRMNPQ + 2RMNPQFMNPQ)

+(g4 + g5)(RMNRMN + 2RMNFMN) + g6(R2 + 2RF)

= gC ( CMNPQCMNPQ + 2CMNPQFMNPQ), (200)

where the first term on the right-hand side of the equality
is conformal scaling gauge invariant, while the second term
is not. Only when taking gC = 0, we are able to obtain
the general conformal scaling gauge-invariant interactions
that concern solely the field strength of the hyper-spacetime
homogauge field.

In general, when the coupling constants satisfy the rela-
tions,

g1 + g2 + g3 = 0 , g4 + g5 = 0 , g6 = 0 , (201)

we arrive at a general conformal scaling gauge-invariant
action of hyperunified field theory. We may refer to such rela-
tions as general conformal scaling invariance conditions.

The combined hyper-spacetime homogauge field ÃP
MN =

AP
MN +SPMN is conformal scaling gauge invariant, it leads to

the following gravitational “mass-like” terms:

Ã[MQ]PÃ[MQ]P = χ̂MM′
χ̂QQ′

χ̂PP′
Ã[MQ]PÃ[M′Q′]P′ ,

ÃMPQÃ[PQ]M = χ̂MM′
χ̂QQ′

χ̂PP′
ÃMPQÃ[P′Q′]M′ ,

ÃQM
Q ÃP

PM = χ̂MM′
χ̂PQχ̂P′Q′

ÃPQMÃP′Q′M′ .

They satisfy a general relation,

Ã[PQ]MÃ[PQ]M = 2ÃMPQÃMPQ + ÃMPQÃ[PQ]M . (202)

With such a relation, we come to discuss several cases,

(αG − βG)Ã[PQ]MÃ[PQ]M + 2(αE − βG)ÃMPQÃ[PQ]M

=

⎧
⎪⎨

⎪⎩

2(αG − βG)ÃPQMÃPQM , if 3βG − αG = 2αE

6(αG − βG)A[PQM]A[PQM] , if αG + βG = 2αE

0, if αG = βG = αE ,

(203)

with A[PQM] a totally antisymmetric hyper-spacetime homo-
gauge field defined as

A[PQM] = 1

3

(
APQM + AQMP + AMPQ

)

Ã[PQM] = A[PQM], S[PQM] = 0. (204)

It is seen that, for the case 3βG − αG = 2αE , the hyper-
spacetime homogauge field APQ

M has an ordinary gravita-
tional mass-like term AMPQAMPQ in proportion to the com-
bined coupling (αG − βG). For the case αG + βG = 2αE ,
the totally antisymmetric hyper-spacetime homogauge field
A[MPQ] gets the gravitational mass-like term A[MPQ]A[MPQ]
in proportion to the combined coupling (αG −βG). Once the
following relations hold:

αG = βG = γG = αE , (205)

all the gravitational “mass-like” terms concerning the hyper-
spacetime homogauge fieldAPQ

M disappear. For convenience,
we may refer to such relations by an essential gauge mass-
less condition for the hyper-spin gauge field. In fact, it pro-
vides a general hyper-spin gauge-invariance condition for
the dynamics of the hyper-gravifield.

When the general conformal scaling invariance condition
given in Eq. (201) holds, we obtain the simplified action of
hyperunified field theory in the hidden gauge formalism,

IH =
∫

[dx̂]χφDh−4
{
Ψ̄ �

M
[
i∂M

+
(
Ξ

PQ
M + ghA

PQ
M

) 1

2
ΣPQ

]
Ψ

− 1

4
χ̃MNM′N′PQP′Q′

FMNPQFM′N′P′Q′ + LA

+αE

(
φ2R − (Dh − 1)(Dh − 2)∂Mφ∂Mφ

)
− βE φ4

+ 1

2
dMφdMφ − 1

4
WMNWMN

}

+ 2αEgh∂M(χφDh−2ANM
N ), (206)

with

LA =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 αG = βG = γG = αE ,
3
2 ᾱ φ2A[MPQ]A[MPQ] αG +βG = 2αE , γG = αE ,
1
2 ᾱ φ2ÃMPQÃMPQ

+ ᾱEφ2ÃM
MNÃ

M′N
M′ 3βG − αG = 2αE ,

(207)

and with ᾱ ≡ αG−βG and ᾱE ≡ αE −γG . The field strength
FMNPQ is defined in Eq. (164) and the Ricci scalar curvature
R is given in Eq. (186). In obtaining the above action, we
have used the identity

−χ̂MPχ̂NQ∇̂MANPQ = ∇̂MANM
N

≡ ∇MANM
N + (Dh − 2)∂M(ln φ)ANM

N

= (χφDh−2)−1∂M(χφDh−2ANM
N ), (208)

with the definition ANM
N = −ANPQχ̂NQχ̂PM.

The tensor factor χ̃MNM′N′PQP′Q′
has the following form:

χ̃MNM′N′PQP′Q′

≡ 1

4

{[
χ̂MM′

χ̂PP′ (
χ̂NN′

χ̂QQ′ − 2χ̂NQ′
χ̂N′Q

)
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+ χ̂ (M,M′↔N,N′)
]

+ χ̂ (P,P′↔Q,Q′)
}

+1

4
αW

{[(
χ̂MP′

χ̂M′P − 2χ̂MM′
χ̂PP′)

χ̂NQ′
χ̂N′Q

+ χ̂ (M,M′↔N,N′)
]

+ χ̂ (P,P′↔Q,Q′)
}

+ 1

2
βW

{[(
χ̂PP′

χ̂MM′ − χ̂M′Pχ̂MP′)
χ̂NQχ̂N′Q′

+ χ̂ (M,M′↔N,N′)
]

+ χ̂ (P,P′↔Q,Q′)
}

, (209)

where we have normalized the kinetic term of the hyper-
spacetime homogauge field interactions by taking the fol-
lowing conventions:

APQ
M → ghA

PQ
M , g1 ≡ g−2

h ,

g2 ≡ g−2
h αW , g4 ≡ g−2

h βW , (210)

which shows that to preserve the general conformal scal-
ing gauge invariance in the gauge interactions of the hyper-
spacetime homogauge field APQ

M , there exist in general three
independent coupling constants gh , αW and βW . Note that the
last term of the action of Eq. (211) reflects a surface effect.

In SM, both the electromagnetic field and the gluon fields
are massless, and the weak gauge bosons receive masses
through the Higgs mechanism of spontaneous symmetry
breaking. To match such phenomena in SM, it is natural
to postulate that the hyper-spin gauge field as a basic field
should be massless. By applying the essential gauge mass-
less condition given in Eq. (205), we arrive at the basic action
of hyperunified field theory in the hidden gauge formalism,

IH =
∫

[dx̂]χφDh−4
{
Ψ̄ �

M
[
i∂M +

(
Ξ

PQ
M + ghA

PQ
M

) 1

2
ΣPQ

]
Ψ

− 1

4
χ̃MNM′N′PQP′Q′

FMNPQFM′N′P′Q′

+αE

(
φ2R − (Dh − 1)(Dh − 2)∂Mφ∂Mφ

)
− βE φ4

+ 1

2
dMφdMφ − 1

4
WMNWMN

}

+ 2αE gh∂M (χφDh−2ANM
N

)
. (211)

It is noticed that all the quadratic Riemann tensor and
Ricci tensor terms disappear due to the general conformal
scaling invariance condition Eq. (201). Namely, the higher
derivative gravitational interactions in hyper-spacetime are
absent and the dynamics of the hyper-gravimetric field is
described solely by an Einstein–Hilbert-type action with the
global and local conformal scaling symmetries, which is
ensured by introducing the dynamical scaling scalar field
φ(x̂) associated with the scaling gauge field WM(x̂). The
hyper-spacetime gravigauge field Γ P

MN as the Christoffel
symbols decouples from the hyper-spinor interactions due to
the self-hermiticity of the Majorana-type hyper-spinor field
interactions and the symmetric property of the Christoffel
symbols Γ P

MN = Γ P
NM.

8.2 Einstein–Hilbert-type action with gravity–geometry
correspondence in hyper-spacetime and symmetric
Goldstone-like hyper-gravifield with unitary gauge

The basic action given in Eq. (211) shows that the bosonic
gauge interactions are described by the symmetric hyper-
spacetime gravigauge field Γ P

MN and the antisymmetric

hyper-spacetime homogauge field APQ
M . When the general

conformal scaling invariance condition Eq. (201) holds for
the coupling constants, the gravitational gauge interactions of
the hyper-spacetime gravigauge field Γ P

MN as the Christof-
fel symbols are solely characterized by the scaling gauge-
invariant Einstein–Hilbert-type action that is governed by
the Ricci scalar tensor of hyper-spacetime and the scalar field
interactions, i.e.,

IGG ≡
∫

[dx̂] χφDh−4αE [φ2R − (Dh − 1)

× (Dh − 2)∂Mφ∂Mφ] + 2αEgh∂M(χφDh−2ANM
N ).

The absence of terms in quadratic Riemann tensor and Ricci
tensor indicates that such a hyperunified field theory should
get rid of the so-called unitarity problem caused by the higher
derivative gravitational interactions.

The hyper-spacetime gravigauge fieldΓ P
MN as the Christof-

fel symbols is characterized by the Goldstone-like hyper-
gravimetric field χMN, which contains Nh = Dh(Dh + 1)/2
degrees of freedom. The gravitational interactions of the
hyper-spinor field are governed by the Goldstone-like hyper-
gravifield χ A

M (or χ̂ M
A ) through the gauge-type field Ξ

PQ
M and

the γ -matrix terms �
M and ΣPQ. In general, the basic grav-

itational field remains the Goldstone-like hyper-gravifield
χ A
M , which concerns Nh = Dh × Dh degrees of free-

dom. The extra degrees of freedom in χ A
M are accounted as

�Nh = D2
h−Dh(Dh+1)/2 = Dh(Dh−1)/2, which reflects

the equivalence classes of the hyper-spin gauge symmetry
SP(1, Dh − 1) that involves the same degrees of freedom
Dh(Dh − 1)/2. Therefore, we can always make a specific
hyper-spin gauge transformation �̄(x̂) to set a gauge fix-
ing condition, so that the gauge transformed hyper-gravifield
χ ′
MA(x̂) becomes symmetric, i.e.,

χMA(x̂) → χ ′
MA(x̂) = χMB(x̂)�̄B

A(x̂) = χ ′
AM(x̂) . (212)

We may refer to such a gauge fixing condition by a unitary
gauge.

