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Abstract We analyze the Chern–Simons-like term gener-
ation in the CPT-odd Lorentz-violating Yang–Mills theory
interacting with fermions. Moreover, we study the anoma-
lies of this model as well as its quantum stability. The whole
analysis is performed within the algebraic renormalization
theory, which is independent of the renormalization scheme.
In addition, all results are valid to all orders in perturbation
theory. We find that the Chern–Simons-like term is not gen-
erated by radiative corrections, just like its Abelian version.
Additionally, the model is also free of gauge anomalies and
quantum stable.

1 Introduction

Many theoretical results have been obtained with respect
to the renormalization aspects and radiative inductions of
the minimal sector of the Standard Model Extension [1–7].
For instance, the renormalizability of Lorentz-violating QED
was verified at one-loop order in [8]. This result was general-
ized for a curved manifold in [9]. Moreover, gauge anomalies
aspects and the all order renormalizability of this model also
were verified [10–14]. In Refs. [12–14], the algebraic renor-
malization approach [15] was employed. The novelty intro-
duced in Refs. [13,14] is the Symanzik method [16] and the
Becchi–Rouet–Stora–Tyutin (BRST) quantization [17,18].

The issue of radiative induction of the Chern–Simons-
like term in the Lorentz-violating QED was object of intense
debate. For instance, by a non-perturbative analysis of Feyn-
man integrals it is argued that the Chern–Simons-like term is
generated by radiative corrections and is determined [3,19–
22]. It is worth mentioning that in [3], when the perturbative
approach is employed, a Chern–Simons-like term is gen-
erated but it is ambiguous (if the Pauli–Villars regulariza-
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tion [23] is employed, there is no generation of the Chern–
Simons-like term). In Ref. [24], making use of the differential
regularization [25], ambiguities also show up and the authors
argue that such an ambiguity should be fixed by some phys-
ical condition or some fundamental principle. In [26], using
the proper-time Schwinger method [27], the same result is
obtained as found through a covariant derivative expansion
[28], but these results differ from results found in other reg-
ularization schemes. It is worth to mention that in [28] no
regularization scheme is used; the point raised by the authors
is that the use of an invariant regularization method for finite
integrals (in order to keep the gauge symmetry of the theory)
will avoid all anomalous terms. For instance, in Ref. [29] it
is claimed that if the gauge symmetry is not used (transver-
sality of the gauge field propagator in the Landau gauge), the
ambiguity of the Chern–Simons-like term persists. In con-
trast, Ref. [30] claims that the gauge symmetry does not fix
the ambiguity. Nevertheless, in Refs. [31,32], by Ward iden-
tity arguments, it is shown that the Chern–Simons-like term
is not generated by radiative corrections, perturbatively or
not.

The study of the possible generation of the Chern–Simons-
like term under various different regularization schemes is
a source of confusion, leading to different answers. Per-
haps, the final answer to the question whether the Chern–
Simons term is generated by radiative corrections or not
could arise from the algebraic renormalization point of
view, a renormalization independent method. In fact, the
authors in Refs. [13,14,33], using such a method, have shown
that a Chern–Simons-like term is not generated in Lorentz-
violating QED.

In the case of non-Abelian Lorentz-violating models [34],
the literature is quite poor. To the best of our knowledge, the
problem of the radiative generation of the Chern–Simons-
like term was only addressed in Ref. [35], where the authors
show that such a term is regularization scheme dependent
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for zero and finite temperatures. Thus, it is opportune to
analyze this issue from another point of view. Besides, to
know if the Chern–Simons-like term is generated or not is
very important for new contributions to the mass terms in the
Lorentz-violating Yang–Mills theory [36]. In fact, as pointed
out in Ref. [36], in contrast to the Abelian theory [14], mass
terms are generated from the bosonic CPT-odd sector. Such
mass terms will modify drastically the gauge field propaga-
tor [37]. This could indicate that the presence of a Lorentz-
violating sector in the Yang–Mills theory could affect the
Gribov problem [38] in this theory [39]. Thus, the genera-
tion of a Chern–Simons-like term from a fermionic CPT-odd
sector would affect the physical spectrum of the model more
than was pointed out in Ref. [37].

For these reasons, in the present work we study the Chern–
Simons-like term radiative generation under the algebraic
renormalization theory. As said before, one of the main
advantages of this technique is its regularization scheme
independence [15,40–44]. Following the prescriptions devel-
oped in [13,14,36], we are able to control all symmetry viola-
tions through the Symanzik method [16] of external sources
and BRST quantization1 [15,17,18]. Within this approach
we are able not only to show that the Chern–Simons term is
not radiatively generated but that the model is free of gauge
anomalies and that it is stable under quantum corrections.
Moreover, the results here presented are valid to all orders in
perturbation theory.