In such a unitary gauge, both the Goldstone-like hyper-
gravifield χMA(x̂) (we shall omit the prime for simplicity)
and the Goldstone-like hyper-gravimetric field χMN(x̂) are
symmetric. They involve the same degrees of freedom and
are correlated with the following relation:

χMN = χMAχNBηAB = χMAηABχBN ≡ (χMA)2 . (213)
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To be more explicit, it is useful to take a nonlinearly real-
ized exponential representation,

χMA = (eG)MA , GMA = GAM,

χMN = (eGeG) MN = (e2G)MN, (214)

where GMA = GAM is regarded as a nonlinearly realized
symmetric Goldstone-like hyper-gravifield. One can make
use of the general properties of matrix exponential, such as

∂M(eG) = eG
1 − e−adG

adG
∂MG ; det(eG) = etr(G) ,

1 − e−adG

adG
=

k=∞∑

k=0

(−1)k

(k + 1)! (adG)k,

adG(∂MG) ≡ [G , ∂MG] . (215)

It is clear that in the basic action of hyperunified field the-
ory formulated in terms of hidden gauge formalism, it is reli-
able to set the gauge fixing condition to be the unitary gauge.
So that the basic gravitational field is chosen to be the sym-
metric Goldstone-like hyper-gravifield χMA(x̂) = χAM(x̂)
(or nonlinearly realized symmetric Goldstone-like hyper-
gravifield GMA(x̂) = GAM(x̂)) and the basic gauge field is
taken as the antisymmetric hyper-spacetime homogauge field
APQ
M (x̂). In this case, the gravitational interactions of both the

hyper-spinor and the bosonic fields are described by the sym-
metric Goldstone-like hyper-gravifield χMA(x̂). Meanwhile,
the geometry and dynamics of hyper-spacetime are essen-
tially characterized by the symmetric Goldstone-like hyper-
gravifield χMA(x̂), which determines the hyper-gravimetric
field χMN(x̂) = (χMA(x̂))2 and the hyper-spacetime gravi-
gauge field Γ P

MN(x̂) as the Christoffel symbols. In this sense,
we arrive at the general gravity–geometry correspondence in
hyper-spacetime.

To keep the Goldstone-like hyper-gravifield χMA(x̂) be
symmetric in the unitary gauge, both the hyper-spin symme-
try SP(1, Dh − 1) of the hyper-spinor field and the Lorentz
symmetry SO(1, Dh − 1) of coordinates in hyper-spacetime
have to be the global symmetries and coincide with each
other, i.e.,

SP(1, Dh − 1) ∼= SO(1, Dh − 1).

In conclusion, for a given unitary gauge with the symmet-
ric hyper-gravifield χMA(x̂) = χAM(x̂), the basic action of
hyperunified field theory in the hidden gauge formalism has
only the global Poincaré symmetry PO(1, Dh − 1) as well
as the global and local scaling symmetries S(1) and SG(1).
Namely, when making the gauge fixing condition to be the
unitary gauge, the basic action of Eq. (211) of hyperunified
field theory in the hidden gauge formalism possesses only a
minimized maximal symmetry,

GS = PO(1, Dh − 1) × S(1) �� SG(1) , (216)

which plays a role as a fundamental symmetry in hyperuni-
fied field theory.

9 Hyperunified field theory in hidden coordinate
formalism and gauge–gravity correspondence

Alternatively, we shall investigate a correlation between the
gauge interaction and the gravitational effect in a hidden
coordinate formalism. As the general action of hyperuni-
fied field theory given in Eq. (95) is constructed based on
the postulates of gauge invariance and coordinate indepen-
dence in the locally flat hyper-gravifield spacetime Gh , we
shall explicitly show how the gravitational interaction can
be described by the gauge interaction in a hidden coordi-
nate formalism and demonstrate the general gauge–gravity
correspondence relying on the gravitational origin of gauge
symmetry.

9.1 Hyper-spin gauge field and field strength in a hidden
coordinate formalism

To express the basic action of hyperunified field theory in
terms of hidden coordinate formalism, it is useful to make
the redefinitions for the hyper-spin gauge field and the cor-
responding hyper-spin gravigauge and homogauge fields
defined in Eqs. (146)–(148) in the locally flat hyper-gravifield
spacetime Gh .

Let us begin with the redefinition for the hyper-spin gauge
field in the hyper-gravifield spacetime Gh ,

AAB
C ≡ χ̂ M

C AAB
M . (217)

Correspondingly, the gravitational origin of the hyper-spin
gauge symmetry shown in Eqs. (146)–(148) enables us to
rewrite the hyper-spin gauge field into two parts,

AAB
C = ΩAB

C + AAB
C , (218)

with ΩAB
C and AAB

C the hyper-spin gravigauge and homo-
gauge fields, respectively,

ΩAB
C ≡ χ̂ M

C ΩAB
M , AAB

C ≡ χ̂ M
C AAB

M . (219)

The hyper-spin gravigauge field ΩAB
C is characterized by the

gauge-type hyper-gravifield,

ΩAB
C = 1

2
[ χ̂AM

ðCχ B
M − χ̂BM

ðCχ A
M − χ̂ M

C (ðAχ B
M

− ð
Bχ A

M ) + (ðAχ̂BM − ð
Bχ̂AM)χMC], (220)

with ðC ≡ χ̂ M
C ∂M defined in Eq. (78).

Similarly, the field strength of the hyper-spin gauge field
consists of two parts,

FAB
CD = RAB

CD + FAB
CD, (221)

123



28 Page 26 of 36 Eur. Phys. J. C (2018) 78 :28

with explicit forms given by

FAB
CD = D̃CAAB

D − D̃DAAB
C + (AA

CEAEB
D − AA

DEAEB
C ),

D̃CAAB
D = ðCAAB

D − ΩE
CDAAB

E , (222)

for the hyper-spin gauge field strength, and

RAB
CD = D̃CΩAB

D − D̃DΩAB
C + ΩA

CEΩEB
D − ΩA

DEΩEB
C ,

D̃CΩAB
D = ðCΩAB

D − ΩE
CDΩAB

E , (223)

for the hyper-spin gravigauge field strength, as well as

FAB
CD = DCAAB

D − DDAAB
C + AA

CEA
EB
D − AA

DEA
EB
C ,

DCAAB
D = D̃CAAB

D + ΩA
CEA

EB
D + ΩB

CEA
AE
D ,

D̃CAAB
D = ðCAAB

D − ΩE
CDA

AB
E , (224)

for the hyper-spin homogauge field strength.
The conformal scaling gauge field strength is given by

WCD = D̃CWD − D̃DWC, WC = χ̂ M
C WM ,

D̃CWD = ðCWD − ΩE
CDWE . (225)

For the gauge-type hyper-gravifield strength, it is deter-
mined by the hyper-spin homogauge field AAB

C and the pure
gauge field SC of the scalar field,

GA
CD ≡ AA[CD] + SA[CD] ≡ ÃA[CD],

AA[CD] = AA
CD − AA

DC , SA[CD] = SACD − SADC,

SACD = ηCDηABSB − η A
C SD, SC ≡ ðC ln φ, (226)

and

GCDA ≡ −A[CD]A − S[CD]A ≡ −Ã[CD]A,

SCDA = ηCASD − ηCDSA,

S[CD]A = −SCηDA + SDηCA. (227)

9.2 Riemann-like and Ricci-like tensors in locally flat
hyper-gravifield spacetime and symmetry properties of
field strengths

The field strengths in the locally flat hyper-gravifield space-
time relate to those in the hyper-gravifield fiber bundle as
follows:

FAB
CD = FAB

MNχ̂ M
C χ̂ N

D ; FCDAB = FMNABχ̂ M
C χ̂ N

D

RAB
CD = RAB

MNχ̂ M
C χ̂ N

D ; RCDAB = RMNABχ̂ M
C χ̂ N

D ,

FAB
CD = FAB

MNχ̂ M
C χ̂ N

D ; FCDAB = FMNABχ̂ M
C χ̂ N

D , (228)

and

GA
CD = GA

MNχ̂ M
C χ̂ N

D ; GCDA = GMNAχ̂ M
C χ̂ N

D ,

WCD = WMNχ̂ M
C χ̂ N

D . (229)

The field strength of the hyper-spin gravigauge field in
the hidden coordinate formalism is related to the one of the

hyper-spacetime gravigauge field in the hidden gauge for-
malism,

RCDAB = RMNABχ̂ M
C χ̂ N

D = RMNPQχ̂ M
C χ̂ N

D χ̂ P
A χ̂

Q
B ,

(230)

which defines the Riemann-like tensor in the locally flat
hyper-gravifield spacetime. Such relations indicate both the
gauge–gravity and the gravity–geometry correspondences.

Applying for the symmetry properties of the Riemann ten-
sors shown in Eqs. (182)–(185) and the identities Eq. (172),
we obtain similar symmetry properties,

RCDAB = −RDCAB, RCDAB = −RCDBA ,

RCDAB = RABCD , (231)

and the analogous Bianchi identities,

RCDBA + RDBCA + RBCDA = 0,

DER A
CDB + DCR A

DEB + DDR A
ECB = 0 . (232)

We can define the symmetric Ricci-like curvature tensor
by contracting the Riemann-like tensor in the locally flat
hyper-gravifield spacetime,

RCD = R A
CBDηB

A = −R A
BCDηB

A = −RA
ACD = RDC . (233)

The trace of the Ricci-like curvature tensor defines the scalar
curvature

R ≡ ηCDRCD = ηCDR A
CBDηB

A = −ηCDηABRCBDA.

(234)

Based on the above properties of the Riemann-like and
Ricci-like tensors in the locally flat hyper-gravifield space-
time, we arrive at the following identities:

RCDABRCBAD = 1

2
RCDABRCDAB,

RCDABFCBAD = 1

2
RCDABFCDAB . (235)

In terms of the hidden coordinate formalism, there exists
a general relation between the hyper-spin homogauge field
ACAB and the hyper-gravifield strength GCAB as well as the
gauge-type field strength SCAB of the scalar field,

ACAB ≡ 1

2
(A[CA]B − A[CB]A − A[AB]C)

ÃCAB ≡ 1

2
(Ã[CA]B − Ã[CB]A − Ã[AB]C)

= ACAB + 1

2
(S[CA]B − S[CB]A − S[AB]C)

= −1

2
(GCAB − GCBA − GABC), (236)

which results in the following identity:

Ã[CA]BÃ[CB]A = −1

2
Ã[CA]BÃ[CA]B − ÃCABÃ[AB]C. (237)
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9.3 Hyperunified field theory in locally flat hyper-gravifield
spacetime and gauge–gravity correspondence

With the above analysis, the general action of hyperunified
field theory in the locally flat hyper-gravifield spacetime is
found to be,

IH =
∫

[δχ ]φDh−4
{

1

2
Ψ̄ Γ C

[
iðC

+ (ΩCAB + ACAB)
1

2
ΣAB

]
Ψ

− 1

4

[ (
η̃CDC′D′ABA′B′

FCDABFC′D′A′B′ + WCDWCD
)

+ (g1 + g2 + g3)
(
RCDABRCDAB + 2RCDABFCDAB

)

+ (g4 + g5)
(
RCDRCD + 2RCDFCD

)

+ g6(R2 + 2RF)
]

+ 1

4
φ2

[
(αG − βG)Ã[CB]AÃ[CB]A

+ 2(αE − βG)ÃCABÃ
[AB]C ]

+ φ2(αE − γG)
(
ηC
A ÃA

CD

) (
ηC′
A′ ÃA′

C′D′
)

ηDD
′

+ αE

[
φ2ηCDRCD − (Dh − 1)(Dh − 2)ðCφð

Cφ

+ 2(Dh − 2)φðCφADC
D

]

+ 1

2
ηCDð̄Cφð̄Dφ − βE φ4 + 2αEφ2DCA

DC
D

}
, (238)

which has a similar form as the general action of Eq. (187)
in the hidden gauge formalism.

In an analogous manner, by combining the Riemann-like
curvature tensor and the Ricci-like curvature tensor, we can
define a conformal scaling gauge-invariant Weyl-like curva-
ture tensor in the locally flat hyper-gravifield spacetime

CCDAB = RCDAP + 1

(Dh − 1)(Dh − 2)
(ηCAηDB − ηDAηCB)R

+ 1

Dh − 2
(ηCBRDA − ηDBRCA + ηDARCB − ηCARDB),

(239)

which leads to the conformal scaling gauge-invariant inter-
action,

CCDABCCDAB = RCDABRCDAB − 4

Dh − 2
RCDRCD

+ 2

(Dh − 1)(Dh − 2)
R2. (240)

When taking the general conformal scaling invariance
condition given in Eq. (201) for the coupling constants gi
(i = 1, . . . , 6) and the conventional redefinitions shown in
Eq. (210), all the quadratic terms of the Riemann-like ten-
sor and the Ricci-like tensor as well as their cross terms
with the field strength of the hyper-spin homogauge field

cancel each other. Once the coupling constants αG , βG ,
γG and αE satisfy the essential gauge massless condition
given in Eq. (205), all the gravitational “mass-like” terms
Ã[CB]AÃ[CB]A, ÃCABÃ[AB]C and ÃBC

B ÃA
AC disappear and

the hyper-spin gauge field becomes “massless”. In this case,
the general action of Eq. (238) is simplified, and we obtain
the basic action of hyperunified field theory in a locally flat
hyper-gravifield spacetime,

IH =
∫

[δχ ]φDh−4
{

1

2
Ψ̄ Γ C

[
iðC + gh(Ω

AB
C + AAB

C )
1

2
ΣAB

]
Ψ

−1

4
η̃CDC′D′ABA′B′

FCDABFC′D′A′B′ − βE φ4

+αE

(
φ2ghη

CDRCD − (Dh − 1)(Dh − 2)ðCφð
Cφ

)

+1

2
ð̄Cφð̄

Cφ − 1

4
WCDWCD + 2ghαEφ2D̂CADC

D

}
,

(241)

where the field strength FCDAB is given in Eq. (224) and the
Ricci-like tensor ηCDRCD is defined in Eq. (233).

We have introduced the following definitions:

η̃CDC′D′ABA′B′ ≡ χ C
M χ D

N χ C′
M′ χ D′

N′ χ A
P χ B

Q χ A′
P′ χ B′

Q′ χ̃MNM′N′PQP′Q′

= 1

4

{[
ηCC

′
ηAA

′
(ηDD

′
ηBB

′ − 2ηDB
′
ηD

′B) + η(C,C′↔D,D′)
]

+η(A,A′↔B,B′)
}

+1

4
αW

{[
(ηCA

′
ηC

′A − 2ηCC
′
ηAA

′
)ηDB

′
ηD

′B + η(C,C′↔D,D′)
]

η(A,A′↔B,B′)
}

+1

2
βW

{[
(ηAA

′
ηCC

′ − ηC
′AηCA

′
)ηDBηD

′B′ + η(C,C′↔D,D′)
]

η(A,A′↔B,B′)
}

, (242)

for the general tensor factor resulting from the general con-
formal scaling gauge invariance, and

D̂CA
DC
D ≡ DCA

DC
D + (Dh − 2)SCA

DC
D

= ðCA
DC
D + ghΩC

CAA
DA
D + (Dh − 2)SCA

DC
D ,

ghΩC
CA = (∂Mχ C

N − ∂Nχ C
M )χ̂ M

A χ̂ N
C ; ð̄Cφ = (ðC − WC)φ,

(243)

for the covariant derivative.
In such a hidden coordinate formalism, the fundamen-

tal gauge interactions are described by the hyper-spin gravi-
gauge field ΩAB

C and the hyper-spin homogauge field AAB
C .

The hyper-spin gravigauge field ΩAB
C is determined by the

gauge-type hyper-gravifield χ A
M as shown in Eq. (220). The

dynamics of ΩAB
C is described by the Ricci-like scalar tensor

R ≡ ηCDRCD = −ηCDηB
AR A

CBD. Therefore, the gravita-
tional interaction in the hidden coordinate formalism is char-
acterized by an analogous conformal scaling gauge-invariant
Einstein–Hilbert-type action governed by the hyper-spin
gauge symmetry. Namely, in the locally flat hyper-gravifield
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spacetime, the basic gravitational interaction is formulated as
the gauge interaction of the hyper-spin gravigauge field ΩAB

C ,
which corroborates the general gauge–gravity correspon-
dence. Such a gauge–gravity correspondence distinguishes
the so-called gauge–gravity duality associated with the holo-
graphic idea [54–56]. Namely a gravity theory defined on a
bulk D-dimensional spacetime can be equivalent to a gauge
theory defined on a (D-1)-dimensional spacetime that forms
the bulk boundary. The original conjecture made in [54] con-
cerns an anti-de Sitter spacetime being equivalent to a confor-
mal field theory on its boundary, i.e., the so-called AdS/CFT
conjecture. More precisely, it was conjectured in Ref. [54]
that the type IIB string theory on a AdS5 × S5 background
is equivalent to N = 4 four-dimensional super-Yang Mills
field theory.

10 Gravitational gauge–geometry duality and
hyperunified field theory with non-commutative
geometry in locally flat hyper-gravifield spacetime

We have shown the gravity–geometry correspondence in
the hidden gauge formalism and the gauge–gravity corre-
spondence in the hidden coordinate formalism. The anal-
ogy between two basic actions of Eqs. (187) and (238) or
Eqs. (211) and (241) displays the gauge geometry corre-
spondence. We shall further investigate their correlations
and reveal the gravitational gauge–geometry duality. In gen-
eral, the locally flat hyper-gravifield spacetime is viewed as
a dynamically emerged spacetime, which is characterized by
a non-commutative geometry.

10.1 Gravitational gauge–geometry duality with flowing
unitary gauge

To make an explicit comparison, let us put together the basic
action Eq. (211) expressed in the hidden gauge formalism
and the basic action of Eq. (241) formulated in the hidden
coordinate formalism,

IH ≡
∫

[dx̂] χφDh−4
{
Ψ̄ �

M
[
i∂M +

(
Ξ

PQ
M + ghA

PQ
M

) 1

2
ΣPQ

]
Ψ

− 1

4
χ̃MNM′N′PQP′Q′

FMNPQFM′N′P′Q′ − βE φ4

+αE

(
φ2χ̂MNRMN − (Dh − 1)(Dh − 2)∂Mφ∂Mφ

)

+ 1

2
dMφdMφ − 1

4
WMNWMN + 2ghαEφ2∇̂M(ANM

N )

}

≡
∫

[δχ ]φDh−4
{

1

2
Ψ̄ Γ C

[
iðC + gh

(
ΩAB

C + AAB
C

) 1

2
ΣAB

]
Ψ

− 1

4
η̃CDC′D′ABA′B′

FCDABFC′D′A′B′ − βE φ4

+αE

(
φ2ghη

CDRCD − (Dh − 1)(Dh − 2)ðCφð
Cφ

)

+ 1

2
ð̄Cφð̄

Cφ − 1

4
WCDWCD + 2ghαEφ2D̂CADC

D

}
.