We present this work as follows. In Sect. 2 the Lorentz-
violating Yang–Mills theory with interacting fermions is pre-
sented. Section 3 treats the BRST quantization of the model
in addition with the Symanzik procedure. In Sect. 4, we study
the existence of gauge anomalies in the model by extending
the Ward identities to the quantum level. Section 5 is devoted
to the study of the quantum stability of the model (at this point
that we show that the Chern–Simons-like term is not gener-
ated by radiative corrections). In Sect. 6 we present our final
considerations.

2 Lorentz-violating Yang–Mills theory

As said before, we shall consider the Yang–Mills theory, for
the SU (N ) symmetry group, including a term with Dirac
fermions. The gauge fields are algebra-valued Aμ = Aa

μT
a ,

where T a are the generators of the SU (N ) algebra, cho-
sen to be anti-Hermitian and have vanishing trace and nor-
malized as Tr(T aT b) = δab. The Lie algebra is given by
[T a, T b] = f abcT c, where f abc are the skew-symmetric
structure constants. The Latin indices run as {a, b, c, . . .} ∈
{1, 2, . . . , N 2 − 1}. Furthermore, we add to this theory a

1 For further applications of the Symanzik method together with the
BRST quantization we refer to Refs. [45–50].

Lorentz-violating sector following the mSME criteria. How-
ever, to avoid a cumbersome analysis, we consider here just a
CPT-odd sector, both for the bosonic and the fermionic cases.

With the prescription aforementioned, the model is
described by the following action:

�LV = �YM + �D + �LV B + �LV F , (2.1)

where

�YM = −1

4

∫
d4x Fa

μνF
aμν (2.2)

is the Yang–Mills action and

�D =
∫

d4x ψ(iγ μDμ − m)ψ (2.3)

is the Dirac action.2 The field strength is defined as Fa
μν ≡

∂μAa
ν − ∂ν Aa

μ + g f abc Ab
μA

c
ν . The covariant derivative in the

fundamental representation is defined as Dμ ≡ ∂μ+gAa
μT

a .

ψ is the Dirac field, and its Dirac adjoint is denoted by ψ =
ψ†γ 0. The parameter m stands for the electron mass and g
for the Yang–Mills coupling parameter. The γ μ matrices are
in the Dirac representation. The bosonic Lorentz-violating
CPT-odd sector is described by the following action:

�LV B =
∫

d4x εμναβvμ

×
(
Aaν∂αAaβ + g

3
f abc Aaν AbαAcβ

)
, (2.4)

and, for our proposes, we consider just one Lorentz-violating
term of odd CPT in the fermionic sector,3 namely

�LV F = −
∫

d4x κμψγ5γμψ. (2.5)

The violation of Lorentz symmetry in the bosonic and
fermionic sectors is characterized by the constant vectors vμ

and κμ, respectively. Both violating parameters carry mass
dimension 1.

3 The BRST quantization and the Symanzik approach

3.1 BRST gauge fixing

In order to quantize a gauge theory to obtain a consistent
gauge field propagator [37] a gauge fixing is needed. For sim-
plicity, we choose the Landau gauge condition, i.e., ∂μAaμ =
0. The BRST quantization method will be employed. There-
fore, we introduce the Lautrup–Nakanishi field ba and the

2 To avoid cumbersome notation, we have omitted here the internal
index of the fundamental representation of SU (N ), i.e., ψ ≡ ψ i and
T a ≡ (T a)i j .
3 This is the fermionic term that could give rise to the Chern–Simons-
like term, i.e., at one-loop order we might have vμ = ζκμ, where ζ is
a parameter depending on the coupling parameter.
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Table 1 Quantum numbers of the fields and background tensors

Quantities A b c c ψ ψ v b

UV dimension 1 2 0 2 3/2 3/2 1 1

Ghost number 0 0 1 −1 0 0 0 0

Spinor number 0 0 0 0 1 −1 0 0

Statistics 0 0 1 −1 1 −1 0 0

Faddeev–Popov ghost and anti-ghost fields, namely, ca and
ca , respectively. The BRST transformations of the fields are

s Aa
μ = −Dab

μ cb,

sca = g

2
f abccbcc,

sψ = gcaT aψ,

sψ = gψcaT a,

sca = ba,

sba = 0,

(3.1)

where s is the nilpotent BRST operator and Dab
μ ≡ δab∂μ−

g f abc Ac
μ is the covariant derivative in the adjoint represen-

tation. Thus, the Yang–Mills action, together with the Dirac
action, with the gauge fixed, has the form

�0 = �YM + �D + �g f , (3.2)

where

�g f = s
∫

d4x c̄a∂μAa
μ

=
∫

d4x
(
ba∂μAa

μ + c̄a∂μDab
μ cb

)
(3.3)

is the gauge fixing action. In Table 1 the quantum numbers
of the fields and background vectors are presented.