In terms of the hidden gauge formalism, the basic action
of hyperunified field theory emerges a general linear group
symmetry GL(Dh ,R) under the general coordinate transfor-
mations and the hyper-spin gauge symmetry SP(1, Dh − 1)
becomes a hidden symmetry. The gravitational interactions
are characterized by the dynamics of the Riemannian geom-
etry in a curved hyper-spacetime and all the bosonic fields
couple to the Goldstone-like hyper-gravimetric field χMN,
but the hyper-spinor field only interacts with the Goldstone-
like hyper-gravifield χ A

M . To ensure the gravitational interac-
tions for all the basic fields be described by a common basic
gravitational field, it requires us to take the gauge fixing con-
dition to be the unitary gauge, so that the gauge-type hyper-
gravifield χMA(x̂) is made to be a symmetric Goldstone-
like field, i.e., χMA(x̂) = χAM(x̂). In such a unitary gauge,
the symmetric Goldstone-like hyper-gravimetric field can be
expressed as a square of the symmetric Goldstone-like hyper-
gravifield, i.e., χMN ≡ (χMA)2 = χMAηABχBN.

In terms of the hidden coordinate formalism, the basic
action of hyperunified field theory possesses the explicit
hyper-spin gauge symmetry SP(1, Dh − 1) and the gen-
eral linear group symmetry GL(Dh ,R) is a hidden symmetry.
The gravitational interactions are described by the hyper-spin
gravigauge field ΩAB

C , which is characterized by the gauge-
type hyper-gravifield χ A

M .
The similarity of two formalisms reflects the gauge–

geometry correspondence. In the hidden gauge formalism,
we shall further show how to make such a gauge fixing proce-
dure hold at any point in hyper-spacetime. Namely, for every
general coordinate transformation that is defined as an arbi-
trary reparametrization of coordinate systems, x̂ ′ ≡ x̂ ′(x̂),
we can always carry out a specific hyper-spin gauge trans-
formation associated with a distinct local reparametrization
at every point in hyper-spacetime. Such a gauge fixing proce-
dure can be realized with two-step transformations. Namely,
considering a general coordinate transformation,

dxM → dx
′M = TM

N dxN , ∂M → ∂ ′
M = T N

M ∂N ,

T N
M , TM

N ∈ GL(Dh, R), (244)

as the first step, and making a hyper-spin gauge transforma-
tion at point x̂ ′ ≡ x̂ ′(x̂),

Γ A → S′(�′)Γ AS
′−1(�′) = �

′A
B(x̂ ′)Γ B ,

�
′A
B(x̂ ′) ∈ SP(1, Dh − 1) , (245)

as the second step. So that the hyper-gravifield at every point
in hyper-spacetime is made to be symmetric,

χMA(x̂) = χAM(x̂) → χ ′
MA(x̂ ′) = T N

M χNA(x̂),
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χ ′
MA(x̂ ′) �= χ ′

AM(x̂ ′) →
χ

′′
MA(x̂ ′) = �

′ B
A (x̂ ′) χ ′

MB(x̂ ′) = χ
′′
AM(x̂ ′). (246)

As the symmetry groups GL(Dh , R) and SP(1, Dh − 1)
do not act as a direct product group, the gauge fixing has to
associate with an arbitrary reparametrization of coordinate
systems to make the specific hyper-spin gauge transformation
in order to obtain a symmetric hyper-gravifield. Therefore, in
the hyper-gravifield fiber bundle structure with considering
general transformations under the symmetry groups GL(Dh ,
R) and SP(1, Dh − 1), such a gauge fixing procedure leads
a running gauge fixing condition to ensure the symmetric
hyper-gravifield at arbitrary point of coordinate systems in
hyper-spacetime, which may be referred to by the flowing
unitary gauge.

Let us now discuss and outline some general properties of
hyperunified field theory based on various formalisms.

Geometrically, the general action of hyperunified field
theory should hold in any coordinate system as it is con-
structed with the postulate of coordinate independence. The
basic action Eq. (211) of hyperunified field theory formulated
in the hidden gauge formalism displays an emergent gen-
eral coordinate transformation invariance. The gravitational
interaction in hyper-spacetime of coordinates is described
by the dynamics of the Riemannian geometry in a curved
hyper-spacetime, which is characterized by the Christoffel
symbols Γ P

MN defined through the Goldstone-like hyper-
gravimetric field χMN. Such a gravitational interaction in
hyper-spacetime is governed by the general linear group sym-
metry,

GS = GL(Dh, R),

which is a real Lie group of dimension ND = D2
h and consists

of matrices that have non-zero determinant. Such a general
linear group symmetry lays the foundation of general rela-
tivity in four dimensional spacetime.

Locally, at every point of hyper-spacetime, the general
action of hyperunified field theory is invariant under the
hyper-spin gauge transformations as it is constructed with
the postulate of gauge invariance in the locally flat hyper-
gravifield spacetime. The hyper-spin homogauge field AAB

M
and the hyper-spin gravigauge field ΩAB

M characterized by the
gauge-type hyper-gravifield χ A

M are adopted to describe the
fundamental gauge interactions governed by the hyper-spin
gauge symmetry,

GS = SP(1, Dh − 1),

which is known as the gauge principle; it is applied to build
gauge theories within the framework of QFT.

In general, there appears to have a bimaximal local sym-
metry in the hyper-gravifield fiber bundle structure of biframe
hyper-spacetime,

GS = GL(Dh, R) �� SP(1, Dh − 1), (247)

which is viewed as a joined Lie group as two local symmetries
cannot be operated as a direct product group. Such a joined
bimaximal symmetry can be utilized as a symmetry principle
to construct a general action of hyperunified field theory. One
is the maximal general linear group symmetry GL(Dh , R)
operating on the coordinates in the curved Riemannian hyper-
spacetime, and the other is the maximal hyper-spin gauge
symmetry SP(1, Dh − 1) operating on the hyper-spinor field
and gauge field in the locally flat hyper-gravifield spacetime.

In practice, as the general action of hyperunified field the-
ory is built based on the postulates of gauge invariance and
coordinate independence in the locally flat hyper-gravifield
spacetime, the resulting action should hold for all systems
of coordinates in hyper-spacetime. Namely, the postulates
of gauge invariance and coordinate independence are more
general and fundamental, we can always choose the glob-
ally flat Minkowski hyper-spacetime as a base spacetime in
the hyper-gravifield fiber bundle structure, so that the gen-
eral action of hyperunified field theory possesses actually the
maximal global Poincaré symmetry PO(1, Dh − 1) and the
maximal hyper-spin gauge symmetry SP(1, Dh − 1),

GS = PO(1, Dh−1) �� SP(1, Dh−1) . (248)

Such a joined bimaximal symmetry group has a total dimen-
sion ND = 2 × Dh(Dh − 1)/2 + Dh = D2

h , which has
the same dimension as the symmetry group GL(Dh ,R). The
Lorentz group SO(1, Dh − 1) is a subgroup of GL(Dh , R),
i.e., SO(1, Dh − 1)∈GL(Dh , R).

Physically, either the hyper-spin gauge symmetry group
SP(1, Dh −1) that governs the dynamics of the hyper-spinor
field and gauge fields or the emergent general linear symme-
try group GL(Dh , R) that describes the dynamics of the Rie-
mannian geometry of hyper-spacetime, it provides a symme-
try principle to construct the general action of hyperunified
field theory in hyper-spacetime. Such a local gauge sym-
metry represents each physically distinct configuration of
the system as an equivalence class of detailed local field
configurations. Namely, for any two detailed configurations
that are in the same equivalence class, they are related by
a gauge transformation. As physical observables should be
gauge independent, they can only be obtained with a reason-
able prescription for removing those unphysical degrees of
freedom. Thus a gauge fixing is required to provide a mathe-
matical procedure for dealing with the redundant degrees of
freedom in field variables.

Gravitationally, the flowing unitary gauge enables us to
take the symmetric Goldstone-like hyper-gravifield as a basic
gravitational field at every point in hyper-spacetime to char-
acterize gravitational interactions for all basic fields. The
concept of the flowing unitary gauge allows us to take all
points in hyper-spacetime to be equivalent for making the
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gauge fixing be the unitary gauge. Therefore, in a physically
meaningful unitary gauge, the basic action of hyperunified
field theory in the hidden gauge formalism possesses only
the global Poincaré symmetry,

GS = PO(1, Dh − 1) ≡ P1,Dh−1
� SO(1, Dh−1);

SP(1, Dh−1) ∼= SO(1, Dh−1). (249)

From the above analysis on the general properties of hype-
runified field theory, we should conclude that the dynamics of
gravitational interactions can be described either as a dynam-
ical gauge interaction of the gauge-type hyper-gravifield or
equivalently as a dynamical Riemannian geometry of the
symmetric Goldstone-like hyper-gravifield in a general flow-
ing unitary gauge. Such an equivalent description reveals the
gravitational gauge–geometry duality, which is attributed
to the gravitational origin of gauge symmetry in hyper-
spacetime.

It becomes clear that the hyper-spacetime Poincaré sym-
metry plays a basic role as a fundamental symmetry in hyper-
unified field theory, which essentially demands the existence
of the globally flat Minkowski hyper-spacetime to define the
inertial reference frames and act as a vacuum base spacetime
for describing the kinematics and dynamics of all basic fields
and deriving the conservation laws of all symmetries.

10.2 Hyperunified field theory with non-commutative
geometry in locally flat hyper-gravifield spacetime

Geometrically, the locally flat hyper-gravifield spacetime Gh

is associated with a non-commutative geometry due to the
nontrival commutation relation of the non-coordinate field
basis {ðC},

[ðC , ðD] = f ACDðA, f ACD = gh(ΩA
CD − ΩA

DC) ≡ ghΩA[CD],
(250)

which generates a special Lie algebra. The structure fac-
tor f ACD is no longer a constant and it is characterized by
the hyper-spin gravigauge field ΩAB

C . Therefore, to explore
the geometric properties of the locally flat hyper-gravifield
spacetime Gh , one needs to investigate the dynamics of the
hyper-spin gravigauge field.

In the locally flat hyper-gravifield spacetime Gh , the
gauge interactions are characterized by both the hyper-spin
gravigauge field ΩAB

C and the hyper-spin homogauge field
AAB
C . The fundamental interaction of the hyper-spinor field

are described solely by the hyper-spin gauge field AAB
C ≡

ΩAB
C + AAB

C due to the fact that the gravity is treated on
the same footing as the other forces. It is natural to express
the basic action of hyperunified field theory in terms of the
hyper-spin gauge field AAB

C and the hyper-spin gravigauge
field ΩAB

C .