3.2 BRST embedding of the sources

As pointed out by Symanzik in [16], care is demanded with
renormalization of theories presenting explicit symmetry
breaking. In fact, if a symmetry of a classical theory is explic-
itly violated, a breaking control mechanism is required to
avoid non-physical vertices and modes. In the present model
Lorentz symmetry is explicitly broken. The breaking is char-
acterized by the constant background fields vμ and κμ, in
the bosonic and fermionic sector, respectively. In the bosonic
sector, a soft gauge symmetry breaking is also present. This
breaking is considered soft since it is proportional to the back-
ground field vμ, which carries mass dimension 1. In general,
gauge symmetry breaking is not welcome. Henceforth, this
problem is eliminated by considering that the background vμ

has null curl, or simply by demanding that its derivative van-
ishes. However, this condition assumes on-shell gauge sym-
metry. Therefore, for the sake of generality and in order to be

more rigorous, the algebraic renormalization formalism must
be employed in order to extend the symmetries into off-shell
symmetries, described by suitable Ward identities. In fact,
even in the usual Yang–Mills theory, after the gauge fixing,
the gauge symmetry is preserved only on-shell. The BRST
formalism allows for a symmetry that closes off-shell: the
BRST symmetry. Moreover, the study of the quantum theory
in the algebraic renormalization formalism is translated into
a cohomology problem (see Sects. 4 and 5). Note that, essen-
tially, the Symanzik method consists in embedding the theory
that contains broken symmetries into a larger theory, without
breaking, through the introduction of external sources.

Following this procedure, in combination with the BRST
quantization, we restore the Lorentz symmetry and obtain
off-shell BRTS symmetry. In fact, as performed before in
[13,14,36], the background κμ, which is coupled to a BRST
invariant composite operator, is replaced by a local external
BRST invariant source Bμ

sBμ = 0. (3.4)

In the bosonic sector, once the background field vμ is coupled
to a BRST non-invariant composite operator, we substitute
it by two local external sources Jμνα and ημνα and their
respective BRST complements λμνα and τμνα , namely

sλμνα = Jμνα,

s Jμνα = 0,

sημνα = τμνα,

sτμνα = 0. (3.5)

Once the renormalizability is studied (it is worthwhile to
note that the complete analysis of the renormalizability is
performed within the action that presents Lorentz, CPT and
BRST symmetries [13,14,36] and not the physical one), the
physical action (2.1) is recovered when the sources attain
their physical values,4

Jμνα |phys= τμνα |phys= vβεβμνα,

λμνα |phys= ημνα |phys= 0,

Bμ |phys= κμ. (3.6)

4 See many examples of the method in [13,14,16,36,45–50].
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Hence, the Symanzik procedure implies that the bosonic sec-
tor will have the form

�B = s
∫

d4x

(
λμναAa

μ∂ν A
a
α + 1

3
ημναg f abc Aa

μA
b
ν A

c
α

)

=
∫

d4x

[
JμναAa

μ∂ν A
a
α + 1

3
τμναg f abc Aa

μA
b
ν A

c
α

+λμνα∂μc
a∂ν A

a
α

+ (ημνα − λμνα)g f abc Aa
μA

b
ν∂αc

c
]

, (3.7)

and the fermionic sector will have the form

�F = −
∫

d4x Bμψγ5γμψ. (3.8)

From power-counting inspection, it is possible to consider
one more term, which is a coupling between quadratic local
composite operators and the external sources, namely

�LCO = s
∫

d4x

[ (
α1λ

μνα Jμνα + α2λ
μνατμνα

+α3 ημνα Jμνα + α4η
μνατμνα

) 1

2
Aa

β A
aβ

+ (
β1λ

μαβ Jναβ + β2λ
μαβτναβ

+ β3η
μαβ Jναβ + β4η

μαβ τναβ

)
Aa

μA
aν

]

=
∫

d4x
[ (

α1 J
μνα Jμνα + α2 J

μνατμνα

+ α3τ
μνα Jμνα + α4τ

μνατμνα

) 1

2
Aa

β A
aβ

+ (
β1 J

μαβ Jναβ + β2 J
μαβτναβ

+β3 τμαβ Jναβ + β4τ
μαβτναβ

)
Aa

μA
aν

+ (
α1λ

μνα Jμνα + α2λ
μνατμνα

+ α3η
μνα Jμνα + α4η

μνατμνα

)
Aa

β∂βca

+ (
β1λ

μαβ Jναβ + β2λ
μαβτναβ

+ β3η
μαβ Jναβ + β4η

μαβτναβ

)
(Aa

μ∂νca + ∂μc
a Aa

ν )
]
.