The basic action of hyperunified field theory Eq. (241) can
be rewritten into the following form:

IH ≡
∫

[δχ] L =
∫

[δχ]φDh−4
{

1

2
Ψ̄ Γ C (iðC + ghAC) Ψ

− 1

4
η̃CDC′D′ABA′B′FCDABFC′D′A′B′ + αEφ2

[
g2
h

(
ΩCABΩCAB − 1

2
Ω[CD]AΩ [CD]A − ΩCB

C ΩD
DB

)

− 2(Dh − 2)ΩDC
D ðC ln φ − (Dh − 1)(Dh − 2)ðC ln φð

C ln φ
]

+ 1

2
ð̄Cφð̄

Cφ − 1

4
WCDWCD − βE φ4 + 2ghαEφ2D̂CADC

D

}
,

(251)

with the definitions

FAB
CD = D̃CAAB

D −D̃DAAB
C +gh(AA

CEAEB
D − AA

DEAEB
C ),

D̃CAAB
D = ðCAAB

D − ghΩ
E
CDAAB

E ,

D̂CADC
D ≡ DCADC

D + (Dh − 2)SCADC
D

= ðCADC
D + ghΩ

C
CAADA

D + (Dh − 2)SCADC
D .

(252)

In obtaining the above expression, we have used the equality,

RAB
CD + D[CAAB

D] = ghΩ
AA′
[C ΩBB′

D] ηA′B′ + D[CAAB
D] ,

ΩAA′
[C ΩBB′

D] ≡ ΩAA′
C ΩBB′

D − ΩAA′
D ΩBB′

C . (253)

In the first equality, each term on the left-hand side is gauge
covariant, on the right-hand side, only the combination of
two terms becomes gauge covariant.

In the above basic action of hyperunified field theory, the
hyper-spin gauge field AAB

C ≡ ΩAB
C + AAB

C has the same
gauge transformation property as the hyper-spin gravigauge
field ΩAB

C , which characterizes a non-commutative geome-
try of the locally flat hyper-gravifield spacetime. In general,
the hyper-spin gauge symmetry and the general linear group
symmetry cannot be treated as a direct product group [72] as
they operate on two vector spacetimes in the hyper-gravifield
fiber bundle structure of biframe hyper-spacetime. It is help-
ful to adopt the concept of biframe spacetime and treat two
spacetimes in parallel to describe the gauge and gravitational
interactions in the light of a non-commutative geometry [73].

11 Basic properties of hyperunified field theory and
gravitational equations of Einstein-like and beyond
with fundamental mass scale

We have formulated the basic action of hyperunified field the-
ory in both the hidden gauge formalism and the hidden coor-
dinate formalism as shown in Eqs. (211) and (241), respec-
tively. Such formalisms enable us to demonstrate both the
gravity–geometry and the gauge–gravity correspondences
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and to corroborate the gravitational gauge–geometry dual-
ity. We shall further analyze the basic properties of hyper-
unified field theory and address the issue on the fundamental
mass scale in hyperunified field theory based on the con-
formal scaling gauge symmetry. We then derive the gauge
gravitational equation with the conserved current and present
the geometric gravitational equations of Einstein-like and
beyond that correspond to the symmetric and antisymmetric
hyper-stress energy-momentum tensors, respectively.

11.1 Basic properties of hyperunified field theory within
the framework of QFT

Relying on the basic action of hyperunified field theory
Eq. (251) which results from the gauge symmetry princi-
ple in the locally flat hyper-gravifield spacetime, we are able
to obtain the basic action of hyperunified field theory within
the framework of QFT by projecting Eq. (251) into the coor-
dinate hyper-spacetime by applying for the Goldstone-like
hyper-gravifield,

IH ≡
∫

[dx̂]χL =
∫

[dx̂]χφDh−4

{
χ̂MN 1

2
Ψ̄ ΓAχ A

M (i∂N + ghAN)Ψ

−1

4

(
χ̃MNM′N′
ABA′B′ FAB

MNFA′B′
M′N′ + χ̂MM′

χ̂NN′WMNWM′N′
)

+αEφ2 1

4
χ̃MNM′N′
AA′ GA

MNG
A′
M′N′ + 1

2
χ̂MNdMφdNφ − βEφ4

}

+2αE gh∂M(χφDh−2ANM
N ), (254)

where we have used the following conformal scaling gauge-
invariant definitions:

FAB
MN = ∂MAAB

N − ∂NAAB
M + gh(AA

MCACB
N − AA

NCACB
M ),

GA
MN = ∂̂Mχ A

N − ∂̂Nχ A
M ; ∂̂M ≡ ∂M + ∂M ln φ,

dMφ = (∂M − gwWM)φ; ANM
N = −χ̂M

A χ̂ N
B AAB

N . (255)

The tensor factors are defined as

χ̃MNM′N′
ABA′B′ ≡ χ̂ M

C χ̂ N
D χ̂ M′

C′ χ̂ N′
D′ η̃CDC

′D′
ABA′B′ ,

χ̃MNM′N′
AA′ ≡ χ̂ M

C χ̂ N
D χ̂ M′

C′ χ̂ N′
D′ η̃CDC

′D′
AA′ , (256)

where the constant tensor factor η̃CDC′D′
ABA′B′ is given by

η̃CDC′D′
ABA′B′ ≡ 1

4

{ [
ηCC

′
ηAA′(ηDD

′
ηBB′ − 2ηDB′ηD

′
B )

+η(C,C′↔D,D′)
]

+ η(A,A′↔B,B′)
}

+1

4
αW

{ [
(ηCA′ηC

′
A − 2ηCC

′
ηAA′)ηDB′ηD

′
B

+η(C,C′↔D,D′)
]

+ η(A,A′↔B,B′)
}

+1

2
βW

{ [
(ηAA′ηCC

′ − ηC
′

A ηCA′)ηDBηD
′

B′

+η(C,C′↔D,D′)
]

+ η(A,A′↔B,B′)
}

, (257)

which may be referred to by a general conformal invariance
tensor factor. The constant tensor η̃CDC

′D′
AA′ is defined as

η̃CDC
′D′

AA′ ≡ ηCC
′
ηDD

′
ηAA′ + ηCC

′
(ηDA′ηD

′
A − 2ηDAηD

′
A′ ) (258)

+ηDD
′
(ηCA′ηC

′
A − 2ηCAηC

′
A′ ), (259)

which may be called a general hyper-spin gauge invariance
tensor factor. This is because such a tensor factor ensures the
dynamic term GA

MNG
A′
M′N′ to be hyper-spin gauge invariant.

In such a basic action, the relevant basic fields include
the hyper-spinor field Ψ , the hyper-spin gauge field AAB

M ,
the gauge-type hyper-gravifield χ A

M , the conformal scaling
gauge field WM and the scaling scalar field φ. In general,
Eq. (254) has a joined bimaximal local symmetry,

GS = GL(Dh, R) �� SP(1, Dh−1) × GS(1), (260)

where the local symmetry GL(Dh , R) emerges as a hid-
den general linear group symmetry. Such a hidden symme-
try appears due to the fact that all the gauge field tensors
in the basic action Eq. (254) are antisymmetry tensors in
hyper-spacetime. It involves no explicit interactions associ-
ated with the Christoffel symbols or Levi–Civita connection
Γ P
MN, which is utilized to characterize the Riemannian geom-

etry. Such a property always allows us to choose the globally
flat Minkowski hyper-spacetime as a base spacetime, so that
the global Poincaré symmetry PO(1, Dh−1) becomes a basic
symmetry.

Essentially, the basic action of Eq. (254) is considered
to be governed by the joined bimaximal global and local
symmetry,

GS = PO(1, Dh−1) × S(1) �� SP(1, Dh−1) × SG(1) ,(261)

which enables us to establish hyperunified field theory within
the framework of QFT.

The conformal scaling gauge symmetry SG(1) allows us
to make a gauge fixing, so that the determinant of the hyper-
gravifield χ A

M can always be fixed to be unit by a specific

conformal scaling gauge transformation ξ
Dh
u (x̂) = χ(x̂), i.e.,

χ A
M (x̂) → χ

(u)A
M (x̂) = ξ−1

u (x̂)χ A
M (x̂),

χ(u) = det χ(u)A
M = 1, (262)

which is referred to by a unitary basis for convenience of
mention.

In such a unitary basis, we can rewritten the basic action
Eq. (254) as follows:
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I (u)
H ≡

∫
[dx̂] L(u) =

∫
[dx̂]φDh−4

×
{

χ̂MN 1

2
Ψ̄ ΓAχ A

M (i∂N + ghAN)Ψ

− 1

4

(
χ̃MNM′N′
ABA′B′ FAB

MNFA′B′
M′N′

+ χ̂MM′
χ̂NN′WMNWM′N′

)

+ αEφ2 1

4
χ̃MNM′N′
AA′ GA

MNG
A′
M′N′

+ 1

2
χ̂MNdMφdNφ − βEφ4

}

+ 2αEgh∂M(φDh−2ANM
N ), (263)

where we have omitted for simplicity the superscript (u) in
the unitary basis. The basic action of Eq. (263) describes
hyperunified field theory within the framework of QFT in
the globally flat Minkowski hyper-spacetime. In such a
framework, the dynamics of the gravitational interactions
is truly characterized by the gauge–gravity theory through
the conventional gauge interactions of the gauge-type hyper-
gravifield χ A

M in hyper-spacetime.
Note that the last term in the basic action, Eq. (263)

or Eq. (254), reflects the surface effect in Dh-dimensional
hyper-spacetime. In the trivial case with the boundary con-
ditions: φ(x̂) → 0 and/or ANM

N (x̂) → 0 as x̂ → ∞, the
surface term can be ignored.

11.2 Fundamental mass scale in hyperunified field theory
with scaling gauge fixing

The conformal scaling gauge symmetry in hyperunified field
theory enables us to set an appropriate gauge fixing, so that we
can always make a specific conformal scaling gauge transfor-
mation to transfer the scalar field into a constant. It motivates
us to further postulate that there should exist a fundamental
mass scale in a conformal scaling gauge-invariant hyperuni-
fied field theory.