(3.9)

Finally, we introduce a set of BRST invariant sources
�a

μ, La, Y and Y , in order to control the nonlinear BRST
transformations of the quantum fields. Thus, we have one
more term to consider,

�ext =
∫

d4x
(
�aμs Aa

μ + Lasca + Ysψ − sψY
)

=
∫

d4x
(
−�aμDab

μ cb

+ g

2
f abcLacbcc + gYcaT aψ − gψcaT aY

)
.

(3.10)

In Table 2 we present the quantum numbers of all sources we
have defined.

It is not difficult to see, still from a power-counting anal-
ysis, that an action depending only on the external sources

can also be included, i.e., a vacuum term. However, this term
does not affect the dynamical content of the theory and, for
simplicity, we omit it [36]. Thus, the most general action to
be considered is given by

� = �YM + �D + �g f + �B + �F + �LCO . (3.11)

It is straightforward to show that this action is BRST invari-
ant.

With this procedure, the Lorentz and BRST symmetries
are well established and the renormalizability study can be
safely done [36].

3.3 Ward identities

The symmetries enjoyed by the action (3.11) are functionally
represented by the following set of Ward identities:

• Slavnov–Taylor identity

S(�) ≡
∫

d4x

(
δ�

δ�aμ

δ�

δAa
μ

+ δ�

δLa

δ�

δca
+ δ�

δY

δ�

δψ

−δ�

δY

δ�

δψ
+ ba

δ�

δc̄a

+ Jμνα

δ�

δλμνα

+ τμνα

δ�

δημνα

)
= 0. (3.12)

• Gauge fixing and anti-ghost equations

δ�

δba
= ∂μAa

μ,

δ�

δc̄a
+ ∂μ

δ�

δ�a
μ

= 0. (3.13)

• Ghost equation

Ga� = �a
cl , (3.14)

with

Ga =
∫

d4x

(
δ

δca
+ g f abcc̄b

δ

δbc

)
, (3.15)

and

�a
cl =

∫
d4x

[
g f abc

(
�b

μA
c
μ − Lbcc

)
+ gYT aψ

+ gψT aY
]
. (3.16)

Since the occurrences of breaking at Ward identities (3.13)
and (3.14) is linear in the fields, they will remain at classical
level [15].

123



Eur. Phys. J. C (2017) 77 :903 Page 5 of 10 903

Table 2 Quantum numbers of the sources

Sources Y Y � L λ J η τ B

UV dimension 5/2 5/2 2 4 1 1 1 1 1

Ghost number −1 −1 −1 −2 −1 0 −1 0 0

Spinor number 1 −1 0 0 0 0 0 0 0

Statistics 0 −2 −1 −2 −1 0 −1 0 0

For future purposes, let us define F , a general functional
with even ghost number. The Slavnov–Taylor operator acting
on F is denoted by

S(F) ≡
∫

d4x

(
δF

δ�aμ

δF
δAa

μ

+ δF
δLa

δF
δca

+ δF
δY

δF
δψ

− δF
δY

δF
δψ

+ ba
δF
δc̄a

+ Jμνα

δF
δλμνα

+ τμνα

δF
δημνα

)
. (3.17)

We can define the linearized Slavnov–Taylor operator as

SF ≡
∫

d4x

(
δF

δ�aμ

δ

δAa
μ

+ δF
δAa

μ

δ

δ�aμ
+ δF

δLa

δ

δca

+ δF
δca

δ

δLa
+ δF

δY

δ

δψ
+ δF

δψ

δ

δY

− δF
δY

δ

δψ
− δF

δψ

δ

δY
+ ba

δ

δca

+ Jμνα

δ

δλμνα

+ τμνα

δ

δημνα

)
. (3.18)

The following identities hold:

SFS(F) = 0, ∀ F ,

SFSF = 0, if S(F) = 0. (3.19)

4 Gauge anomalies

In order to analyze the renormalizability of the model
described by the action (3.11), we need to prove that (i) the
Ward identities (3.12)–(3.14) are not anomalous at quantum
level, and (ii) that the action is stable at quantum level. It
is well known that there is no room for gauge anomalies in
the pure Yang–Mills theory with Lorentz violation [15,36].
Here, however, there are fermions and an additional Lorentz-
breaking sector. Following [13,15], it is a trivial exercise
to check that the Ward identities (3.13) and (3.14) are not
anomalous at the quantum level, i.e.:

• Gauge fixing and anti-ghost equations

δ�

δba
= ∂μAa

μ,

δ�

δc̄a
+ ∂μ

δ�

δ�a
μ

= 0. (4.1)

• Ghost equation

Ga� = �a
cl , (4.2)

where � stands for the quantum action, namely,

� =
∞∑
n=0

h̄n�(n) with �(0) = �. (4.3)

Here we shall show that the Ward identity (3.12) also holds
true for the action �. In fact, this is the main Ward identity of
the model and if this identity is ruined, renormalizability is
lost. In order to do that, using the quantum action principle
(QAP), we assume that such Ward identity breaks down at
order h̄n in perturbation theory, as follows:

S(�) = h̄n�(1) + O(h̄n+1), (4.4)

were �(1) is a local integrated polynomial in the fields
and external sources, of ghost number one and dimension
bounded by four. From identity (3.19), we get

S��(1) = 0. (4.5)

This identity is the so-called Wess–Zumino consistence con-
dition for the anomaly [51]. Equation (4.5) defines a coho-
mology problem in the space of the integrated local polyno-
mial on the fields and external sources of ghost number one
and dimension bounded by four. The most general solution
for (4.5) has the form

�(1) = rA + S��̂(0), (4.6)

where A is a local polynomial in the fields and sources and r
is an arbitrary parameter. This parameter is not determined by
algebraic methods: only an explicit computation of Feynman
diagrams can determine it. Anomalies only are present when
there exist non-trivial solutions, i.e.,A �= S�Â. In fact, in this
case the Slavnov–Taylor operator only can be implemented
to h̄n−1 order in perturbation theory, and just the trivial part
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can be reabsorbed by the introduction of the non-invariant
counterterm −Â into the classical action. A direct conse-
quence of this is that trivial solutions for the cohomology
problem always can be eliminated, implying in the anomaly-
freedom of the model. Furthermore, if the r parameter can
be made to vanish, through sum on all species of fermions in
a family, for instance, the anomaly also can be eliminated. A
nonrenormalization theorem can ensure this property to all
orders in perturbation theory [52].

Here, the most general solution �(1) must take into
account the following criteria: dimension bounded by four,
ghost number one, polynomial on the fields and sources,
Lorentz, C, P and T invariant – considering that in this stage
these symmetries are restored. However, it is well known
that such a solution will not depend on the fermion fields and
on the external sources (since they form BRST doublets),
i.e., their contributions for the anomaly are trivial [13,15].
In fact, this last result is general [53–55]. In fact, suppos-
ing for now that the breaking happens at h̄ order in pertur-
bation theory, the other terms that could appear from the
usual Dirac–Yang–Mills theory also do not contribute; see
[15]. Thus, the remaining term could depend only on A, c
and B, namely �(1) ≡ �(1)(A, c, B). Hence, the linearized
Slavnov–Taylor operator S� can be identified with the BRST
operator, s, because the action of S� on (A, c, B) is the same
as s. Then the problem (4.6) is reduced to the simpler coho-
mology problem given by

s�(1)(A, c, B) = 0. (4.7)

It is possible to see that there is only one term that satisfy the
Eq. (4.7). Thus, the most general solution for the anomaly
reads

�(1) = r
∫

d4x εμναβB
μ∂νca∂αAaβ. (4.8)

However, it is straightforward to show that this term can be
written as �(1) = s�(0), where

�(0) = −r
∫

d4x εμναβB
μ

×
(
Aaν∂αAaβ + g

3
f abc Aaν AbαAcβ

)
. (4.9)

This means that there is no non-trivial solution for Eq. (4.7)
(or Eq. (4.5)). Thus such an anomaly can be eliminated by the
introduction of the non-invariant counterterm −�(0) into the
classical action. The model described by the action (3.11) is
anomaly-free at first order in perturbation theory. Moreover,
since the method is recursive, this property remains at all
orders in perturbation theory.

5 Stability

Once we have shown that the Ward identities (3.12)–(3.14)
are not anomalous at quantum level, we can study the quan-
tum stability of the model (3.11), i.e., to seek the most general
invariant counterterm, �ct , which can be freely added to the
classical action � at any order in perturbation theory. Such a
counterterm must have dimension bounded by four and van-
ishing ghost number and must obey the following constraints:

S��ct = 0, (5.1a)
δ�ct

δba
= 0, (5.1b)

(
δ

δc̄a
+ ∂μ

δ

δ�a
μ

)
�ct = 0, (5.1c)

Ga�ct = 0, (5.1d)

where S� , the linearized nilpotent Slavnov–Taylor operator,
is given by (5.1a)

S� =
∫

d4x

(
δ�

δ�a
μ

δ

δAaμ
+ δ�

δAaμ

δ

δ�a
μ

+ δ�

δLa

δ

δca

+ δ�

δca
δ

δLa
+ δ�

δY

δ

δψ
+ δ�

δψ

δ

δY
− δ�

δY

δ

δψ

− δ�

δψ

δ

δY
+ ba

δ

δc̄a
+ Jμνα

δ

δλμνα

+ τμνα

δ

δημνα

)
.

(5.2)

The constraint (5.1a) identifies the invariant counterterm as
the solution of the cohomology problem for the operator
S� in the space of the integrated local field polynomials of
dimension four and vanishing ghost number. From the gen-
eral results of cohomology, it follows that �ct can be written
as [15]

�ct = −1

4

∫
d4x a0F

a
μνF

aμν

+
∫

d4x
(
a1iψγ μDμψ − a2mψψ − a3B

μψγ5γμψ
)

+S��(−1), (5.3)

where �(−1) is the most general local polynomial countert-
erm with dimension bounded by four and ghost number −1,
given by

�(−1) =
∫

d4x
[
a4�aμAaμ + a5∂μc̄a Aaμ + a6L

aca + a7

2
c̄aba

+ a8
g

2
f abcc̄a c̄bcc + a9Yψ

+ a10ψY + (
a11λμνα + a12ημνα

)
Aaμ∂ν A

a
α

+ (
a13λμνα + a14ημνα

) g

3
f abc AaμAbν A

c
α
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+ (
a15λαβγ + a16ηαβγ

)
εαβγμψγ5γμψ

+ (
a17α1λμνα Jμνα + a18α2λμνατμνα

+ a19α3ημνα Jμνα +a20α4ημνατμνα

) 1

2
Aaβ A

aβ

+
(
a21β1λμαβ Jναβ + a22β2λμαβτναβ

+ a23β3ημαβ Jναβ + a24β4ημαβτναβ

)
AaμAaν

]
.

(5.4)

From Eq. (5.1b) one finds that a4 = a5 and a8 = a7 = 0.
Moreover, from Eq. (5.1d) one finds that a6 = 0. Thus, the
form of the most general counterterm allowed by the Ward
identities is given by

�ct = − 1

4

∫
d4x a0F

a
μνF

aμν +
∫

d4x
[
(a10 − a9 + a1) iψγ μDμψ

− (a10 − a9 + a2)mψψ
] + a4

∫
d4x

[
Aa

μ

δ�YM

δAa
μ

+ Aa
μ

δ�B

δAa
μ

+ (�a
μ + ∂μc̄

a)∂μca + igψγ μψ Aa
μT

a

+ (
α1 J

μνα Jμνα + α2 J
μνατμνα

+ α3τ
μνα Jμνα + α4τ

μνατμνα

)
Aa

β A
aβ

+ 2
(
β1 J

μαβ Jναβ + β2 J
μαβτναβ

+ β3τ
μαβ Jναβ + β4τ

μαβτναβ

)
Aa

μA
aν

+ (
α1λ

μνα Jμνα + α2λ
μνατμνα

+ α3η
μνα Jμνα + α4η

μνατμνα

)
Aa

β∂βca

+ (
β1λ

μαβ Jναβ + β2λ
μαβτναβ + β3

ημαβ Jναβ + β4η
μαβτναβ

)
(Aa

μ∂νca + ∂μc
a Aaν)

]

+
∫

d4x
[
Jμνα

(
a11A

a
μ∂ν A

a
α + a13

g

3
f abc Aa

μA
b
ν A

c
α

)

+ a11λ
μνα∂μc

a∂ν A
a
α

+ τμνα
(
a12A

a
μ∂ν A

a
α + a14

g

3
f abc Aa

μA
b
ν A

c
α

)

+ a12η
μνα∂μc

a∂ν A
a
α

+ (a13 − a11)λ
μναg f abc Aa

μA
c
α∂νc

b

+ (a14 − a12)η
μναg f abc Aa

μA
c
α∂νc

b

+ (
a17α1 J

μνα Jμνα + a18α2 J
μνατμνα

+ a19α3τ
μνα Jμνα + a20α4τ

μνατμνα

) 1

2
Aa

β A
aβ

+ (
a17α1λ

μνα Jμνα + a18α2λ
μνατμνα

+ a19α3η
μνα Jμνα + a20α4η

μνατμνα

)
Aa

β∂βca

+ (
a21β1 J

μαβ Jναβ + a22β2 J
μαβτναβ

+a23β3τ
μαβ Jναβ + a24β4τ

μαβτναβ

)
Aa

μA
aν

+ (
a21β1λ

μαβ Jναβ + a22β2λ
μαβτναβ

+ a23β3η
μαβ Jναβ + a24β4η

μαβτναβ

)
(Aa

μ∂νca + ∂μc
a Aaν)