Let us now consider a typical gauge fixing via a specific
conformal scaling gauge transformation ξe(x̂),

χ A
M (x̂) → χ

(e)A
M (x̂) = ξ−1

e (x̂)χ A
M (x̂), (264)

so that the scaling scalar field φ is transformed into a mass
scale,

φ(x̂) → φ(e)(x̂) = ξe(x̂)φ(x̂) = MS . (265)

We may refer to such a gauge fixing by anEinstein-type basis.
The mass scale MS plays a role as a fundamental mass scale
in hyperunified field theory.

In such an Einstein-type basis, the basic action Eq. (254)
can be expressed as

I (e)H ≡ MDh−4
S

∫
[dx̂]χL(e)

= MDh−4
S

∫
[dx̂]χ{χ̂MN 1

2
Ψ̄ ΓAχ A

M (i∂N + ghAN)Ψ

− 1

4

(
χ̃MNM′N′
ABA′B′ FAB

MNF
A′B′
M′N′ + χ̂MM′

χ̂NN′WMNWM′N′
)

+ αEM
2
S

1

4
χ̃MNM′N′
AA′ GA

MNG
A′
M′N′ − βEM

4
S

+ 1

2
g2
wM2

S χ̂
MNWMWN} + 2αE ghM

2
S∂M(χANM

N ),

(266)

with

GA
MN ≡ ∂Mχ A

N − ∂Nχ A
M . (267)

We have omitted for simplicity the superscript (e) for all
basic fields. The field strengths GA

MN (A = 1, . . . , Dh) of
the hyper-gravifield appear like the massless multi-Abelian
gauge field strengths, but unlike ordinary multi-Abelian
gauge fields, the dynamic term GA

MNG
A′
M′N′ of the hyper-

gravifield is associated with the general hyper-spin gauge-
invariance tensor factor χ̃MNM′N′

AA′ , which concerns a highly
nonlinear interaction of the hyper-gravifield. In such a basis,
the conformal scaling gauge field WM becomes gravitation-
ally massive.

11.3 Gauge gravitational equations with conserved
hyper-gravifield current and hyper-stress
energy-momentum tensor in hyperunified field theory

The gravitational gauge–geometry duality provides a useful
tool to investigate the gravitational interactions in hyperuni-
fied field theory within the framework of QFT. Let us revisit
the equation of motion for the gauge-type hyper-gravifield
χ A
M under the general conformal scaling invariance condi-

tion and the essential gauge massless condition. From the
basic actions in both the Einstein-type basis and the gen-
eral basis as shown in Eqs. (266) and (254), respectively, we
obtain the following gravitational equations of motion for the
gauge-type hyper-gravifield χ A

M in two cases:

∂NGMN
A = J M

A , (268)

∂̄NG MN
A = J M

A , (269)

with ∂̄N = ∂N − ∂N ln φ. We have introduced the definitions

GMN
A ≡ αEM

2
Sχχ̃

[MN]M′N′
AA′ GA′

M′N′ , (270)

GMN
A ≡ αEφDh−2χχ̃

[MN]M′N′
AA′ GA′

M′N′ , (271)

for the bicovariant tensors, and

J M
A = −χχ̂ M

A Le + χχ̂ P
A

[
1

2
χ̂ M
A′′ Ψ̄ Γ A′′

iDPΨ − WPQWMQ

−χ̃
[MQ]M′N′
A′′B A′B′ FA′′B

PQ FA′B′
M′N′ + αEM

2
S χ̃

[MQ]M′N′
A′′A′ GA′′

PQG
A′
M′N′

+g2
wM2

SWPW
M

]
, (272)
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J M
A = −χχ̂ M

A L + φDh−4χχ̂ P
A

[
1

2
χ̂ M
A′′ Ψ̄ Γ A′′

iDPΨ − WPQWMQ

−χ̃
[MQ]M′N′
A′′B A′B′ FA′′B

PQ FA′B′
M′N′ + αEφ2 χ̃

[MQ]M′N′
A′′A′ GA′′

PQG
A′
M′N′

+ dPφdMφ
]
, (273)

for the bicovariant vector currents. They may be called the
hyper-gravifield tensors and the hyper-gravifield currents,
respectively.

We shall refer to the gravitational equations presented in
Eqs. (268) and (269) with the definitions Eqs. (270)–(273)
by the gauge gravitational equations. For simplicity, we have
omitted the superscript (e) and adopted the same notations
for the hyper-gravifield χ A

M in two cases, but we shall keep
in mind for their distinguishable features. The antisymmetric
tensor factors are defined from Eq. (256) as follows:

χ̃
[MN]M′N′
AA′ ≡ 1

2

[
χ̃MNM′N′
AA′ − χ̃NMM′N′

AA′
]
,

χ̃
[MN]M′N′
ABA′B′ ≡ 1

2

[
χ̃MNM′N′
ABA′B′ − χ̃NMM′N′

ABA′B′
]
, (274)

with tensor factors χ̃MNM′N′
ABA′B′ and χ̃MNM′N′

AA′ defined in
Eq. (256).

The antisymmetry property of the hyper-gravifield tensors
GMN

A = −G NM
A andGMN

A = −G NM
A leads to the conserved

hyper-gravifield currents,

∂MJM
A = 0 , (275)

∂̄MJ M
A = 0 , (276)

which implies that the hyper-gravifield does behave as a
gauge field in the basic action of hyperunified field theory
expressed within the framework of QFT.

The total hyper-stress energy-momentum tensor T N
M is

related to the conserved hyper-gravifield currents as follows:

T N
M = J N

A χ A
M = MDh−4

S J N
A χ A

M = MDh−4
S T (e)N

M , (277)

with the explicit forms

T (e)N
M ≡ J N

A χ A
M = −η N

MχL(e) + χ

[
1

2
χ̂ N
A Ψ̄ Γ AiDMΨ

−χ̃
[NQ]M′N′
AB A′B′ FAB

MQFA′B′
M′N′

+αEM
2
S χ̃

[NQ]M′N′
AA′ GA

MQG
A′
M′N′ − WMQWNQ

+g2
wM2

SWMWN
]

, (278)

T N
M = −η N

MχL + φDh−4χ

[
1

2
χ̂ N
A Ψ̄ Γ AiDMΨ

−χ̃
[NQ]M′N′
AB A′B′ FAB

MQFA′B′
M′N′

+αEφ2 χ̃
[NQ]M′N′
AA′ GA

MQG
A′
M′N′ − WMQWNQ

+dMφdNφ

]
, (279)

where T N
M is conformal scaling gauge invariant.

The conservation of the total hyper-stress energy-mom-
entum tensor ∂NT N

M = 0 together with the conserved hyper-
gravifield currents given in Eq. (275) leads to the relations,

Γ P
MNT

(e)M
P = ΩA

MBJ
M
A χ B

N , (280)

Γ P
MNT M

P = (ΩA
MB − ∂M ln φηAB)J M

A χ B
N , (281)

where the left-hand side of the equations concerns the geo-
metric quantities and the right-hand side involves the quan-
tities of gauge field theory.

In terms of the conserved hyper-stress energy-momentum
tensor, the gauge gravitational equations of motion in two
cases can be rewritten as follows:

∂PGNP
M − GN

M = T (e)N
M ,

∂PGNP
M − GN

M = T N
M , (282)

with the definitions

GNP
M ≡ χ A

MGNP
A ; GN

M ≡ GNP
A ∂Pχ A

M = χ̂
Q
A ∂Pχ A

MGNP
Q ,

GN
M ≡ χ A

MGNP
A ; GN

M ≡ GNP
A ∂̂Pχ A

M = χ̂
Q
A ∂̂Pχ A

MGNP
Q ,

(283)

with ∂̂Pχ A
M = (∂P + ∂P ln φ)χ A

M .

11.4 Geometric gravitational equations of Einstein-like
and beyond in hyper-spacetime

To obtain the geometric gravitational equation in analogy
to the Einstein equation in the general theory of relativity
in four dimensional spacetime, we shall apply an identity
based on the gravitational gauge–geometry duality in hyper-
spacetime,

1

4
χφDh−2χ̃MNM′N′

AA′ GA
MNG

A′
M′N′ − 2gh∂M(χφDh−2AMN

N )

= χφDh−2(R − (Dh − 1)(Dh − 2)∂M ln φ∂M ln φ)

−2gh∂M(χφDh−2AMN
N ), (284)

which enables us to rewrite the basic action of Eq. (254)
into an equivalent basic action in which the dynamics of the
gravitational interactions is described by the conformal scal-
ing gauge-invariant Einstein–Hilbert-type action in hyper-
spacetime,

IH ≡
∫

χL =
∫

χφDh−4{χ̂MN 1

2
Ψ̄ ΓAχ A

M (i∂N + ghAN)Ψ

−1

4
(χ̃MNM′N′

ABA′B′ FAB
MNF

A′B′
M′N′ + χ̂MM′

χ̂NN′WMNWM′N′)

+αE ( φ2R − (Dh − 1)(Dh − 2)χ̂MN∂Mφ∂Nφ )

+1

2
χ̂MNdMφdNφ − βE φ4 } + 2αE gh∂M(χφDh−2ANM

N ).

(285)
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In the Einstein-type basis, such a basic action gets the fol-
lowing form:

I (e)
H ≡ MDh−4

S

∫
[dx̂]χL(e)

= MDh−4
S

∫
[dx̂]χ{χ̂MN 1

2
Ψ̄ ΓAχ A

M (i∂N + ghAN)Ψ

−1

4
χ̃MNM′N′
ABA′B′ FAB

MNFA′B′
M′N′ + αEM

2
SR − βEM

4
S

−1

4
χ̂MM′

χ̂NN′WMNWM′N′ + 1

2
g2
wM2

S χ̂
MNWMWN},

(286)

where we have ignored the surface term.
From the above action, we are able to derive the geomet-

ric gravitational equation of the hyper-gravifield in terms of
the Ricci curvature tensor RMN and the conserved hyper-
gravifield current J A

M ,

αEM
2
SG M

A − 2αEM
2
SχRM′N′ χ̂ M′

A χ̂N′M = JM
A , (287)

with

G M
A ≡ χχ̂ P

A χ̃
[MQ]M′N′
A′′A′ GA′′

PQG
A′
M′N′ . (288)

When projecting the bicovariant vector tensors into the
hyper-spacetime tensors, we arrive at two geometric gravi-
tational equations corresponding to the symmetric and anti-
symmetric parts,

G(e)
MN + T(e)

(MN) = 0, (289)

T(e)
[MN] = 0 , (290)

with

G(e)
MN = 2αEM

2
S(RMN − 1

2
χMNR) + χMNβEM

4
S (291)

and

T(e)
(MN) = 1

4

(
Ψ̄ χ A

N ΓAiDMΨ + Ψ̄ χ A
M ΓAiDNΨ

)

−1

2
χMNΨ̄ χ̂ P

A Γ AiDPΨ

−χ̃
[PQ]M′N′
ABA′B′

[
1

2

(
FAB
MQχNP + FAB

NQχMP

)

−1

4
χMNFAB

PQ

]
FA′B′
M′N′

−
(
WMPW P

N − 1

4
χMNWPQWPQ

)

+g2
wM2

S

(
WMWN − χMNWPW

P
)

, (292)

T(e)
[MN] = 1

4
(Ψ̄ χ A

N ΓAiDMΨ − Ψ̄ χ A
M ΓAiDNΨ )

−χ̃
[PQ]M′N′
ABA′B′

1

2
(FAB

MQχNP − FAB
NQχMP )FA′B′

M′N′ ,

(293)

where G(e)
MN is the Einstein-type gravitational curvature

tensor with the cosmological constant in hyper-spacetime,
T(e)

(MN) is the Einstein-type symmetric hyper-stress energy-

momentum tensor and T(e)
[MN] is the antisymmetric hyper-

stress energy-momentum tensor in hyper-spacetime.
The geometric gravitational equation (289) with the sym-

metric tensors in hyper-spacetime is analogous to Ein-
stein equation of the general theory of relativity in four-
dimensional spacetime, while the geometric gravitational
equation (290) with the antisymmetric tensor represents a
new feature of the gravitational interactions in hyperunified
field theory.

12 Conclusions and remarks

We have performed a general analysis and a detailed con-
struction of hyperunified field theory. The postulates of gauge
invariance and coordinate independence are proposed to be
more general and fundamental than the postulate of general
covariance of coordinates to describe the laws of nature. All
the spin-like charges of elementary particles have been con-
sidered as the essential quantum numbers of the basic build-
ing blocks of nature to determine the hyper-spin symmetry.
All the elementary particles have been merged into a single
hyper-spinor field in the spinor representation of the hyper-
spin symmetry, and all the basic forces have been unified
into a fundamental interaction governed by the hyper-spin
gauge symmetry SP(1, Dh − 1). The hyper-spin gauge field
AAB

M associated with the bicovariant vector hyper-gravifield
χ A
M is taken as the basic force field to realize the hyper-

spin gauge symmetry SP(1, Dh − 1). The hyper-spin charge
of the hyper-spinor field is conjectured to relate coherently
with the dimension of hyper-spacetime. The hyper-gravifield
fiber bundle structure of biframe hyper-spacetime has been
shown to be natural and crucial in the construction of hype-
runified field theory. To unify all the elementary particles
and basic forces in the standard model, we have built the
general action of hyperunified field theory with a mini-
mal dimension Dh = 19 of hyper-spacetime, which pos-
sesses the joined bimaximal global and local symmetry GS

= PO(1,18) × S(1)��SP(1,18) × SG(1).
The gauge symmetry in hyperunified field theory has been

shown to be characterized by the gauge-type Goldstone-like
hyper-gravifield χ A

M , which reveals the gravitational origin
of gauge symmetry. Such a Goldstone-like hyper-gravifield
allows us to transmute between the coordinate and non-
coordinate systems of hyper-spacetime and to express hype-
runified field theory in various equivalent formalisms, which
enables us to demonstrate explicitly both the gauge–gravity
and the gravity–geometry correspondences and to corrobo-
rate the gravitational gauge–geometry duality.
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In the hidden coordinate formalism of hyperunified field
theory, it has been shown that all the basic forces between
elementary particles are described by the fundamental gauge
interaction, which is governed by the hyper-spin gauge sym-
metry SP(1, Dh − 1) of the single hyper-spinor field Ψ and
characterized by the hyper-spin gauge field AAB

C = ΩAB
C +

AAB
C . The nonhomogeneous hyper-spin gauge transforma-

tions are attributed to the hyper-spin gravigauge field ΩAB
C ,

which is determined by the Goldstone-like hyper-gravifield
χ A
M . The dynamics of the hyper-gravifield χ A

M is described
by the field strength R AB

CD characterized by the hyper-spin
gravigauge field ΩAB

C , which reveals the gauge–gravity cor-
respondence in the locally flat hyper-gravifield spacetimeGh .
Such a non-coordinate spacetime Gh spanned by the hyper-
gravifield basis {χA} reflects a non-commutative geometry,
which is viewed as a dynamically emerged hyper-spacetime
characterized by the hyper-spin gravigauge field ΩAB

C as
exhibited in Eq. (250).

In the hidden gauge formalism of hyperunified field
theory with gauge fixing to the unitary gauge, the basic
gauge fields consist of the symmetric gauge-type hyper-
gravifield χMA(x̂) = χAM(x̂) (or the nonlinearly real-
ized symmetric Goldstone-like hyper-gravifield GMA(x̂) =
GAM(x̂)) and the antisymmetric hyper-spacetime homo-
gauge fieldAPQ

M (x̂). So the gravitational interactions for both
hyper-spinor and boson fields are described by the gauge
fixing symmetric Goldstone-like hyper-gravifield χMA(x̂).
The geometry of hyper-spacetime is characterized by the
hyper-gravimetric field χMN(x̂), which is determined by
the symmetric Goldstone-like hyper-gravifield χMA(x̂), i.e.,
χMN(x̂) = (χMA(x̂))2. The dynamics of gravitational inter-
actions is described by the conformal scaling gauge-invariant
Einstein–Hillbert-type action, which is characterized by the
hyper-spacetime gravigauge field Γ P

MN(x̂) as the Christoffel
symbols. The general conformal scaling invariance condi-
tion as shown in Eq. (201) has been found to eliminate all the
terms in quadratic Riemann and Ricci tensors, so that there
exists no unitarity problem involving at a higher derivative
gravity. Such a formalism affirms the gravity–geometry cor-
respondence in hyper-spacetime.

From the hyper-gravifield fiber bundle structure of biframe
hyper-spacetime, the gravitational interaction has been for-
mulated as the gauge interaction of the hyper-gravifield χ A

M
based on the general hyper-spin gauge invariance with the
general gauge massless condition shown in Eq. (205). Such
a gauge gravitational interaction has been demonstrated to
be dual to the geometrical gravitational interaction described
solely by the conformal scaling gauge-invariant Einstein–
Hilbert-type action in hyper-spacetime, which corroborates
explicitly the gravitational gauge–geometry duality.

We have focused in this paper mainly on the building of
hyperunified field theory from the bottom-up approach. The
basic properties of hyperunified field theory and the issue

on the fundamental mass scale have been discussed within
the framework of QFT, which allows us to derive the gauge
gravitational equation with the conserved hyper-gravifield
current and deduce the geometric gravitational equations of
Einstein-like and beyond corresponding to the symmetric
and antisymmetric hyper-stress energy-momentum tensors
in hyper-spacetime. Such a hyperunified field theory is con-
jectured to hold at a fundamental mass scale MS based on
the conformal scaling gauge symmetry in hyper-spacetime.

Once a hyperunified field theory is established, a more
sophisticated task is to figure out a realistic model to describe
the real world from the top-down approach. It is inevitable to
carry out the basic issues, such as: how to realize an appropri-
ate symmetry breaking mechanism and a reliable dimension
reduction to reach the observable four-dimensional space-
time of the real world; how to reproduce the standard model
with three families of quarks and leptons and explain the
observed matter-antimatter asymmetry and the dark matter
component in the present universe; how to reveal a poten-
tial inflationary period of early universe and understand the
observed accelerating expansion of present universe with the
dominant dark energy component. Making those issues is
beyond the scope of the present paper. Nevertheless, it is
clear that, unlike the usual unified theories and the extra-
dimensional models, either the symmetry breaking or the
dimension reduction in hyperunified field theory should be
no longer independent and isolated, they must be correlated
and associated with each other as shown in Ref. [70] for a geo-
metric symmetry breaking mechanism. This is because the
dimensions of hyper-spacetime are coherently related with
the basic quantum numbers of the hyper-spinor field, which
determines the basic symmetry of hyperunified field theory.

We hope that the present hyperunified field theory has
provided us a new insight for the unity of all the basic
forces and elementary particles. To test whether such a the-
ory is the true choice of nature, there remain more theoretical
work and experimental efforts to be made exploring the sub-
ject.