]

−
∫

d4x
[
(a10 − a9 + a3)B

μ

− a15 Jαβγ εαβγμ − a16ταβγ εαβγμ
]
ψγ5γμψ. (5.5)

The last step in the stability analysis is to infer if the coun-
terterm �ct can be reabsorbed by the original action � by
means of the multiplicative redefinition of the fields, sources
and parameters of the theory, according to

�(�, J, ξ) + ε�ct (�, J, ξ) = �(�0, J0, ξ0) + O(ε2),

(5.6)

where ε is a small perturbation parameter (h̄ or the coupling
parameter g) and the bare quantities are defined as

�0 = Z1/2
� �, � ∈ {A, ψ, ψ, b, c, c},

J0 = ZJJ , J ∈ {�, L ,Y , Y, J, λ, τ, η, B},
ξ0 = Zξ ξ, ξ ∈ {g, m} . (5.7)

Following this prescription, it is possible to check the renor-
malizability of the model, where the renormalization factors
are given as follows: For the independent renormalization
factors of the gauge field, coupling parameter, electron field
and electron mass, one finds

Z1/2
A = 1 + ε

(a0

2
+ a4

)
,

Zg = 1 − ε
a0

2
,

Z1/2
ψ = 1 + ε

1

2
(a10 − a9 + a1) ,

Zm = 1 + ε(a2 − a1), (5.8)

while the renormalization factors of the ghosts, the Lautrup–
Nakanishi field, �, L and Y sources are not independent:

Zc = Zc̄ = Z−1/2
A Z−1

g ,

Z� = Z−1/4
A Z−1/2

g ,

ZL = Z−1/2
b = Z1/2

A ,

ZY = ZY = Z−1/2
g Z1/4

A Z−1/2
ψ . (5.9)

At this point, we conclude that the renormalization proper-
ties of the usual Yang–Mills theory with fermions remain
unchanged.

For the additional sector, once the sources Bμ, Jαβγ and
ταβγ have the same quantum numbers, matrix renormaliza-
tion is required, i.e.,

J0 = ZJJ , (5.10)

where J is a column matrix of sources that share the same
quantum numbers. The quantity ZJ is a squared matrix with
the associated renormalization factors. Thus

123



903 Page 8 of 10 Eur. Phys. J. C (2017) 77 :903

⎛
⎜⎝

Bμ
0

Jαβγ
0

τ
αβγ
0

⎞
⎟⎠ =

⎛
⎜⎝

(ZBB)
μ

ω (ZBJ )
μ

λρσ (ZBτ )
μ

λρσ

(Z J B)
αβγ

ω (Z J J )
αβγ

λρσ (Z Jτ )
αβγ

λρσ

(Zτ B)
αβγ

ω (Zτ J )
αβγ

λρσ (Zττ )
αβγ

λρσ

⎞
⎟⎠

⎛
⎝ Bω

Jλρσ

τλρσ

⎞
⎠

=
⎛
⎜⎝

(1 + ε(a3 − a1))δ
μ
ω −εa15ε

μ
λρσ −εa16ε

μ
λρσ

0 (1 + ε(a11 − a0))δ
α
λ δ

β
ρ δ

γ
σ εa12δ

α
λ δ

β
ρ δ

γ
σ

0 εa13δ
α
λ δ

β
ρ δ

γ
σ (1 + ε(a14 − a0))δ

α
λ δ

β
ρ δ

γ
σ )

⎞
⎟⎠

⎛
⎝ Bω

Jλρσ

τλρσ

⎞
⎠ . (5.11)

The same rule will be used for the sources λμνα and ημνα ,
namely

J =
(

λμνα

ημνα

)
and Z =

(
Zλλ Zλη

Zηλ Zηη

)
, (5.12)

where we find

Z = 1 + ε

( a4
2 − a0

2 + a11 a12

a13
a4
2 − a0

2 + a14

)
. (5.13)