Acknowledgements The author is grateful to many colleagues for use-
ful discussion and conversation during the International Symposium on
Gravitational Waves, May 25-29, 2017 at ICTP-AP/UCAS. This work
was supported in part by the National Science Foundation of China
(NSFC) under Grant Nos. 11690022 and 11475237, and by the Strate-
gic Priority Research Program of the Chinese Academy of Sciences
(CAS), Grant No. XDB23030100, Key Research program QYZDY-
SSW-SYS007, and by the CAS Center for Excellence in Particle Physics
(CCEPP).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


28 Page 36 of 36 Eur. Phys. J. C (2018) 78 :28

References

1. A. Einstein, Sitz. Konigl. Preuss. Akad. Wiss. 25, 844 (1915)
2. A. Einstein, Ann. Phys. 17, 891 (1905)
3. A. Einstein, Ann. Phys. (ser. 4) 49, 769 (1916)
4. T. Kaluza, Sitz. Preuss. Akad. Wiss. (Math. Phys.) 966 (1921)
5. O. Klein, Z. Phys. A 37, 895 (1926)
6. H. Weyl, Sitz. Konigl. Preuss. Akad Wiss. 26, 465 (1918)
7. P.A. Dirac, Proc. R. Soc. A Math. Phys. Eng. Sci. 117(778), 610

(1928)
8. C.N. Yang, R.L. Mills, Phys. Rev. 96, 191 (1954)
9. S. Tomonaga, Prog. Theor. Phys. 1, 27 (1946)

10. J. Schwinger, Phys. Rev. 73, 416 (1948)
11. J. Schwinger, Phys. Rev. 74, 1439 (1948)
12. R.P. Feynman, Phys. Rev. 76, 769 (1949)
13. R.P. Feynman, Phys. Rev. 76, 749 (1949)
14. R.P. Feynman, Phys. Rev. 80, 440 (1950)
15. F. Dyson, Phys. Rev. 75, 486502 (1949)
16. F. Dyson, Phys. Rev. 75, 1736 (1949)
17. S.L. Glashow, Nucl. Phys. 22, 579 (1961)
18. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967)
19. A. Salam, in Proceedings of the Eight Nobel Symposium,

Stochholm, Sweden, 1968, ed. by N. Svartholm (Almqvist and
Wikell, Stockholm, 1968)

20. G. ’t Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972)
21. P. Higgs, Phys. Rev. Lett. 13(16), 508 (1964)
22. F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964)
23. D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973)
24. H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973)
25. M. Gell-Mann, Phys. Lett. 8, 214 (1964)
26. G. Zweig, CERN Report No. 8182/TH.401 (1964)
27. M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973)
28. T.D. Lee, Phys. Rev. D 8, 1226 (1973)
29. T.D. Lee, Phys. Rep. 9, 143 (1974)
30. Y.L. Wu, L. Wolfenstein, Phys. Rev. Lett. 73, 1762 (1994)
31. J. Pati, A. Salam, Phys. Rev. D 10, 275 (1974)
32. H. Georgi, S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974)
33. H. Georgi, in Particles and Fields 1974, ed. by C. Carlson (Amer.

Inst. of Physics, New York, 1975)
34. H. Fritzsch, P. Minkowski, Ann. Phys. 93, 193 (1975)
35. K.C. Chou, Y.L. Wu, Sci. China A41, 324 (1998)
36. R. Percacci, Phys. Lett. B 144, 37 (1984)
37. R. Percacci, Nucl. Phys. B 353, 271 (1991)
38. F. Nesti, R. Percacci, Phys. Rev. D 81, 025010 (2010)
39. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)
40. Y.B. Dai, Y.L. Wu, Eur. Phys. J. C 39, S1 (2005)

41. C. Lovelace, Phys. Lett. B 34, 500 (1971)
42. P. Ramond, Phys. Rev. D 3, 2415 (1971)
43. A. Neveu, J.H. Schwarz, Nucl. Phys. B 31, 86 (1971)
44. M.B. Green, J.H. Schwarz, Phys. Lett. B 109, 444 (1982)
45. M.B. Green, J.H. Schwarz, Phys. Lett. B 149, 117 (1984)
46. D.J. Gross, J.A. Harvey, E. Martinec, R. Rohm, Phys. Rev. Lett.

54, 502 (1985)
47. E. Witten, Nucl. Phys. B. 443, 85 (1995)
48. P. Candelas, G. Horowitz, A. Strominger, E. Witten, Nucl. Phys. B

258, 46 (1985)
49. S.T. Yau, Proc. Natl. Acad. Sci. USA 74, 1798 (1977)
50. S.T. Yau, Commun. Pure Appl. Math. 31, 339 (1978)
51. D.J. Gross, V. Periwal, Phys. Rev. Lett. 60, 2105 (1988)
52. J. Polchinski, Phys. Rev. D 50, R6041 (1995)
53. T. Banks, W. Fischler, S.H. Shenker, L. Susskind, Phys. Rev. D 55,

5112 (1997)
54. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)
55. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105

(1998)
56. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998)
57. M. Douglas, JHEP 0305, 46 (2003)
58. M. Douglas, JHEP 0401, 060 (2004)
59. R. Utiyama, Phys. Rev. 101, 1597 (1956)
60. T.W.B. Kibble, J. Math. Phys. (N.Y.) 2, 212 (1961)
61. D.W. Sciama, Recent Developments in General Relativity (Perga-

mon, Oxford, 1962), p. 415
62. D.W. Sciama, Rev. Mod. Phys. 36, 463 (1964)
63. H.Y. Guo, Y.S. Wu, Y.Z. Zhang, Sci. Bull. 2, 72 (1973) (in Chinese)
64. C.N. Yang, Phys. Rev. Lett. 33, 445 (1974)
65. F.W. Hehl, P. von der Heyde, G.D. Kerlick, J.M. Nester, Rev. Mod.

Phys. 48, 393 (1976)
66. D. Ivanenko, G. Sardanashvily, Phys. Rep. 94, 1 (1983)
67. F. Hehl, J. McCrea, E. Mielke, Y. Neeman, Phys. Rep. 258, 1 (1995)
68. Y.L. Wu, Quantum field theory of gravity with spin and scaling

gauge invariance and spacetime dynamics with quantum inflation.
Phys. Rev. D 93, 024012 (2016)

69. Y.L. Wu, Unified field theory of basic forces and elementary par-
ticles with gravitational origin of gauge symmetry. Sci. Bull. 62,
1109 (2017). arXiv:1705.06365

70. Y.L. Wu, Maximal symmetry and mass generation of Dirac
fermions and gravitational gauge field theory in six-dimensional
spacetime. Chin. Phys. C 41, 103106 (2017)

71. E. Noether, N.D. Knig, G.D. Wiss, Z. Gttingen, Math. Phys. 235
(1918)

72. P.M. Ho, Phys. Rev. D 93, 044062 (2016)
73. H.F. Yu, B.Q. Ma, Mod. Phys. Lett. A 32, 1750030 (2017)

123

http://arxiv.org/abs/1705.06365

	Hyperunified field theory and gravitational gauge–geometry duality
	Abstract 
	1 Introduction
	2 Unification of elementary particles and maximal symmetry in hyper-spacetime
	2.1 Unity of hyper-spin charges for each family of quarks and leptons
	2.2 Discrete symmetries (CPT) and hyper-spinor structure in hyper-spacetime 
	2.3 Family and mirror hyper-spin charges with additional dimensions 
	2.4 Unification of all quarks and leptons as elementary particles in hyper-spacetime with minimal dimension and maximal symmetry 

	3 Unification of basic forces with hyper-spin gauge symmetry and dynamics of the hyper-spinor field
	3.1 Unification of basic forces with hyper-spin gauge symmetry
	3.2  Equation of motion of the hyper-spinor field in a general gravitational relativistic quantum theory with a conformal scaling symmetry

	4  Fiber bundle structure of hyper-spacetime and hyperunified field theory in hyper-gravifield spacetime
	4.1  Hyper-gravifield fiber bundle structure
	4.2 Hyperunified field theory with postulates of gauge invariance and coordinate independence

	5 Hyperunified field theory within the framework of QFT and dynamics of basic fields with conserved currents 
	5.1 Hyperunified field theory within the framework of QFT
	5.2 Equations of motion of basic fields in hyper-spacetime
	5.3  Conserved currents in hyperunified field theory

	6 Conservation laws and dynamics of hyper-gravifield in hyperunified field theory
	6.1 Conservation law of translational invariance in hyperunified field theory 
	6.2  Conservation laws of global Lorentz and conformal scaling invariances
	6.3 Dynamics of hyper-gravifield with conserved hyper-stress energy-momentum tensor

	7 Gravitational origin of gauge symmetry and hyperunified field theory in hidden gauge formalism with emergent general linear group symmetry GL(Dh, R)
	7.1 Hyper-spin gravigauge field and gravitational origin of gauge symmetry
	7.2  Hyper-spacetime gauge field and Goldstone-like hyper-gravifield 
	7.3  Field strength of hyper-spacetime gauge field in hidden gauge formalism
	7.4 General covariance and Riemannian geometry of hyper-spacetime
	7.5 Hyperunified field theory in hidden gauge formalism and emergent general linear group symmetry GL(Dh, R) 

	8 Hyperunified field theory with general conformal scaling gauge invariance and Einstein–Hilbert-type action with essential gauge massless condition and gravity–geometry correspondence
	8.1  Hyperunified field theory with general conformal scaling gauge invariance and essential gauge massless condition
	8.2 Einstein–Hilbert-type action with gravity–geometry correspondence in hyper-spacetime and symmetric Goldstone-like hyper-gravifield with unitary gauge

	9 Hyperunified field theory in hidden coordinate formalism and gauge–gravity correspondence 
	9.1 Hyper-spin gauge field and field strength in a hidden coordinate formalism
	9.2  Riemann-like and Ricci-like tensors in locally flat hyper-gravifield spacetime and symmetry properties of field strengths 
	9.3 Hyperunified field theory in locally flat hyper-gravifield spacetime and gauge–gravity correspondence

	10 Gravitational gauge–geometry duality and hyperunified field theory with non-commutative geometry in locally flat hyper-gravifield spacetime 
	10.1 Gravitational gauge–geometry duality with flowing unitary gauge
	10.2 Hyperunified field theory with non-commutative geometry in locally flat hyper-gravifield spacetime 

	11 Basic properties of hyperunified field theory and gravitational equations of Einstein-like and beyond with fundamental mass scale 
	11.1 Basic properties of hyperunified field theory within the framework of QFT 
	11.2 Fundamental mass scale in hyperunified field theory with scaling gauge fixing
	11.3  Gauge gravitational equations with conserved hyper-gravifield current and hyper-stress energy-momentum tensor in hyperunified field theory
	11.4  Geometric gravitational equations of Einstein-like and beyond in hyper-spacetime 

	12 Conclusions and remarks
	Acknowledgements
	References