Finally, the renormalization factors of the dimensionless
parameters read

Zα1 = 1 + ε

(
a17 − 2a11 + a0 − α2 + α3

α1
a13

)
,

Zα2 = 1 + ε

(
a18 − a11 − a14 + a0 −

(
α1

α2
a12+ α4

α2
a13

))
,

Zα3 = 1 + ε

(
a19 − a11 − a14 + a0 −

(
α1

α3
a12+ α4

α3
a13

))
,

Zα4 = 1 + ε

(
a20 − 2a14 + a0 − α2 + α3

α4
a12

)
,

Zβ1 = 1 + ε

(
a21 − 2a11 + a0 − β2 + β3

β1
a13

)
,

Zβ2 = 1 + ε

(
a22 − a11 − a14 + a0 −

(
β1

β2
a12+ β4

β2
a13

))
,

Zβ3 = 1 + ε

(
a23 − a11 − a14 + a0 −

(
β1

β3
a12+ β4

β3
a13

))
,

Zβ4 = 1 + ε

(
a24 − 2a14 + a0 − β2 + β3

β4
a12

)
. (5.14)

We conclude that the Lorentz-violating Yang–Mills theory
with interacting fermions is stable at the quantum level. More
precisely, it is so at all orders in perturbation theory.

6 Conclusion

In this work we have studied the issue of Chern–Simons-like
term generation in the Lorentz-violating Yang–Mills theory
with interacting fermions. For our proposes, we consider the
usual non-Abelian Chern–Simons-like term and only one
CPT-odd term in the fermionic sector: the one containing

the background vector field κμ. Since a Chern–Simons-like
term could come from radiative corrections [35], a stability
study of the model was needed. However, for such a study,
the Ward identities must remain true at quantum level, i.e.,
the model must be anomaly-free. Thus, the anomaly analysis
was required to ensure whether this property is realized. In
order to do that, we have employed the BRST quantization
approach (once we are dealing with a gauge theory) in com-
bination with the Symanzik method to control the breaking
associated with the background fields. The algebraic renor-
malization technique gives us results which are independent
of any renormalization scheme and are valid to all orders in
perturbation theory. The results here found are:

1. The model here studied is anomaly-free, since there are
no non-trivial solutions for the cohomology problem
(4.5). The Chern–Simons-like term appears at the trivial
sector of the cohomology in the space of local polyno-
mial of ghost number one. This means that: (i) this term
is redundant and (ii) can be eliminated through renormal-
ization conditions [15].

2. A Chern–Simons-like term is not generated by radia-
tive corrections, as can be noted from the counterterm
action (5.5). This feature can easily be observed from
renormalization factors shown at Eq. (5.11). The non-
generation of a Chern–Simons-like term is characterized
by the fact that the source Jμνα does not receive quantum
corrections from source Bμ. In fact, since Jμνα belongs
to a BRST doublet, it cannot receive contributions from
sources which are not at the trivial sector of the BRST
cohomology. See [14] for more details.

3. Here we clarify why the (non)renormalization of the
Chern–Simons-like action (see Eq. (2.4)) or the Carroll–
Field–Jackiw action (in the Abelian case) is not related
to the (non)generation of a Chern–Simons-like action for
the non-Abelian or Abelian case. In fact, in the Abelian
case, the Carroll–Field–Jackiw action does not renor-
malize and is not generated [14]. Here, we saw that
the Chern–Simons-like action (2.4) does renormalize, as
noted from the counterterm (5.5). However, just like the
Abelian case, a Chern–Simons-like term is not generated
from radiative corrections since Jμνα does not receive
contributions from Bμ.
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It is worth to comment on a source of confusion. Although
the model here studied presents background fields, the back-
ground field quantization method [56] is not employed. In
the present model the background fields are inherent to the
model. In the BRST quantization of the whole model the for-
mer background fields, which are not related to the quantum
fields, were replaced by local external sources. In the case
of the background field method, the background fields are
counterparts for the usual quantum fields by means of the
fact that the latter are perturbations around the former. This
point should be clear for the reader in order to distinguish the
nice general results of [57,58] from ours.

Another interesting point to be mentioned concerns other
classes of Lorentz-violating theories, for instance [59–61],
which also preserve renormalizability. In these theories the
Lorentz symmetry breaking consists in the assumption of
higher order space derivatives, while the time derivatives
remain at the same order as in the usual relativistic models.
In these cases the renormalizability is ensured by general-
izing the usual power-counting analysis. From the weighted
power-counting concept [57], nonrenormalizable vertices are
put in a renormalizable form [60]. In the model here studied,
however, the Lorentz violation manifests itself under particle
Lorentz transformations, as the Carroll–Field–Jackiw mod-
els [62]. Nevertheless, the usual Lorentz covariance – space
and time are treated on an equal footing – is maintained.
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